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The Korea-IBS-Daegu-SKKU energy density functional (KIDS-EDF) models, constructed from the perturba-
tive expansion of the energy density in nuclear matter, have been successfully and widely applied in describing
the properties of finite nuclei and infinite nuclear matter. In the present work, we extend the applications of the
KIDS-EDF models to investigate the implications of the nucleon effective mass and nuclear symmetry energy for
the properties of neutron stars (NSs) and neutrino interaction with the NS constituent matter in the linear response
approximation (LRA). At fixed neutrino energy and momentum transfer, we analyze the total differential cross
section of neutrinos, the neutrino mean free path (NMFP), and the NS mass-radius (M-R) relations. Remarkable
results are given by the KIDS0-m*87 and SLy4 models, in which M∗

n /M � 1, and their NMFPs are quite higher
in comparison with those obtained from the KIDS0, KIDS-A, and KIDS-B models, which result in M∗

n /M � 1.
For the KIDS0, KIDS-A, and KIDS-B models, we obtain λ � RNS, indicating that these models could predict
the slow NS cooling and neutrino trapping in NSs. In contrast, the KIDS0-m*87 and SLy4 models yield λ � RNS

and thus we expect faster NS cooling and a small possibility of neutrino trapping within NSs. We also calculate
the NMFP as a function of the neutrino energy and the nuclear matter density and find that the NMFP decreases
as the density and neutrino energy increase, which is consistent with the result obtained in the Brussels-Montreal
Skyrme (BSk17 and BSk18) models at saturation density.

DOI: 10.1103/PhysRevC.106.035802

I. INTRODUCTION

It is widely known that neutron stars (NSs) are compact
objects which are extraordinary laboratories for dense stellar
matter physics that cannot be reproduced in terrestrial labo-
ratories. The neutrino processes in the later stage of stellar
evolution play an important role in supernova explosions,
formation of proto–neutron stars (PNSs), and the cooling of
NSs [1–3]. However, the internal composition of the cores of
NSs and the interactions among the NS constituent matter are
still poorly understood. Also, the most important observable
properties of NSs, such as NS maximum masses and radii,
are not well constrained yet [4,5]. The NS maximum mass
is an implication of general relativity and it is controlled by
the equation of state (EoS) of nuclear matter at densities more
than a few times normal density. In addition to the determina-
tions of the NS mass and radius, it is expected that the interior
of NS will cool via the neutrino emission process, which sen-
sitively depends on the NS composition and the interactions
between the NS constituents. Slow or rapid neutrino emissions
have a significant implication for the NS cooling process. The
neutrino scattering in dense nuclear matter and their emission
from the NS are sensitive to the nuclear symmetry energy of
the EoS and the nucleon effective masses [6,7].
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The nucleon effective masses, which are calculated from
the effective interaction in the nuclear medium [8], are not
only crucial for neutrino scattering and absorption (opacity)
in NSs [9–13] but also for the structure of rare isotopes, stellar
matter, compact stars, and other astrophysical objects, i.e.,
supernovae and NSs, as well as the dynamics of heavy-ion
collisions (HICs) [14]. Besides the nucleon effective masses,
the nuclear symmetry energy also has an essential role in
determining the features of the stiffness or the softness of the
EoS in neutron-rich matter. Generally, stiffness of the nuclear
symmetry energy can be understood from the enhancement or
reduction of the pressure gradient in the asymmetric matter.
Therefore, the nuclear symmetry energy is a powerful tool for
controlling the rate of the NS cooling process in a mixture of
nucleons, determining the density for the appearance of hy-
perons or other exotic particles, the nucleon emissions in the
reaction dynamics, and the collective flows in HICs [15,16].

The behavior of the density dependence of the nuclear
symmetry energy at high densities remains unknown [17,18].
Although the nuclear symmetry energy at saturation density
ρ0 � 0.16 fm−3 was predicted to be around 32 ± 0.59 MeV
in a recent analysis using the nuclear liquid drop (LD) model
[19], its values at baryon densities larger than the saturation
densities are poorly known [17,18]. Therefore, intensive stud-
ies on the density dependence of the nuclear symmetry energy
at higher densities are needed to gain a better understanding of
the properties of a NS and its matter constituent interactions
as well as to constrain the EoS of neutron-rich matter. Several
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theoretical works using various microscopic theories with re-
alistic nucleon-nucleon forces and phenomenological models
[17–21] have been done to observe the features of the nuclear
symmetry energy and nucleon effective masses.

Besides those theoretical attempts and terrestrial labora-
tories constraints which allow us to constrain the nuclear
symmetry energy at around saturation density, nowadays it
is also possible to constrain the nuclear symmetry energy at
higher density via the well-known mass-radius (M-R) rela-
tions of NSs using astrophysical or astronomical observations
such as those from the Neutron Star Interior Composi-
tion Explorer (NICER) [22,23], the Laser Interferometer
Gravitational-Wave Observatory (LIGO)/Virgo [24,25], and
other x-ray burst observations [26]. For instance, the astro-
physical observation information of the tidal deformability
detected from binary NS mergers allows us to constrain the
density dependence of nuclear symmetry energy. Motivated
by recent progress in theoretical studies, terrestrial labora-
tories or experiments, and astrophysical observations, in the
present theoretical study we calculate the neutrino mean free
paths (NMFPs) in various Korea-IBS-Daegu-SKKU energy
density functional (KIDS-EDF) models and study their rela-
tion with the NS masses and radii obtained from observation
constraints, which are crucial quantities for the explanation of
NS cooling and an important input for the simulation of the
neutrino transport [27].

In this paper, we investigate the effect of the nucleon effec-
tive masses and nuclear symmetry energies on the properties
of NSs and on neutrino scattering with NS constituent matter,
which consists of protons (p), neutrons (n), electrons (e), and
muons (μ) as the standard matter particles. In the present
work, selected models are KIDS0, KIDS0-m*87, KIDS-A,
KIDS-B, and SLy4. Rules to select the models will be dis-
cussed in detail in Sec. II. In the neutrino scattering, we
employ the linear response approximation (LRA) to describe
the interaction between neutrino and NS constituents. Note
that, in this work, we focus on only the neutrino interactions
with the neutrons and protons, since the differential cross
section (DCRS) of the neutrino and the NMFP are more dom-
inant than those of leptons. The KIDS-EDF models have been
successfully and widely applied in many physics phenomena
such as finite nuclei [28], quasielastic electron scattering [29],
inclusive electron scattering [30], and nuclear matter [28] as
well as NSs [31]. The nuclear symmetry energy, the neutron
and proton effective masses, and the neutron and proton frac-
tions of constituents of β-stable matter are calculated within
the KIDS-EDF models. With these quantities obtained from
the KIDS-EDF models, we calculate the NMFP in a NS,
which is an inverse of the DCRS of the neutrino. We also
calculate the M-R relations of NSs by solving the Tolman-
Oppenheimer-Volkoff (TOV) equations [32,33] and observe
the relations between the NS M-R and the NMFP, which are
expected to provide new insight into the rate of the NS cooling
process and the possibility of neutrino trapping in NSs.

