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Charmonium dissociation at high baryon chemical potential
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We study charmonium dissociation in hot medium with a finite baryon chemical potential μB. Charmonium
bound states are dissociated in the medium by the color screening effect and the random scatterings with thermal
partons, which are included in the real and imaginary parts of the potential, respectively. The J/ψ fraction in the
cc̄ pair defined to be the quantum overlap between the wave package and the wave function of the J/ψ eigenstate
decreases with time due to the complex potentials. When μB is large compared with the medium temperature,
the Debye mass is increased evidently. We consider the μB-dependent Debye mass in both real and imaginary
parts of the potential to calculate the J/ψ survival probability in the static medium and the Bjorken medium.
The J/ψ survival probability is reduced evidently by the μB effect at low temperatures available in the medium
produced in the Beam Energy Scan experiments, while this effect is not apparent at high temperatures.
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I. INTRODUCTION

Hot deconfined medium is believed to be produced in
relativistic heavy-ion collisions [1,2]. Heavy quarkonium has
been extensively studied to extract the properties of the hot
QCD matter in nuclear collisions [3–11]. In the hot medium,
the heavy quark potential is color screened by the ther-
mal partons [12–14], which can dissociate the bound states
of quarkonium. The degree of color screening depends on
the densities of thermal partons represented by the medium
temperature. With the increase of the temperature, different
quarkonium bound states are sequentially melted due to their
different binding energies. Besides, inelastic random scatter-
ings from thermal partons can also dissociate quarkonium
bound states [15–20], where heavy quark pairs are trans-
formed from singlet to octet states. The singlet-octet transition
process can be treated as an imaginary potential which re-
duces the normalization of the singlet states [17,21,22]. One
can determine the medium temperature with the charmonium
survival probability defined as the ratio of final and initial
production of J/ψ during their evolution in the hot medium.
Explicit quantum treatments have been developed to study
the quarkonium’s inner evolution in the medium, such as
the Schrödinger-Langevin equation [23], which evolves the
wave function of the quarkonium directly. The medium in-
teraction is included via the screened potential and the noise
term in the Hamiltonian. The Schrödinger equation model
with complex potentials has also been developed [24–26].
The inner evolutions of the quarkonium are described with
the Schrödinger equation when they move along different tra-
jectories in the medium. Open quantum system models, such
as the Lindblad equation [27] and the stochastic Schrödinger
equation [28,29], which treat quarkonium as an open quan-
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tum system with the momentum-energy exchange with the
thermal medium have also been developed recently. Other
semiclassical transport models have been developed to study
the dissociation and recombination of quarkonium in the hot
medium [30–32].

In the experiments of the Beam Energy Scan (BES), the
initial energy density of the medium is much lower than the
situation in AA collisions at the BNL Relativistic Heavy-
Ion Collider (RHIC) and the CERN Large Hadron Collider
(LHC). The effects of color screening and the parton ran-
dom collisions become weaker in the heavy quark potential.
However, the baryon chemical potential μB in the medium
produced in the BES experiments can be considerable. It
changes the Debye mass and the heavy quark potential
[33,34]. It is necessary to study the μB effect on the evolu-
tion of charmonium in the baryon-rich medium with a low
temperature and a large μB. In this work, we employ the time-
dependent Schrödinger equation with the complex potential
to study the evolution of the charmonium wave function in
the medium with high baryon chemical potential [25,35].
The Debye mass becomes larger due to the correction from
the μB term. This results in a weaker real potential and a
larger imaginary potential of the quarkonium. The J/ψ frac-
tion in the charm pair is more reduced after considering the
μB effect in the static medium and the Bjorken medium.
Studying charmonium dissociation in high μB medium helps
us to understand the evolution of charmonium in the BES
experiments.

This work is organized as follows. In Sec. II, we intro-
duce the framework of the Schrödinger equation and the
parametrized in-medium heavy quark potential. In Sec. III,
the evolutions of the charmonium wave package in the static
medium and the Bjorken medium are studied. Effects of
the baryon chemical potential and the color screening are
compared in the charmonium dissociations. In Sec. IV, a
conclusion is given.
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II. THEORETICAL MODEL

