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Examination of background effects on the light-nuclei yield ratio in relativistic heavy-ion collisions
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The light-nuclei yield ratio is one of the candidates to probe the critical fluctuations of hot QCD matter.
In this paper, we investigate the background effects, namely, the noncritical effects coming from the nontrivial
thermal background, on the light-nuclei production within the framework of the coalescence model. Specifically,
we analyze the impact of the equilibrium phase-space distribution function of nucleons, f (r, p), on the light-
nuclei yield ratio Nt Np/N2

d , where Nt , Np, and Nd denote triton, proton, and deuteron yields. By considering
the characteristic function of the phase-space distribution, we systematically expand the yield of light nuclei
of A-constituent nucleons, NA, in terms of the phase-space cumulants, 〈rn pm〉c. We find that the cumulants up
to the second-order are canceled out in the generalized ratio NB−A

p NA−1
B /NB−1

A . This means that the dominant
background effects including the fireball size, the kinetic freeze-out temperature, and the coordinate-momentum
correlations caused by the radial expansion play an insignificant role in the yield ratio, which supports the yield
ratio as a useful tool for the critical-point search. We also show several examples of background phase-space
distributions for the qualitative illustration. The higher-order cumulants, which correspond to the non-Gaussian
shape of the phase-space profile, play an important role in the variation of the yield ratio, particularly for smaller
fireball sizes. Qualitatively, the spatial structure of the background decreases the yield ratio, and the azimuthal
anisotropy vn increases it. The higher order of the azimuthal anisotropy causes a larger effect on the yield ratio.
These results call for the comprehensive future studies of the yield ratio using sophisticated dynamical models.

DOI: 10.1103/PhysRevC.106.034905

I. INTRODUCTION

The exploration of the phase structure of quantum chromo-
dynamics (QCD) is one of the main goals of the relativistic
heavy-ion experiment [1–6]. The lattice QCD simulations
[7–10] have revealed that the transition from the hadron gas to
the quark-gluon plasma is a crossover at the vanishing baryon
chemical potential (μB � 0). Meanwhile, calculations based
on effective theories of QCD [11–18] conjecture the existence
of a critical point along with the first-order phase transition
at finite chemical potential and temperature. In the vicinity of
the phase transition, various variables strongly fluctuate and
could influence the experimental measurements [1,19–25].
For instance, the higher-order cumulants of event-by-event
multiplicity distribution for the net-proton number measured
in the BNL Relativistic Heavy Ion Collider (RHIC) Beam
Energy Scan Program exhibit nonmonotonic behavior with
the varying colliding energy [26,27], which is claimed as an
indication of a potential discovery of the critical point [23].
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Besides the multiplicity fluctuations of the net-proton num-
ber, the yield ratio of the light nuclei Nt Np/N2

d [28] obtained
by combining the data from NA49 [29–31], STAR [32,33],
and ALICE [34] also exhibits a nonmonotonic behavior as
a function of the collision energy. Light nuclei are loosely
bounded objects with small binding energy, such as 2.2 MeV
for deuteron d and 8.4 MeV for triton t . Their productions are
typically described by the coalescence model [35–38] or the
thermal model [39–42] depending on the assumption that the
light nuclei are formed at the chemical or kinetic freeze-out.
Within the framework of the coalescence model, the light
nuclei are formed at the kinetic freeze-out surface from the
nucleons close to each other in the phase-space because of
the small binding energy [39,43]. It was also pointed out that
the production of light nuclei is related to the relative neutron
density fluctuations [28,44–46], and the nonmonotonic behav-
ior may arise from the existence of the critical point [28,44–
50]. In this direction, intensive studies focus on the light-
nuclei production in relativistic heavy-ion collisions [51–58].
However, the interpretation of the observed nonmonotonic
behavior of light-nuclei ratio from dynamical models near
the phase transition is still under debate (see, e.g., Ref. [59]
for a recent review). One of the complexities comes from the
dynamics near the phase transition, which is expected to have
a large impact on the phase-space distribution at the freeze-out
surface. Different dynamical models near the critical point and
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the first-order phase transition have been developed [4,60–
65], but the quantitative comparison with the experimental
measurement requires more sophisticated dynamical model-
ing, including the equation of state with a critical point, the
proper description of the first-order phase transition, as well
as the resonance decays at the later hadronic stage, etc.