This paper is organized as follows. In Sec. II we briefly
introduce the formalism of the KIDS-EDF models and sum-
marize the parameters used in the models. In Sec. III, we
calculate the neutron star matter EoS by solving the baryon
number conservation, charge neutrality, and β-equilibrium

conditions consistently. As a result, the neutron and proton
effective masses and their particle fractions within the NS
are obtained. Solving the TOV equations, we obtain the M-R
relations of the selected models. In Sec. IV we present the
DCRS of the neutrino and the NMFP, using the linear response
approach, and their relations with the NS M-R properties.
Section V is devoted to a summary and conclusion.

II. KIDS-EDF MODEL

In this section, we present the formalism of the KIDS-
EDF models, which were proposed for the first time for
homogeneous nuclear matter [34]. They were then applied for
describing the properties of finite nuclei. In finite nuclei, the
EDF in the nuclear matter was transformed to the form of the
Skyrme functional, where the specific values of the effective
masses could be reproduced by adjusting the parameters of
the functional. Here, we first describe the energy per nucleon
in the homogeneous nuclear matter by expanding the energy
per nucleon or the energy density in terms of the power of the
Fermi momentum kF , which is equivalent to the cubic root of
the baryon density at zero temperature. An explicit expression
of the KIDS-EDF energy per nucleon is given by

E (ρ, δ) = T (ρ, δ) +
3∑

j=0

c j (δ)ρ (1+a j ), (1)

where a j = j/3 and ρ = ρn + ρp is the baryon density. ρn and
ρp are respectively neutron and proton densities. The isospin
asymmetry parameter is defined by δ = (ρn − ρp)/ρ, where
δ = 0 for symmetric nuclear matter (SNM) and δ = 1 for pure
neutron matter (PNM). The kinetic energy in the first term
T (ρ, δ) of Eq. (1) is given by

T (ρ, δ) = 3

5

[
h̄2

2Mp

(
1 − δ

2

) 5
3

+ h̄2

2Mn

(
1 + δ

2

) 5
3

]
(3π2ρ)

2
3 ,

(2)

where Mp and Mn are respectively the proton and neutron
masses in free space. The potential energy term in Eq. (1)
contains the parameters c j (δ) which are defined by c j (δ) =
α j + δ2β j , where the parameters α j are to be fixed by the
SNM properties and β j could be fixed by the EoS of asym-
metric nuclear matter. Further details about determining the
coefficients of β j and α j can be found in Ref. [35].

With the energy per nucleon in Eq. (1) expanded in terms
of δ, the nuclear symmetry energy S (ρ) is straightforwardly
determined via the second derivative of the energy density
over the δ. The expression of the symmetry energy S (ρ) is
given by

E (ρ, δ) = E (ρ, δ = 0) + S (ρ)δ2 + O(δ4),

S (ρ) = h̄2

6M

(
3π2

2

) 2
3

ρ
2
3 +

3∑
j=0

β jρ
(1+a j ), (3)

where h̄2

6M ( 3π2

2 )
2
3 ρ

2
3 is the kinetic energy term, and we re-

place Mn and Mp with the average nucleon mass M = (Mn +
Mp)/2. At around the nuclear matter saturation density, the
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energy per nucleon in SNM E (ρ, 0) and the nuclear symmetry
energy can be respectively expanded by

E (ρ, 0) = E0 + 1
2 K0X 2 + 1

6 Q0X 3 + O (X 4),

S (ρ) = J + LX + 1
2 KsymX 2 + 1

6 QsymX 3

+ 1
24 RsymX 4 + O (X 5), (4)

where X = ( ρ−ρ0

3ρ0
). The compression modulus K0 and the

skewness coefficient Q0 in Eq. (4) are respectively given by

K0 = 9ρ2
0

d2[E (ρ, 0)/ρ]

dρ2

∣∣∣∣
ρ=ρ0

, Q0 = 27ρ3
0

d3E (ρ, 0)

dρ3

∣∣∣∣
ρ=ρ0

.

(5)

Density dependence of the symmetry energy around the
saturation density is specified by the value of J = S (ρ0),
the slope L, the curvature Ksym, the skewness Qsym, and the
kurtosis Rsym, which are given respectively by

L = ρ0
dS (ρ)

dρ

∣∣∣∣
ρ=ρ0

, Ksym = 9ρ2
0

d2S (ρ)

dρ2

∣∣∣∣
ρ=ρ0

,

Qsym = 27ρ3
0

d3S (ρ)

dρ3

∣∣∣∣
ρ=ρ0

, Rsym = 81ρ4
0

d4S (ρ)

dρ4

∣∣∣∣
ρ=ρ0

.

(6)

We now turn to determine the KIDS-EDF parameters
in terms of the Skyrme force parameters. The conventional
Skyrme interaction is defined by [36]

Vi, j (k, k′) = t0(1 + x0Pσ )δ(ri − r j )

+ 1
2 t1(1 + x1Pσ )[δ(ri − r j )k2 + k′2δ(ri − r j )]

+t2(1 + x2Pσ )k′ · δ(ri − r j )k

+ 1
6 t3(1 + x3Pσ )ραδ(ri − r j )

+ iW0k′ × δ(ri − r j )k · (σi − σ j ), (7)

where Pσ = (1 + σ1 · σ2)/2 and σ are respectively the spin-
exchange operator and Pauli spin matrices. k = (∇i − ∇ j )/2i
and k′ = (∇′

i − ∇′
j )/2i are the relative momenta operating in

the initial and final states, respectively. The strength of the
spin-orbit coupling W0 is absent in the EDF for homogeneous
matter in the Skyrme force. The energy density functional for
infinite nuclear matter can be written in terms of the Skyrme
force parameters as