To describe the quantum evolutions of heavy quarkonium
wave packages at finite μB and T , we employ the time-
dependent Schrödinger equation. Neglecting the relativistic
effect in the inner motion of charmonium, we take the clas-
sical form of the Hamiltonian of charmonium. Hot medium
effects are included via the in-medium heavy quark poten-
tial. As the QCD matter produced in heavy-ion collisions is
close to a perfect liquid with very small viscosity, one can
approximate the heavy quark potential to be a spherically
symmetric potential. There is no transitions between the states
with different angular momenta. We separate the radial part of
the Schrödinger equation in the center-of-mass frame [25],

ih̄
∂

∂t
ψ (r, t ) =

[
− h̄2

2mμ

∂2

∂r2
+ V (r, T ) + l (l + 1)h̄2

2mμr2

]
ψ (r, t ),

(1)

where r and t are the radius and the time, respectively; mμ =
m1m2/(m1 + m2) = mc/2 is the reduced mass in the center-
of-mass frame; and mc is the charm quark mass. The heavy
quark potential V (r, T ) depends on the temperature and the
radius, which indicates that different eigenstates in the wave
package experience different hot medium effects due to their
geometry sizes. ψ (r, t ) ≡ rR(r, t ) is defined as the product of
the radius and the radial part of the wave package R(r, t ). The
total wave package of the heavy quarkonium is expanded as
�(r, θ, φ, t ) = ∑

nlm cnl (t )Rnl (r, t )Ylm(θ, φ), where Ylm is the
spherical function, and n, l , and m are the quantum numbers
of charmonium states. The coefficient cnl (t ) is defined to be

cnl (t ) =
∫

Rnl (r)e−iEnl tψ (r, t )rdr, (2)

where |cnl |2 is interpreted as the fraction of the charmonium
eigenstate specified with the quantum number (n, l ) in the
total wave package. The charmonium eigenstates mentioned
in this work are defined as the eigenstates of the vacuum
Cornell potential with a string breaking at r = rDD̄,

Vc(r) =
{ −α

r + σ r, r < rDD̄,

2mD − 2mc, r � rDD̄,
(3)

where the distance of string breaking rDD̄ is determined via
− α

rDD̄
+ σ rDD̄ = 2mD − 2mc. Masses of the D meson and the

charm quark are taken as mD = 1.87 GeV and mc = 1.27 GeV
[36], respectively. Fitting the masses of J/ψ and ψ (2s) given
by the Particle Data Group, one can determine the values
of the parameters α = π/12 and σ = 0.2 GeV2 [14]. With
the in-medium heavy quark potential V (r, T ), fractions of
charmonium eigenstates in the wave package change with
time. The survival probability of charmonium eigenstates is
connected with the evolutions of charmonium wave packages.
The quantum transitions between different states have been
included in the wave function evolutions.

To solve the Schrödinger equation numerically, we employ
the Crank-Nicolson method. It can evolve the wave package
in a straightforward manner in the spatial coordinate instead
of projecting the wave package to a series of bases. The
numerical errors of the wave function at different time steps
are small enough and convergent when we take a small step

of time and the radius in the following discrete formula (in
natural units h̄ = c = 1),

Tn+1
j,k ψn+1

k = Vn
j . (4)

where j and k are the indexes of rows and columns in the
triangular matrix T. The nonzero elements in the matrix are

Tn+1
j, j = 2 + 2a + bVn+1

j ,

Tn+1
j, j+1 = Tn+1

j+1, j = −a,

Vn
j = aψn

j−1 + (
2 − 2a − bV n

j

)
ψn

j + aψn
j+1, (5)

where a = i
t/(2mμ(
r)2) and b = i
t . Here i is an imagi-
nary unit. The subscript j and the superscript n represent the
coordinate r j = j · 
r and tn = n · 
t , respectively. The steps
of the radius and the time are taken to be 
r = 0.03 fm and

t = 0.001 fm/c. The numerical accuracy in the evolution
of the wave package is high enough when taking these pa-
rameters. The time dependence in the potential comes from
the time evolution of the temperature. In the static medium
with a constant temperature, the potential does not depend
on time anymore. At each time step, we calculate the inverse
of the matrix T with the Gauss-Jordan element elimination
method in Eq. (4) to obtain the wave package at the next
time step ψn+1 = [Tn+1]−1 · Vn. The fractions of charmonium
eigenstates are obtained by projecting the wave package to the
wave function of the eigenstate.