Another complexity of using the light-nuclei production
to probe the critical fluctuations is the contamination from
the noncritical ones, which we call the background contribu-
tions hereafter. In general, the light-nuclei production depends
on the coordinate- and momentum-dependence of the emis-
sion source [66], which is roughly related to the size of the
fireball and the scale of the homogeneity length l [67–69].
Various factors influence the light-nuclei yields, including
the geometry of the fireball, flow-induced correlations, and
resonance decays [70,71] besides the critical fluctuations.
Within the framework of the coalescence model, the light-
nuclei yields are determined by the phase-space distribution
of the nucleons, f (r, p), which receives the contribution δ fσ
from the critical fluctuations as f (r, p) = f0(r, p) + δ fσ (r, p)
[22,23,72,73]. For the systems not close to the critical point,
the magnitude of critical contributions δ fσ (r, p) is expected to
be smaller than the background one f0(r, p) and make the ef-
fects of δ fσ indistinguishable in the yield. From another point
of view, as the signal, the typical scale of the enhanced critical
fluctuations is characterized by the Kibble–Zurek length lKZ,
which is typically smaller than the scale of the homogeneity
length [74,75] (see also the scale separation of correlation
length and homogeneity length ξ � l [76,77]).

Within the existing analyses of the coalescence models, the
light-nuclei production has been studied with the assumption
of small coordinate-momentum correlation [28,44,45], so that
the nontrivial background effects are negligible in the yield.
For example, the coordinate-momentum correlation is typi-
cally caused by the collective flow. When the background flow
can be considered uniform within the size of a light nucleus,
we may calculate the yield in the local rest frame where the
coordinate-momentum correlation becomes small. In these
studies, the light-nuclei yield was found to be sensitive to
the correlation 〈δρp,n(r)δρp,n(r)〉 of the density fluctuation
δρp,n(r) ≡ ρp,n(r) − 〈ρp,n(r)〉 from the average density of
protons or neutrons 〈ρp,n(r)〉, where 〈· · · 〉 ≡ 1

V

∫
d3r · · · de-

notes the average over the coordinate space. The light-nuclei
ratio, Nt Np/N2

d [28], was found to be sensitive to the relative
density fluctuations normalized by the mean density, which
is in turn sensitive to the fluctuations induced by the phase
transition and is expected to reach a peak at the critical point
[46]. In this existing analysis, a part of the background effect
coming from the system size is effectively eliminated in the
ratio, yet the effect of the inhomogeneous background at the
scale of the light-nuclei size is not considered.

However, in the realistic collision reactions, the back-
ground fireballs are not uniform and static but have finite-size
nontrivial shapes and also flows induced by the pressure gra-
dient. The nonuniform background profiles of the short scale
close to the light-nuclei sizes can be important, in particular,
in smaller collision systems and peripheral collisions. Even in
the central collisions, the background effect can be important
near the edge of the fireball where the gradient of the flow

becomes large. Also, the event-by-event fluctuations coming
from the nucleon distribution in the colliding nuclei may
induce the flow fluctuations of shorter scales. In such situa-
tions, the background contributions no longer exactly cancel
with each other in the yield ratio; it is nontrivial how these
background configurations affect the yield ratio. To interpret
the experimental data of the yield ratio, we need to settle these
background effects as a baseline. In this work, we investigate
the background effects on the light-nuclei yields and their
ratios by considering how the phase-space distribution plays
a role there. Given that we focus on the background effects
in this paper, we do not consider the critical fluctuations in
the present analysis. We leave the extension with the critical
fluctuations to a coming presentation [78].