E (ρ, δ) = T (ρ, δ) + 3
8 t0ρ − 1

8 (2y0 + t0)ρδ2 + 1
16 t3ρ

(α+1)

− 1
48 (2y3 + t3)ρ (α+1)δ2 + 1

16 (3t1 + 5t2 + 4y2)τ

− 1
16 [(2y1 + t1) − (2y2 + t2)]τδ2, (8)

where yi ≡ tixi. Matching Eqs. (1) and (8), we then determine
the relations between c j (δ) and Skyrme coefficients (ti, yi ) and
one has

c0(δ) = 3

8
t0 − 1

8
(2y0 + t0)δ2,

c1(δ) = 1

16
t31 − 1

48
(2y31 + t31)δ2,

c2(δ) = 1

16
t32 − 1

48
(2y32 + t32)δ2

+ 3

5

(
6π2

ν

) 2
3 1

16
{(3t1 + 5t2 + 4y2)

− [(2y1 + t1) − (2y2 + t2)]δ2},
c3(δ) = 1

16
t33 − 1

48
(2y33 + t33)δ2, (9)

where the power of density α = 1/3 is assigned to t31 and
y31, α = 2/3 to t32 and y32, and α = 1 to t33 and y33. ν is
the spin and isospin degeneracy factor with ν = 4 for SNM
and ν = 2 for the asymmetric matter. As mentioned before,
we expand the EDF as a power series of the cubic root of
nuclear density. So, in this case, we have three extra terms
rather than a single density dependence ρα in the conventional
Skyrme force. Note that, in the KIDS-EDF model, we have 13
parameters in total to be determined in the Skyrme force. As
mentioned earlier, in the present work, we consider the various
KIDS-EDF models KIDS0, KIDS0-m*87, KIDS-A, KIDS-B,
and SLy4.

In the KIDS0 model, α0, α1 and α2 are adjusted to three
SNM data: ρ0 = 0.16 fm−3, EB = 16 MeV, and K0 = 240
MeV; and four βi’s are fitted to a PNM EoS calculated with
an ab initio nuclear force [37]. There are no presumed values
for determining the effective mass, so for the KIDS0 model we
obtain isoscalar effective mass m∗

s � 1.0M and isovector one
m∗

v � 0.8M as a result of the parameter fitting. Considering
the effective masses of m∗

s � 0.8M and m∗
v � 0.7M, which

are set based on the empirical constraint values [38], the
Skyrme parameters are calibrated to reproduce these effective
mass values in the KIDS0-m*87 model. Since both KIDS0
and KIDS0-m*87 models are adjusted to identical nuclear
matter properties, the two models have the same symmetry
energy parameters. The symmetry energy of the KIDS-A and
KIDS-B models are also determined to satisfy the recent neu-
tron star observation constraint [39]. These models are within
the uncertainty of the symmetry energy parameters consistent
with the neutron star data [31]. Therefore, the KIDS-A model
has different symmetry energy parameters from those in the
KIDS-B model. In addition, the specific values of the effective
masses are not assumed in the KIDS-A and KIDS-B models,
and their obtained isoscalar and isovector effective masses are
quite similar to those of the KIDS0 model. Therefore, the
difference between the KIDS0, KIDS-A, and KIDS-B models
clearly shows the effect of the symmetry energy. Oppositely,
the KIDS0, KIDS0-m*87, and SLy4 models have rather sim-
ilar symmetry energy parameters, so their difference will be
obviously clarified by the effective mass.

Using the standard Skyrme force [36], the nucleon ef-
fective masses in the asymmetric nuclear matter (ANM) are
defined by

M∗
i = Mi

[
1 + Mi

8h̄2 ρ�s − Mi

8h̄2 τ i
3(2�v − �s)ρδ

]−1

, (10)

where Mi is the nucleon mass in free space (i = n, p). The
Skyrme force parameters are given as �s = 3t1 + (5t2 + 4y2)
and �v = (2t1 + y1) + (2t2 + y2), where the values of param-
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TABLE I. Skyrme force parameters for the KIDS-EDF models. The units of t0, y0 are in MeV fm3, the units of t31, y31 are in MeV fm4, the
units of t1, t2, t32, y32, W0 are in MeV fm5, and the unit of y33 is in MeV fm6. K0, J , and L are in units of MeV. At the bottom, we summarize the
data used in determining the model parameters. R1.4

NS, EB/A, and Rc denote the radius in km of a neutron star with mass 1.4M�, binding energy
per nucleon and charge radius, respectively.

Parameters KIDS0 KIDS0-m*87 KIDS-A KIDS-B

t0 −1772.044 −1772.044 −1855.377 −1772.044
y0 −127.524 −127.524 2182.404 2057.283
t1 275.724 376.694 276.058 271.712
y1 0.000 −265.280 0.000 0.000
t2 −161.507 145.531 −167.415 −161.957
y2 0.000 −334.837 0.000 0.000
t31 12216.730 12216.730 14058.746 12216.730
y31 −11969.990 −11969.990 −73482.960 −70716.593
t32 571.074 −1233.167 −1022.193 622.750
y32 29485.421 32553.976 122670.831 119258.903
t33 0.000 0.000 0.000 0.000
y33 −22955.280 −22955.280 −73105.329 −70290.560

W0 108.359 133.722 92.023 91.527
μ∗

s 0.991 0.800 1.004 0.997
μ∗

v 0.819 0.700 0.827 0.825
K0 240 240 230 240
J 32.8 32.8 33 32
L 49.1 49.1 66 58

Input data APR PNM EoS ← R1.4
NS = 11.8 − 12.5 ←

in the EB/A and Rc of ← ← ←
fitting 40Ca, 48Ca, 208Pb

eters of t1, t2, y1, and y2 are given in Table I. τ3 is the third
component of the isospin of a nucleon, with τ3 = +1, −1 for
the neutron and proton, respectively. With the Skyrme force
parameters of �s and �v , the nucleon isoscalar and isovector
mass ratios are defined by

μ∗
s = m∗

s /M =
(

1 + M

8h̄2 ρ�s

)−1

,

μ∗
v = m∗

v/M =
(

1 + M

4h̄2 ρ�v

)−1

. (11)

Here we notice that the nucleon effective masses can be
also defined in terms of the isoscalar and isovector masses
through Eqs. (10) and (11). For completeness, the Skyrme

force parameters, isoscalar and isovector effective masses, K0,
J , and L values for the KIDS0, KIDS0-m*87, KIDS-A, and
KIDS-B models are depicted in Table I. Numerical values of
the Skyrme force parameters and nuclear matter properties
of the SLy4 model can be found in the Skyrme-Lyon model
paper [36].