The realistic in-medium heavy quark potential is between
the limits of the free energy F and the internal energy U .
There are theoretical studies indicating that the in-medium
potential is more close to the limit of U in the temperatures
available in AA collisions at the RHIC and the LHC [7,37].
Considering that the internal energy U = F + T (−∂F/∂T )
can become a bit stronger than the vacuum Cornell poten-
tial at the temperatures around Tc [25,26], which results in
an oscillation behavior in the time evolution of charmonium
fractions in the wave package, we take the free energy as the
heavy quark potential to evolve the wave package. The real
part of the potential is then parametrized with the following
form [26],

VR(r, T, μB) = −α

r
e−md r + σ

md
(1 − e−md r ), (6)

where the Debye mass md (T, μB) depends on the temperature
and the baryon chemical potential μB [33],

md (T, μB) = T

√
4πNc

3
α
(

1 + Nf

6

)

×
√

1 + 3Nf

(2Nc + Nf )π2

(μB

3T

)2
, (7)

where the factors of color and flavor are taken as Nc =
Nf = 3. As we focus on the effect of baryon chemical po-
tential μB at the collision energies available in the BES
experiments, the value of baryon chemical potential is esti-
mated with the relation [38,39]

μB(
√

sNN ) = 1.3

1 + 0.28
√

sNN
. (8)
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FIG. 1. The heavy quark potential as a function of the radius
at different temperatures. Dotted, dashed, and dotted-dashed lines
are the in-medium heavy quark potential (taken as the free energy
F ) with the baryon chemical potential μB = 0.3, 0.6, and 1.0 GeV,
respectively. The temperature is taken as T = 0.15 GeV. The Cornell
potential is also plotted and labeled with Vc.

In order to estimate the value of μB in the BES experiments,
we choose

√
sNN = 10 GeV to get a value of the baryon

chemical potential of μB ≈ 0.3 GeV. The value of μB can be
larger than the medium temperature in the collisions of the
BES experiments. The Debye mass is increased by the term
with μB/(3T ). In the following calculations, we take differ-
ent values of μB to check the μB effect. The color-screened
potential at finite μB is plotted in Fig. 1.

Random inelastic scatterings with thermal partons can also
dissociate quarkonium bound states in the medium, which
contributes an imaginary part in the potential of the singlet
states. We take the parametrization based on the calcula-
tion from hard thermal loop resummed perturbation theory
[40,41],

VI (r, T, μB) = −i
g2CF T

4π
f̃ (r̂), (9)

f̃ (r̂) = 2
∫ ∞

0
dz

z

(z2 + 1)2

[
1 − sin(zr̂)

zr̂

]
, (10)

where i is the imaginary unit; CF = (N2
c − 1)/(2Nc); and

r̂ ≡ rmd (T, μB) is the dimensionless variable. The coupling
constant is g = √

4παNc/3. The value of α is taken as the
same as with the Cornell potential. With this form, the μB

effect in VI is included via the Debye mass. The magnitude of
VI/T with different values of μB is plotted in Fig. 2.

III. NUMERICAL RESULTS

To study the effects of the baryon chemical potential on
the evolution of the charmonium wave package, we take
different values of μB in the calculations. The initial wave
package is initialized with the wave function of J/ψ . In Fig. 3,
the temperature of the static uniformly-distributed medium
is T = 0.15 GeV. With only the real part of the potential

FIG. 2. The imaginary part of the potential scaled with the tem-
perature iVI/T as a function of the radius. Dotted, dashed, and
dotted-dashed lines with different values of μB = (0, 0.3, 0.6, 1.0)
GeV are plotted, respectively. The temperature is taken as T = 0.15
GeV.

in Fig. 3, the wave package expands outside, which reduces
the quantum overlap between the charmonium wave package
and the wave function of the J/ψ state. As the geometry
size of the excited state ψ (2S) is larger than the size of the
J/ψ wave function, the quantum overlap between the wave
package and the ψ (2S) wave function increases with time,
shown as the lines in Fig. 3. This behavior corresponds to the
transitions of J/ψ to ψ (2S) components in the wave package.
The Debye mass with the baryon chemical potential μB = 0.6
GeV increases about 9% compared with the case of μB = 0.
At high temperatures, the corrections of the μB term in the

FIG. 3. The fraction of the J/ψ eigenstate in the wave package
as a function of time. The baryon chemical potential is taken as μB =
0.3, 0.6, and 1.0 GeV, respectively. Only the real part of the potential
is included in the calculations. The temperature of the static medium
is T = 0.15 GeV.
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FIG. 4. The fraction of J/ψ and ψ (2S) eigenstates in the wave
package as a function of time. Both real and imaginary parts of the
heavy quark potential are employed. The medium temperature is
taken as T = 0.15 and 0.2 GeV, respectively [see the panels (a) and
(b)]. Black solid lines with markers employ the vacuum Cornell
potential plus the imaginary potential. Other parameters are the same
as those in Fig. 3.