Our main strategy in this paper is (i) to define the phase-
space cumulants, symbolically denoted as 〈rn pm〉c, using the
characteristic function φ(t ) in probability theory, (ii) to de-
compose the phase-space distribution fp,n(r, p) in terms of
the phase-space cumulants, and (iii) to study the dependence
of the light-nuclei yield ratio on the phase-space cumulants.
Here, 〈· · · 〉 = ∫

d3rd3 p fp,n(r, p) · · · is the phase-space av-
erage weighted by the phase-space distribution, and 〈· · · 〉c

represents some “connected” contributions explained later.
One of our findings is that light-nuclei yields NA and NB with
different mass numbers A and B (i.e., the numbers of the con-
stituent nucleons) share a similar factor carrying the dominant
contribution from the second-order cumulants, which can be
exactly canceled in the yield ratios, such as Nt Np/N2

d and
NB−1

A NA−B
p /NA−1

B , assuming the same light-nuclei radii. The
resulting yield ratios are insensitive to the size of the fireball
and to the coordinate-momentum correlation caused by the
collective expansion, up to the second order in the phase-space
cumulants. On the other hand, the higher-order phase-space
cumulants, which correspond to the non-Gaussian nature of
the phase-space distribution, do not cancel with each other
in the yield ratio. We conclude that the non-Gaussian shape
in the phase-space distribution plays an important role in the
interpretation of the observed nonmonotonic behavior of the
light-nuclei yield ratio [33,51].

This paper is organized as follows: After briefly intro-
ducing the light-nuclei production in the coalescence model
in Sec. II, we introduce the standardized Jacobi coordinates
for the Wigner function in Sec. III for later convenience. In
Sec. IV, we derive the light-nuclei production in terms of the
phase-space cumulants and discuss the yield ratio. In Sec. V,
we see various examples of the background phase-space dis-
tribution including the Gaussian (Sec. V A), Woods-Saxon
(Sec. V B), and the double-Gaussian (Sec. V C) spatial profiles
as well as the Gaussian profile with the radial expansions
(Sec. V D) and anisotropic flows (Secs. V E and V F). Finally,
we summarize and conclude this paper in Sec. VI. In this
paper, the natural unit system kB = h̄ = c = 1 is adopted.

II. LIGHT-NUCLEI PRODUCTION IN THE
COALESCENCE MODEL

In the coalescence model [35–38], the production of the
light nuclei is determined by the overlap of the phase-space
distribution functions of nucleons fi(r, p) with the Wigner
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function WA({ri, pi}A
i=1) of the nucleus at the freeze-out:

NA = gA

∫ [
A∏
i

d3rid
3 pi fi(ri, pi )

]
WA
({ri, pi}A

i=1

)
, (1)

where gA = (2s + 1)/2A is the statistical factor with spin s for
nuclei of the mass number A [79]. It should be noted here that
the light-nuclei yield measured in experiments corresponds to
the number of nuclei with the finite acceptance of, e.g., ra-
pidity. To calculate the quantitative yields that can be directly
compared with the data, we need to introduce constraints of
the total momentum in the integration domain of momenta∫

d3A p. Currently, we focus on the qualitative nature of the
background effects. We thus integrate over the whole range
of the momentum for simplicity assuming that the qualitative
behavior is not largely affected by the finite acceptance.