III. NEUTRON STAR PROPERTY

Neutron star properties are calculated from the EoS, which
denotes the pressure as a function of the energy density. From
the thermodynamic relation, pressure is obtained by differen-
tiating the energy density with respect to density. Therefore,
the energy density or energy per particle given by Eq. (3) is the

FIG. 1. (a) Nuclear symmetry energy S(ρ ) and (b) pressure for the PNM as a function of ρ for the considered models.
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FIG. 2. Effective masses of the neutrons (a) and protons (b) for the considered models.

most fundamental quantity that determines the NS properties.
In the core of NSs, expecting δ � 1, the behavior of symmetry
energy is crucial in determining the NS EoS. Results for the
nuclear symmetry energy S (ρ) of the considered models are
shown as a function of density in Fig. 1(a). It shows that
KIDS0 and KIDS0-m*87 models have the same symmetry
energy since both models are calibrated to identical nuclear
matter properties. For this reason, the curve of symmetry
energy for the KIDS0-m*87 model is omitted in Fig. 1(a). In
the low densities up to ρ � ρ0 = 0.16 fm−3, all the models
have quite similar behavior of the nuclear symmetry energies
and they are consistent with the result from the chiral effective
theory calculation at low densities [40]. Model dependence
of the symmetry energy becomes evident at densities much
higher than ρ0. The stiffness of symmetry energies of the
models is given in the order of KIDS-A > KIDS-B > KIDS0
� SLy4. Stiffness could be understood easily by noting the
values of L. In Table I, we show that L(KIDS-A) > L(KIDS-
B) > L(KIDS0), and L(SLy4) = 45.9 MeV, which exactly
gives the same ordering as the stiffness of symmetry energy
at high densities.

In Fig. 1(b), we show the results of the pressure for the
PNM as a function of density. At low density, the pressures for
all the models have excellent agreement with the predictions
obtained from chiral perturbation theory (ChPT) [41]. At high
density, the results of all the models fit well with HIC data
[42].

Mass splitting of the neutron and proton in dense nuclear
matter can provide valuable information on the charge sym-
metry breaking of nuclear interactions at finite density. The
effective mass of the nucleon given by Eq. (10) is determined
by the nuclear forces �s, �v , isospin of the nucleon τ i

3, and the
asymmetry of the nuclear matter δ. In the core of the neutron
star, at a given baryon density ρ, ρn and ρp are determined by
the β-equilibrium condition

μn = μp + μe (12)

and the charge neutrality

ρp = ρe + ρμ, (13)

where ρe and ρμ are the densities of the electrons and
the muons, respectively. Chemical potentials of the neutrons
and the protons are calculated from the standard relation

μ(p,n) = ∂E (ρ,δ)
∂ρ(p,n)

. Electrons and muons are approximated to
be free, so their chemical potentials are given by μ(e,μ) =√

k2
F (e,μ) + m2

(e,μ), where me and mμ are the electron and

muon masses in free space, respectively. We note that, in the
present calculation, we neglect the interaction of neutrinos
with electrons and muons since their contributions to the cross
section are marginal in comparison with those of the protons
and neutrons.

Effective mass in the NS matter is shown for the neutron
in Fig. 2(a) and for the proton in Fig. 2(b). The most notable
result is the behavior of M∗

n : It is larger than the free mass in
the KIDS0, KIDS-A, and KIDS-B models, but it is the oppo-
site in the KIDS0-m*87 and SLy4 models. Neutron effective
mass can be rewritten in terms of μ∗

s and μ∗
v as

M∗
n = Mn

[
1 + Mn

8h̄2 ρ�s −
(

1

μ∗
v

− 1

μ∗
s

)
δ

]−1

. (14)

In the KIDS0, KIDS-A, and KIDS-B models, μ∗
s is larger than

μ∗
v by about 0.2, but the difference is 0.1 in the KIDS0-m*87

and SLy4 models. A large difference between μ∗
s and μ∗

v

leads to a large negative contribution −(1/μ∗
v − 1/μ∗

s ) in the
denominator of the neutron effective mass and this results in
M∗

n > Mn. The effects of the isoscalar and isovector effective
mass difference are furthermore tested by considering μ∗

s =
0.9 and μ∗

v = 0.7, leading to M∗
n behaving similarly to the

KIDS0 model. This result confirms that the neutron effective
mass is sensitive to the difference between μ∗

s and μ∗
v .

Neutron effective masses in the KIDS0, KIDS-A, and
KIDS-B models are similar up to ρ � 0.48 fm−3. This sim-
ilarity is understood well since they have similar μ∗

s and μ∗
v

values. A sizable and vivid difference appears above ρ =
0.48 fm−3. This difference mainly originates from the dif-
ferent results of the asymmetry δ in the KIDS0, KIDS-A,
and KIDS-B models. If the symmetry energy is stiffer, more
energy is needed to convert a proton to a neutron. Therefore,
stiff symmetry energy favors less asymmetry, and the proton
fraction Yp = ρp/ρ becomes larger than the soft symmetry
energy. Figure 3(b) shows the particle fractions Yn = ρn/ρ

and Yp = ρp/ρ within the neutron star. Neutron fraction is
in the order Yn(KIDS0) > Yn(KIDS-B) > Yn(KIDS-A), which
is exactly the reverse of the inequality for the stiffness of
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FIG. 3. (a) Neutron star mass-radius relations and (b) particle fractions for neutrons and protons for the considered models.

symmetry energy. Sizable difference in Yn starts to appear
around ρ � 0.32 fm−3 for the KIDS0, KIDS-A, and KIDS-B
models. With smaller δ values in the KIDS-A and KIDS-B
models than in the KIDS0 model, the effect of the negative
contribution in the denominator of M∗

n is suppressed. Conse-
quently, M∗

n of the KIDS-A and KIDS-B models is smaller
than that of the KIDS0 model.