heavy quark potential become smaller. Time evolutions of
the J/ψ fraction in the wave package are close to each other
when taking different values of μB. In Fig. 3, the sum of the
fractions of J/ψ and ψ (2S) states becomes smaller than 1, as
some components of the wave package transform into higher
eigenstates and scattering states due to the weak attraction in
the wave package.

As introduced before, the transition from singlet to octet
states induced by the parton random scatterings contributes
an imaginary part in the potential of the singlet states. This
reduces the normalization of the total wave package. After
considering the imaginary potential given by Eq. (9), we study
the J/ψ survival probability in the static medium in Fig. 4.
All the hot medium effects including color screening, μB

correction, and inelastic scatterings are included. To check
the contribution of the imaginary potential, we take the heavy

FIG. 5. The fraction of the J/ψ state in the wave package as a
function of time in the Bjorken medium. The initial temperature of
the medium is chosen as T (t0) = 1.2 Tc. The starting time of the
evolution is t0 = 0.6 fm/c. Dotted, dashed, and dotted-dashed lines
correspond to the cases of the complex potentials V = F + VI with
μB/T = (1.0, 3.0, 6.0), respectively.

quark potential to be Vc + VI (μB = 0), the reduction of the
J/ψ fraction in the wave package is induced by the imagi-
nary potential, shown as the black solid lines with markers in
Fig. 4. When the screened potential is also employed, the J/ψ
fraction is more suppressed. At the time t ≈ 3 fm/c, the J/ψ
fraction with μB = 1.0 GeV is suppressed by around 25%
compared with the situation of μB = 0 at T = 0.15 GeV. This
effect becomes smaller at a higher temperature of T = 0.2
GeV, shown in Fig. 4(b). In the long time limit, all the bound
states are dissociated by parton scatterings where the fractions
of J/ψ and ψ (2S) go to zero.

In the relativistic heavy-ion collisions, hot medium is
produced followed by a violent expansion. The medium tem-
perature decreases with time. As a preliminary study, we
neglect the transverse expansion of the medium and only
consider the longitudinal expansion, where the temperature
evolution can be characterized with the Bjorken model as
follows,

T (t )

T (t0)
=

( t0
t

)1/3

, (11)

where t0 is the starting time of the Bjorken expansion. From
hydrodynamic models, it is estimated to be t0 = 0.6 fm/c
[42,43]. The initial temperature is chosen as T (t0) = 1.2 Tc,
which is close to the initial temperature of the medium pro-
duced in BES collisions. The Schrödinger equation evolves
until the temperature becomes lower than the cut Tf = 0.8 Tc

which is around the temperature of the medium kinetic freeze-
out. Below this cut, the heavy quark potential is taken as the
vacuum Cornell potential.

In Fig. 5, the complex heavy quark potential is taken as
the free energy plus the imaginary potential. In order to fix
the value of entropy per baryon density, we take the value
of μB/T = (1.0, 3.0, 6.0), respectively. The Debye mass in
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both real and imaginary parts of the potential depends on
μB/T . In Fig. 5, one can see that the J/ψ fraction is reduced
by around 15% in the line with μB/T = 6.0 compared with
the situation of μB = 0 at the end of the Bjorken medium
evolution. The μB effect can evidently reduce the charmonium
survival probability in the baryon-rich medium. Note that in
the dense medium, there is also Friedel oscillation in the real
part of the potential [44], which may also affect the evolution
of the quarkonium wave package. This effect is neglected in
the work and deserves further studies in the future.

IV. SUMMARY

In this work, we employ the Schrödinger equation to study
the evolution of the charmonium wave package at a finite

baryon chemical potential. The J/ψ fraction in the wave pack-
age is obtained by calculating the quantum overlap between
the wave package and the wave function of the J/ψ eigenstate.
The μB correction is included in the Debye mass which is
employed in both real and imaginary parts of the potential.
With a large value of μB/T , the J/ψ dissociation rate is
enhanced in the baryon-rich medium. In following work, we
will also consider the μB dependence in the equation of state
of the hot medium consistently.
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