The Wigner function WA({ri, pi}A
i=1) is obtained by the

Wigner transform of the wave function, which is assumed to
be the spherical harmonic-oscillator wave function [67,80]:

WA
({ri, pi}A

i=1

) = 8A−1 exp

[
−

A−1∑
i=1

(
R2

i

σ 2
(i)

+ σ 2
(i)P

2
i

)]
, (2)

where the relative coordinates and momentum, Ri and Pi, are
defined in the Jacobi coordinates with the mass of ith nucleon
being mi [37,81,82]. In this work, we assume m1 = · · · =
mA = m since we focus on the light nuclei which consist of
protons and neutrons with almost the same masses. In this
case, the Jacobi coordinates are simply written as(

Ri

Pi

)
≡
√

i

i + 1

[
1

i

i∑
j=1

(
r j

p j

)
−
(

ri+1

pi+1

)]
, (3)

i = 1, . . . , A − 1,(
RA

PA

)
≡ 1√

A

A∑
j=1

(
r j

p j

)
. (4)

The width parameter for the Wigner function is σ(i) =
(miω)−1/2 = (mω)−1/2, where the harmonic-oscillator fre-
quency ω is related to the root-mean-square radius rA of the
nucleus A [37] as

σ 2
(1) = · · · = σ 2

(A) = 2A

3(A − 1)
r2

A ≡ σ 2
A . (5)

For example, the values of the width parameters for deuteron,
triton, and helium-4 are σd = 2.26, σt = 1.59, and σ4 He =
1.37 fm [83], respectively. In this work, we assume the same
light-nuclei radii σd � σt � σ4 He or σA � σB (for the nuclei A
and B) unless otherwise specified.

In relativistic heavy-ion collisions, the phase-space distri-
butions fp,n(r, p) fluctuate from event to event. In this study,
we consider a single phase-space distribution which can be,
for example, identified as the average phase-space distribution
over collision events:

f̄ p,n(r, p) ≡ 〈 fp,n(r, p)〉ev. (6)

This means that we miss possible effects of the event-by-event
fluctuations in the present analysis. In fact, the effect of the
event-by-event fluctuations on the phase-space distribution,

and in turn on the two-point correlation, has been addressed
by Hanbury Brown–Twiss (HBT) femtoscopy [84,85], espe-
cially for the third-order oscillations of the HBT radii, which
are found to be sensitive to the initial-state fluctuations [85].
Thus we anticipate that the event-by-event fluctuations can
be important also in the light-nuclei yields, yet we leave it
for future study because we focus on the average part of the
background effects in this work. For simplicity of notation, we
use fp,n(r, p) to represent the average phase-space distribution
(6) hereafter. For the present study, we do not consider the
isospin asymmetry, and thus f (r, p) ≡ fp(r, p) = fn(r, p).

A. Example for Gaussian phase-space distribution

Here, we demonstrate an example of the light-nuclei yields
under a simple Gaussian phase-space distribution and observe
the result. Following Refs. [45,86–88], we assume the follow-
ing form of the phase-space distribution with Gaussian forms
in both momentum and position space:

f (r, p) = ρ0

(2πmT )3/2 exp

(
− r2

2R2
s

)
exp

(
− p2

2mT

)
, (7)

where T is the freeze-out temperature, Rs is the typical fire-
ball size in the coordinate space, and the core density ρ0 =
Np/(2πR2

s )3/2 is fixed as a normalization parameter to satisfy
Np = ∫

d3rd3 p f (r, p).
With such a phase-space density, the light-nuclei yield (1)

is reduced to simple Gaussian integrations (see Appendix A)
so that the result reads

Nd = gd N2
p

[(
R2

s + σ 2
d

2

)(
mT + 1

2σ 2
d

)]− 3
2

, (8)

Nt = gt N
3
p

[(
R2

s + σ 2
t

2

)(
mT + 1

2σ 2
t

)]−3

. (9)

Here, we find that these light-nuclei yields exactly cancel each
other in the yield ratio if the effects of the different nucleus-
nucleus sizes σd and σt are assumed to be negligible compared
with the terms R2

s and mT . As a result, the yield ratio becomes
a constant Nt Np/N2

d = gt/g2
d = 4/9, solely fixed by the spin

of deuterons and tritons. This is a remarkable result that the
yield ratio is actually insensitive to the fireball size and the
momentum distribution as far as the phase-space distribution
can be approximated by Eq. (7).