In Fig. 2(b), we show the result of M∗
p/M for the KIDS0,

KIDS0-m*87, KIDS-A, KIDS-B, and SLy4 models. In con-
trast to the neutron effective mass, all the models predict the
proton effective mass smaller than the free state mass. This
could be understood from the formula of M∗

p ,

M∗
p = Mp

[
1 + Mp

8h̄2 ρ{2δ�v + (1 − δ)�s}
]−1

. (15)

Both �s and �v are positive, and δ � 1 within the neutron
star. Therefore, the term added to 1 in the denominator is
always positive, so the denominator is always larger than 1,
and it gives M∗

p smaller than Mp. Results of the KIDS0, KIDS-
A, and KIDS-B models are similar up to ρ � 0.48 fm−3 and
they deviate from each other at higher densities. Within the
same models, such behavior is also observed in M∗

n . Those
behaviors can be explained well in terms of the different
results of δ from each model.

The dependence of M∗
p on μ∗

s and μ∗
v can be understood

well by assuming δ � 1, which is a reasonable approximation
up to ρ � 2ρ0, as in Fig. 3(b). With δ = 1, M∗

p becomes equal
to the isovector effective mass m∗

v . The smallest isovector ef-
fective mass is found in the KIDS-m*87 model and it is a quite
similar value in the KIDS0, KIDS-A, and KIDS-B models.
The magnitude of M∗

p is arranged exactly in agreement with
the order of μ∗

v . A summary of the typical effective neutron
masses and the nuclear symmetry energies for the KIDS-EDF
models is given in Table II.

The mass and radius of a neutron star can be determined
by solving the TOV equations for the static (nonrotating) NS,
which are respectively given by [32,33]

dP(r)

dr
= −G[M(r) + 4πr3P(r)/c2][E (r) + P(r)]

r[r − 2GM(r)/c2]c2
,

dM(r)

dr
= 4πr2 E (r)

c2
, (16)

where the radial distance from the center is symbolized by
r and M(r) is the mass profile of the neutron star within r.
P(r) and E (r) are respectively pressure and energy density
obtained from the nuclear EDF models. Both equations in
(16) are numerically solved using the Runge-Kutta integration
technique by integrating them over the radial distance from
the center up to the surfaces of the NS, where P(RNS) = 0,
from which radius of the star, RNS, is determined, and the star
mass is obtained from MNS = M(r = RNS).

Results for the NS mass as a function of the NS radius RNS

and particle fractions for neutrons and protons as a function
of density are shown in Fig. 3. Figure 3(a) shows that the
prediction results for MNS/Msun with the KIDS0 and SLy4
models are quite similar, where these models have similar
soft symmetry energies, as already shown in Fig. 1(a). In
comparison with the results of the KIDS0 model, the KIDS-A
and KIDS-B models with stiff symmetry energies predict a
larger radius of the NS. Stiff EoS implies that the matter
is less compressible and, as a result, the size of the system
becomes larger. As already shown in Fig. 1(a), the symmetry
energy is stiff in the order of KIDS-A > KIDS-B > KIDS0 �
SLy4. The result for RNS in the NS mass range (0.8–1.6)Msun

shows exactly the same ordering as the stiffness of symmetry
energy. This obviously demonstrates that the symmetry en-
ergy plays a crucial role in the bulk properties of NSs. On
the other hand, the NS mass and radius results for all the
KIDS-EDF models are consistent with the recent observations
of PSR J0348 + 0432 [43], PSR J0740 + 6620 [44], and PSR
J1614-2230 [45], predicting the maximum mass of NSs larger
than 2.0Msun, as well as the NICER results for radius RNS =
12.35 ± 0.75 km with a NS mass MNS = 2.08 Msun [46]. The

TABLE II. Effective neutron masses and nuclear symmetry ener-
gies for the KIDS-EDF models.

Type of M∗
n /M and feature of

KIDS-EDF model the symmetry energy

KIDS0 M∗
n /M � 1 and soft symmetry energy

KIDS0-m*87 M∗
n /M � 1 and soft symmetry energy

KIDS-A M∗
n /M � 1 and stiff symmetry energy

KIDS-B M∗
n /M � 1 and stiff symmetry energy

SLy4 M∗
n /M � 1 and soft symmetry energy
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blue dots denote the M-R range obtained from the analysis of
low mass x-ray binary (LMXB) data [47].

In Fig. 3(b) we show the results of the particle fractions for
the neutron and proton. At densities up to ρ � 2ρ0, particle
fractions are similar in the considered models. The difference
between the models becomes obvious as the density increases.
At ρ � 3ρ0, based on the magnitude of the particle fraction,
the results can be classified into two groups: one group with
KIDS0, SLy4 and the other with KIDS-A, KIDS-B. The for-
mer group keeps a large neutron fraction at high densities. If
the symmetry is soft, the energy cost to convert a proton to a
neutron is less than the one for the stiff symmetry energy. As
a consequence of the soft symmetry energy, the system can be
in the ground state with more neutrons than the stiff symmetry
energy. Grouping of the particle fraction agrees well with the
stiffness of the symmetry energy of the models. The small
difference between the KIDS-A and KIDS-B models is also
attributed to the stiffer symmetry energy of KIDS-A.

IV. NEUTRINO MEAN FREE PATH

In the section, we present the neutrino interaction with
constituents of NS matter. The Lagrangian density of neutrino
interactions with NS constituent matter via current-current
interaction is defined by [9–11,48]

L (n,p)
int = GF√

2
[ν̄eγ

μ(1 − γ5)νe]
[
ψ̄�(n,p)

μ ψ
]
, (17)

where the nucleon vertex is defined by �
(n,p)
μ = γμ(C(n,p)

V −
C(n,p)

A γ5) and the weak coupling constant is GF = 1.023 ×
10−5/M2. The vector and axial coupling constants are CV =
−0.5 and CA = −gA/2 for the neutron, whereas CV = 0.5 −
2 sin2 θw and CA = gA/2 for the proton, where gA = 1.260
and sin2 θw = 0.223. Note that the Lagrangian density for the
charged-current absorption reaction is the same as the neutral-
current scattering, which leads to the same expressions of
the DCRS. Only the values of the axial and vector coupling
constants are different [10].