However, the realistic phase-space distribution in relativis-
tic heavy-ion collisions cannot be correctly captured by the
form (7). The most phenomenologically important missing
ingredient is the effect of the collective flow. Equation (7)
has the factorized form for the coordinate profile and the
momentum distribution, i.e., coordinates and momentum are
independent of each other. In reality, however, hydrodynamic
expansions and anisotropic flow induce strong coordinate-
momentum correlations. Another missing ingredient is the
detailed structure of the phase-space profile of the fireballs,
which cannot be fully captured by a simple Gaussian form.
Existing works [52,53,89] have already numerically consid-
ered specific phase-space distributions from hydrodynamic
models to calculate the light-nuclei production in relativistic
heavy-ion collisions, but we rather analytically approach the
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light-nuclei yields for the general phase-space distribution to
establish a physical picture of the relation between the back-
ground profile and the yield ratio. We address these nontrivial
ingredients for the yield ratio in the next sections. We also
check the effect of different light-nuclei sizes σt �= σd later.

III. STANDARDIZED JACOBI COORDINATES FOR
THE WIGNER FUNCTION

As explained in Sec. II, the probability for the production
of light nuclei is determined by the relative distance in the
phase space, which is characterized by the Wigner function.
To take advantage of this property, we here introduce new
variables, reorganize the notation, and observe interesting
consequences which play an important role in later sections.

Also, to consider the coordinate-momentum correlation, it
is convenient to introduce a uniform notation for ri and pi.
We here rescale the phase-space coordinates (r, p) ∈ R6 and
redefine it as z ∈ R6

(z1, z2, . . . , zA)T

≡
√

2
( r1

σA
, σA p1,

r2

σA
, σA p2, . . . ,

rA

σA
, σA pA

)T

.

(10)

The corresponding relative distance Z is defined as

(Z1, Z2, . . . , ZA)T

≡
√

2

(
R1

σA
, σAP1,

R2

σA
, σAP2, . . . ,

RA

σA
, σAPA

)T

,

(11)

with which the Wigner function (2) is reexpressed as

WA
({ri, pi}A

i=1

) = 8A−1 exp

[
−1

2

A−1∑
i=1

Z2
i

]
. (12)

Here, Zi are identified to be the standardized variables of
the Gaussian form in the Wigner function, i.e., the Gaussian
widths of Zi are standardized to unity. In this notation, the
transformation (3) between (Ri, Pi ) and (ri, pi ) takes a simpler
form:

Zi =
√

i

i + 1

(
1

i

i∑
j=1

z j − zi+1

)
, ZA = 1√

A

A∑
i=1

zi. (13)

This linear transformation O: Zi = ∑A
j=1 Oi jz j between Zi

and zi is an orthogonal transformation, i.e., OTO = 1, so that
the “norm” is preserved:

A−1∑
i=1

Z2
i + Z2

A =
A∑

i=1

Z2
i =

A∑
i=1

z2
i . (14)

This means that the cross terms zi · z j , which originally
appeared in the Wigner function (12) when Zi are expanded
in terms of zi, exactly cancel with those that appear from Z2

A.
This property is expected from the original idea of the Wigner
function written in the relative coordinates (3). The property
can be ultimately attributed to the translational invariance of

the interaction between the constituent nucleons against the
center-of-mass motion, which enables us to write the nu-
clear interaction using only the relative coordinates between
the nucleons, Zi (i = 1, . . . , A − 1). For this reason, for the
harmonic-oscillator Wigner function, the Jacobi coordinates
Zi are useful to separate the center-of-mass motion from the
total squared distance

∑A
i=1 z2

i :

A∑
i=1

(zi − Zcm )2 =
A∑

i=1

z2
i − AZ2

cm

=
A∑

i=1

Z2
i − Z2

A =
A−1∑
i=1

Z2
i , (15)

where Zcm ≡ (1/A)
∑A

i=1 zi = ZA/
√

A is the center-of-mass
coordinates, which disappears in Eq. (12). The transformation
from the phase-space coordinates zi to the Jacobi coordinates
Zi leads to the expression in which the center-of-mass motion
of the nucleus is explicitly separated from the internal motion
of the nucleons.