From the Lagrangian in Eq. (17) we easily derive the
DCRS of the neutrino, and one has

1

V

d3σ

dE ′
ν d2�

= − G2
F

32π2

E ′
ν

Eν

Im [Lμν�
μν], (18)

where Eν and E ′
ν are respectively the initial and final neutrino

energies. The polarization tensors �μν for the target neutrons
and protons are given by

�(n,p)
μν (q2)

= −i
∫

d4 p

(2π )4
Tr

[
G(n,p)(p)�(n,p)

μ G(n,p)(p + q)�(n,p)
ν

]
,

(19)

where G(n,p) are the propagators and p = (p0, p) is the initial
four-momentum of the neutron and proton targets. The prop-
agators of neutrons and protons are explicitly expressed by

G(n,p)(p) =
[

p/∗ + M∗

p∗2 − M∗2 + iε
+ iπ

p/∗ + M∗

E∗

× δ(p∗
0 − E∗)�

(
p(n,p)

F − |p|)], (20)

where E∗ = E + �0 =
√

p∗2 + M∗2 is the effective nucleon
energy, and M∗ = M + �s represents the nucleon effective
mass. �s and �0 are the scalar and timelike self-energies,
respectively. p∗ = p + ( p

|p| )�v is the nucleon effective mo-
mentum with p and �v being the three-component momentum
of a nucleon and the spacelike self-energy, respectively.

p(n,p)
F =

√
E (n,p)2

F − M∗(n,p)2 are the proton and neutron Fermi
momenta. Note that �s, �0, and �v are obtained by solving
the Schrödinger-equivalent single-nucleon potential V (E ) in
relativistic models, which contains the central and spin-orbit
potentials as in Ref. [8] and references therein. The central po-
tential part, which is called the Schrödinger-equivalent optical
potential, has the form Vc(E ) = �s − (E/M + 1)�0 + (�2

s −
�2

0 )/2M with the energy-momentum relation E = p2/2M +
Vc(E ). Using the dispersion relation, one finally gets M∗ =
M + �s. In the KIDS-EDF models, both potentials are written
in terms of the standard density-dependent central and spin-
orbit Skryme force parameters as in Eq. (7) [49], and we then
obtain the nucleon effective mass M∗

i of Eq. (10). The neutrino
tensor Lμν is then given by

Lμν = 8[2kμkν + (k · q)gμν − (kμqν + qμkν ) − iεμναβkαqβ ],

(21)

where q = (q0, q) is the four-momentum transfer and
k = (k0, k) stands for the initial neutrino four-momentum.

After contracting the neutrino tensor in Eq. (21) and the
polarizations for the neutrons and protons given in Eq. (19),
the final expression for the neutrino DCRS is given by

1

V

d3σ

dE ′
ν d2�

= G2
F

4π3

E ′
ν

Eν

q2[AR1 + R2 + BR3], (22)

where A = [2Eν (Eν − q0) + 0.5 q2]/|q|2, B = 2Eν − q0, and
R1, R2, and R3 are respectively defined as

R1 = (
C2

V + C2
A

)[
Im �

(p,n)
L + Im �

(p,n)
T

]
,

R2 = C2
V �

(p,n)
T + C2

A

[
Im �

(p,n)
T − Im �

(p,n)
A

]
,

R3 = 2CV CA Im �
(p,n)
VA . (23)

The polarization insertion for the longitudinal, transversal,
axial, and mixed vector-axial channels of the protons and
neutrons is given by

Im �L = q2

2π |q|3
[

q2

4
(EF − E∗)

+ q0

2

(
E2

F − E∗2
) + 1

3

(
E3

F − E∗3
)]

,

Im �T = 1

4π |q|
[(

M∗2 + q4

4|q|2 + q2

2

)
(EF − E∗)

+ q0q2

2|q|2
(
E2

F − E∗2) + q2

3|q|2
(
E3

F − E∗3)],
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FIG. 4. DCRS of the neutrino with neutrons for various KIDS-EDF models as a function of q0 at fixed Eν = 5 MeV and |q| = 2.5 MeV
for (a) ρ = 1.0ρ0, (b) ρ = 2.0ρ0, (c) ρ = 3.0ρ0, and (d) ρ = 4.0ρ0.

Im �A = i

2π |q|M∗2(EF − E∗),

Im �VA = iq2

8π |q|3
[(

E2
F − E∗2

) + q0(EF − E∗)
]
. (24)

Finally, we present the neutrino mean free path for
the neutral-current neutrino scattering. Considering a fixed
baryon density, the inverse of the neutrino mean free path
(opacity) is straightforwardly obtained by integrating the dif-
ferential cross section in Eq. (18) over the three-component
momentum transfer |q| and energy transfer q0, which gives

λ−1(Eν ) = 2π

∫ (2Eν−q0 )

q0

d|q|
∫ 2Eν

0
dq0

|q|
EνE ′

ν

[
1

V

d3σ

dE ′
νd2�

]
,

(25)

where E ′
ν = Eν − q0.

Results for the DCRS of the neutrino off neutrons for the
EDF models at fixed Eν = 5 MeV, which is a typical kine-
matic for the NS cooling phase, and |q| = 2.5 MeV are shown
in Fig. 4. Figure 4(a) shows that the magnitudes of the DCRS
of the neutrino for the KIDS0, KIDS-A, and KIDS-B models
with M∗/M � 1 at ρ = 1.0ρ0 are bigger than those obtained
from the KIDS0-m*87 and SLy4 models with M∗/M � 1.
However, the kinematic ranges of q0 for the KIDS0, KIDS-
A, and KIDS-B models are smaller than those obtained for
the KIDS0-m*87 and SLy4 models. It is worth noting the

relevance between the neutrino-neutron DCRS and M∗
n /M. As

shown in Fig. 2(a), the effective masses of neutrons for the
KIDS0, KIDS-A, and KIDS-B models are rather similar up to
ρ � 2.0ρ0, which then leads to similar prediction results for
the DCRS of the neutrino at the corresponding densities.

Similarities of the DCRS results amongst the KIDS0,
KIDS-A, and KIDS-B models are kept at ρ = 2ρ0 as can
be seen in Fig. 4(b). The magnitude of the DCRS of the
neutrino for the KIDS0 model is larger than those for the
KIDS-A and KIDS-B models as the effective masses of neu-
trons become larger in the high-density regime (ρ � 2.0ρ0).
However, the magnitudes of the DCRS of the neutrino for the
KIDS-A and KIDS-B models hold the same as their effective
masses of neutrons are quite similar in the overall density
regimes, which can be seen in Fig. 2(a). Amongst the KIDS0,
KIDS-A, and KIDS-B models, the different magnitudes of
the DCRS of the neutrino are much more pronounced at
ρ = 4.0ρ0, as seen in Fig. 4(d), where the effective mass
of neutrons of the KIDS0 model is higher than that for the
KIDS-A and KIDS-B models. Note that the DCRS of the
neutrino drops abruptly to zero because the maximum value of
the transfer energy qmax

0 � |q|/
√

(M∗/pF )2 + 1 increases (de-
creases) as the effective nucleon masses decrease (increase)
at a given value of the density or Fermi momentum pF .
The increase of the DCRS of the neutrino with larger M∗

n /M
values can be understood by the polarization insertions of
Eq. (24). Amongst the polarization insertions in Eq. (24),
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FIG. 5. Same as Fig. 4 but for DCRS of the neutrino with protons.

the axial channel gives the largest contribution to the DCRS
of the neutrino-neutrons scattering. With an approximation,
EF − E∗ � 1

2M∗ (p2
F − p∗2), Im �A becomes proportional to

M∗, and thus a large nucleon effective mass will increase
the polarization insertion, leading to increasing DCRS of the
neutrino. Analogously to the DCRS of the neutrino-neutrons
scattering, a similar explanation can be given for the DCRS
of neutrino-protons scattering as well as the DCRS of total
scattering.

Figure 5 shows the DCRS of the neutrino with protons for
the nuclear EDF models at fixed Eν = 5 MeV and |q| = 2.5
MeV as a function of q0. At ρ = 1.0ρ0, the magnitude of the
DCRS of the neutrino with protons is quite similar for the
KIDS0, KIDS-A, KIDS-B, and SLy4 models, but it is rather
different for the KIDS0-m*87 model, which has the lowest
M∗

p/M. This behavior holds not only at ρ = 1.0ρ0 but also
at higher densities as shown in Figs. 5(b)–5(d). The result
confirms that, as shown in the scattering with neutrons, the
DCRS of the neutrino is enhanced with a larger effective mass
of the nucleon. The ranges of q0 increase for all the models as
the nuclear density increases. The largest range of q0 is given
by the KIDS0-m*87 model with the lowest M∗

p/M, as shown
in Fig. 5(d).

The results for the total DCRS of the neutrino, which are
obtained by summing up the DCRSs of the neutrino with
protons in Fig. 5 and with neutrons in Fig. 4, as a function
of q0 at fixed Eν = 5 MeV and |q| = 2.5 MeV are depicted

in Fig. 6. Figure 6 clearly shows the dominant contribution to
the magnitude size of the total DCRS of the neutrino given
by the DCRS of the neutrino with neutrons for the models
with M∗

n /M > 1. However, the shape of the total DCRS of
the neutrino depends on the shapes of DCRSs of the neutrino
with both protons and neutrons. The total cross sections for the
KIDS0, KIDS-A, and KIDS-B models increase as the density
increases, but for the KIDS0-m*87 and SLy4 models the total
cross-sections of neutrino are almost the same even if the
density increases. Among the KIDS-EDF models, the biggest
magnitude of the total cross section of the neutrino is given by
the KIDS0 model and it is more pronounced at higher density.
Consequently, the NMFP of the KIDS0 model is smaller than
other KIDS-EDF models, as seen in Fig. 7.

Results for the NMFP for the five models at fixed Eν = 5
MeV and |q| = 2.5 MeV as a function of the nuclear density
are shown in Fig. 7. NMPFs for the KIDS-A and KIDS-B
models are quite similar for all regimes of the baryon den-
sities. This behavior is followed by the KIDS0 model up to
ρ � 3.0ρ0 and then the NMFP for the KIDS0 model decreases
faster than those obtained for the KIDS-A and KIDS-B mod-
els. Remarkable results on the NMFPs are predicted by the
KIDS0-m*87 and SLy4 models. The NMFP predictions for
the KIDS0-m*87 and SLy4 models are significantly higher
compared with those obtained for the KIDS0, KIDS-A, and
KIDS-B models. The magnitude of the NMPF for the SLy4
model is much bigger than that for the KIDS-EDF models.
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FIG. 6. Same as in Fig. 5 but for total DCRS of the neutrino.

Results for the NMFP at fixed Eν = 5 MeV and |q| = 2.5
MeV as a function of the NS radius for the considered models
are shown in Fig. 8. For the SLy4 model, for example, if
we take RNS = 10 km, it predicts λ � 22 km with NS mass
MNS/Msun � 2.0, which indicates that the neutrino can escape
from the NS, not being hindered by scattering with nucleons
or the reabsorption process. It then leads to NS cooling faster
than the case in which RNS > λ. Similarly, for the KIDS0-
m*87 model with RNS = 10 km, one predicts λ � 17 km with
MNS/Msun � 2.0, showing that the neutrino can escape freely
from the NS.

FIG. 7. Neutrino mean free path for various KIDS-EDF models
as a function of ρ at Eν = 5 MeV and |q| = 2.5 MeV.

The KIDS0, KIDS-A, and KIDS-B models with a sim-
ilar RNS = 10 km predict respectively λ � 3.5 km with
MNS/Msun � 2.0 and λ � 5.03 and 5.04 km with MNS/Msun �
2.0. The neutrinos will interact with the NS matter, leading to
a NS cooling process slower than the KIDS-m*87 and SLy4
models because RNS > λ.

Now let us take the canonical mass of neutron stars
MNS = 1.4Msun. One predicts that λ � 24 km with the SLy4
model and λ � 15 km with the KIDS0-m*87 model. Both

FIG. 8. Neutrino mean free path, calculated at fixed Eν = 5 MeV
and |q| = 2.5 MeV, for various KIDS-EDF models as a function of
NS radius RNS and MNS/Msun.
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FIG. 9. Neutrino mean free path for the KIDS0 model with
M∗

n /M � 1 and soft symmetry energy as a function of the initial
neutrino energy Eν .

the KIDS0-m*87 and SLy4 models give RNS � 11.7 km for
1.4Msun mass neutron stars, so they always have λ � RNS

as shown in Fig. 8. It means that both KIDS0-m*87 and
SLy4 models support the small possibility of neutrino trapping
within NSs. In the KIDS0, KIDS-A, and KIDS-B models,
for stars heavier than the Sun, λ is always shorter than RNS,
so the neutrino emission can be delayed and thus have a
non-negligible effect on the thermal evolution of NS.

Finally, in Fig. 9 we show the NMFP for the KIDS0
model as a function of the initial neutrino energy Eν for
different densities. It is clearly seen that the NMFP decreases
as the density and initial neutrino energy increase, which is
consistent with the result obtained in the functionals of the
Brussels-Montreal Skyrme (BSk17 and BSk18) models [50]
at ρ = 1.0ρ0. However, in the present work, we also predict
the NMFP for higher densities up to ρ = 4.0ρ0. Note that
higher neutrino energy can be relevant not only for the NS but
also for supernovae, i.e., Eν = 30 MeV is a typical neutrino
energy for the core-collapse supernova. Short NMFP can alter
significantly the neutrino opacities by neutral-current scatter-
ings and especially by the charged-current scattering in the hot
and dense supernova matter [51]. This strongly urges accurate
determination of the nucleon effective masses in dense nuclear
matter.

V. SUMMARY AND CONCLUSION

In the present work, we have investigated the nuclear sym-
metry energy, the proton, and neutron effective masses, the NS
M-R relations, proton and neutron fractions, and NMFP using
various KIDS-EDF models. The KIDS-EDF model has been
widely and successfully applied to describe the properties of
finite nuclei. In this work, we extend the applications of the
KIDS-EDF model to neutron star matter and the neutrino
interaction with NS matter constituents using the LRA. We
analyze the implications of the nucleon effective masses and
symmetry energy for the NS properties through the M-R
relations and neutrinos’ interaction with the NS matter con-

stituents as well as the implications of the NS M-R relations
with the NMFP.

We find that the nuclear symmetry energy for the KIDS0,
KIDS0-m*87, and SLy4 models have quite similar behavior
over the range of the nuclear densities, yielding soft nu-
clear symmetry energy. The KIDS-A and KIDS-B models
have stiff nuclear symmetry energy. We also find that the
KIDS-A model has the stiffest nuclear symmetry energy at
ρ > ρ0 amongst the considered models. Similar stiffness of
the nuclear symmetry energy for the KIDS0, KIDS0-m*87,
and SLy4 models leads to a similar result for the NS M-R
relations, as shown in Fig. 3(a). Results for the properties
of NSs (M-R relations) for all the KIDS-EDF models are
in excellent agreement with the recent observations of PSR
J0348 + 0432 [43], PSR J0740 + 6620 [44], and PSR J1614-
2230 [45], predicting the maximum mass of a NS is larger
than 2Msun, as well as NICER observation results of radius
RNS = 12.35 ± 0.75 km for a NS mass MNS = 2.08Msun [46].

We find that the dominant contribution to the magnitude
of the total DCRS of the neutrino is given by the DCRS of
the neutrino with neutrons for KIDS0, KIDS-A, and KIDS-B
models. The shape of the total DCRS of the neutrino for
all the KIDS-EDF models depends on both shapes of the
DCRS of the neutrino with protons and neutrons. The total
cross sections for the KIDS0, KIDS-A, and KIDS-B models
increase as the density increases, but for KIDS0-m*87 and
SLy4 models the total cross sections of the neutrino are almost
the same as the density increases. Amongst the KIDS-EDF
models, the highest total cross section of the neutrino is given
by the KIDS0 model. It is clearly understood that the effective
masses of neutrons for the KIDS0, KIDS-A, and KIDS-B
models with M∗

n /M � 1, being quite similar up to ρ � 2.0ρ0,
lead to similar prediction results for the DCRS of the neutrino.

More interestingly, we also find that the DCRSs of the
neutrino for the KIDS0, KIDS-A, and KIDS-B models with
M∗

n /M � 1 are bigger than those obtained for the KIDS0-
m*87 and SLy4 models with M∗

n /M � 1 at ρ � 1.0ρ0. The
ranges of q0 for the KIDS0, KIDS-A, and KIDS-B models
are smaller than those obtained for the KIDS0-m*87 and
SLy4 models. At higher densities, ρ � 4.0ρ0 differences in
the DCRS of the neutrino among the KIDS-EDF models are
much more pronounced because the effective mass differences
in the models become significant.

In the results for the NMFP, we find the NMFPs for the
KIDS-A and KIDS-B models are quite similar at all the
baryon density regimes up to 6ρ0. This behavior is followed
by the KIDS0 model up to ρ � 3.0ρ0 and the NMPF of the
KIDS0 model decreases faster than those obtained for the
KIDS-A and KIDS-B models. The NMFP predictions for the
KIDS0-m*87 and SLy4 models are much higher compared
with those obtained for the KIDS0, KIDS-A, and KIDS-B
models.

The result shows that the NMFP is most strongly correlated
to the neutron effective mass M∗

n . There are two dominant
sources that control the behavior of M∗

n . The most direct and
evident effect comes from the isoscalar and isovector effective
masses. It is shown that not only the values of the isoscalar
and isovector effective masses but also their relative magni-
tudes are critical for the density dependence of M∗

n . Such a
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dependence on the isoscalar and isovector effective masses
appears in the same way in the neutrino scattering with finite
nuclei [52]. Therefore the correct description of the neutrino
interaction in/with nuclear many-body systems demands the
exact determination of both isoscalar and isovector effective
masses from either theory or experiment. Another quantity
critical to M∗

n is the symmetry energy. Its effect is not as
direct as the isoscalar and isovector effective masses but is
embedded in the neutron to proton asymmetry δ. Symmetry
energy is the main source of the different particle fractions
between the models in Fig. 3. Since isoscalar and isovec-
tor effective masses are similar in the KIDS0, KIDS-A, and
KIDS-B models, the behavior of M∗

n in the KIDS0 model
is different from those of the KIDS-A and KIDS-B models
at ρ � 3ρ0 and is attributed to the difference in the particle
fraction. Accurate measurement of the symmetry energy from
sub- to suprasaturation densities is another essential require-
ment to refine our understanding of the role of neutrinos in
supernova explosions and neutron star cooling.

Summarizing the result for the λ-RNS relations, the KIDS0,
KIDS-A, and KIDS-B models show that λ � RNS, indicating
that they could lead to neutrino trapping in NS and thus
the delayed NS cooling. The KIDS0-m*87 and SLy4 models
always have λ � RNS, as clearly shown in Fig. 8, thus they
support a small possibility of neutrino trapping within the NS.

We finally find that the NMFP decreases as the density and
initial neutrino energy increase, which is consistent with those
obtained in the functionals of the Brussels-Montreal Skyrme
(BSk17 and BSk18) models at ρ = ρ0 [50].
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