Finally, the Jacobian determinants for the transformation
from (ri, pi ) to zi and Zi are given by 8A

∏A
i=1 d3rid3 pi =

8A
∏A

i=1 d3Rid3Pi = ∏A
i=1 d6zi = ∏A

i=1 d6Zi.

IV. PHASE-SPACE DISTRIBUTION AND
LIGHT-NUCLEI PRODUCTION

We have observed in Sec. II A that the Gaussian phase-
space profile f (r, p) produces a constant yield ratio. We
anticipate that the deviation of the phase-space distribution
from the Gaussian profile would give corrections to the yield
ratio. Here, the goals are to systematically decompose the
expression of the light-nuclei yield into the Gaussian part and
the deviation and to investigate the impact of the deviation
on the yield ratio. One such method can be formulated by
considering the cumulants of the phase-space distribution. We
here introduce a new formalism of writing the light-nuclei
yield down in terms of various orders of cumulants of the
phase-space variables (r, p).

A. Characteristic function and cumulants

In this section, we summarize the basics of the characteris-
tic function and the cumulants. The readers who are familiar
with them can safely skip this section. In probability theory, an
arbitrary distribution, ρ(z) (where z ∈ Rm), can be specified
by the corresponding characteristic function, which is nothing
but the Fourier transform of the probability density function:

φ(t ) = 〈eiz·t〉 =
∫

dmzρ(z)eiz·t . (16)

When the distribution has bounded moments, the characteris-
tic function can be used as the moment-generating function,
where the parameter t plays an analogous role of an “external
field” coupled to the random variable z.
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The logarithm of the characteristic function is known as the
second cumulant-generating function:

ln φ(t ) =
∑

α∈Nm
0

Cα

α!
(it )α. (17)

For simplicity, we here introduced the multi-index notation
α = (α1, α2, . . . , αm) ∈ Nm

0 = {0, 1, 2, . . .}m for the m com-
ponents of zα or tα, where tα is a shorthand for tα ≡ tα1

1 ·
tα2
2 · · · tαm

m . Likewise, the symbols |α| ≡ α1 + · · · + αm and
α! ≡ α1! · · · αm! denote the degree of the index and the fac-
torials, respectively. The coefficient Cα ≡ (−i∂t )α ln φ(t )|t=0

can be identified as the cumulant of z of the order |α|, Cα ≡
〈zα〉c, which is defined as

〈zα〉c =
∑

β

(|β| − 1)!(−1)|β|−1
∏
B∈β

∫
dmzρ(z)

∏
i∈B

Xi. (18)

In the above summation and products, β runs through all the
possible partitions of {1, 2, . . . , |α|}, B runs through the list of
blocks in the partition β, and |β| is the number of blocks in
the partition. In the case of α = 0, there is no partition β for
the empty set so that C0 = 〈z0〉c = 0. The variables Xi denote
the multiset of z weighted by the multiplicity α, i.e.,

(X1, X2, . . . , X|α|) =
(

α1 times︷ ︸︸ ︷
z1, . . . , z1, . . . ,

αm times︷ ︸︸ ︷
zm, . . . , zm

)
. (19)

The second cumulant-generating function, ln φ(t ), can be
compared with the generating functional of the connected
diagrams W [J] in the field theory, and the cumulants can be
regarded as the connected contributions of the moments which
cannot be explained by the lower-order cumulants.

A remarkable fact is that, given that the cumulants of all
the orders are well defined and known and that the series (16)
is convergent in a neighborhood of t = 0 (see Refs. [90,91]
for the necessary and sufficient condition called Carleman’s
condition), the original distribution ρ(z) can be uniquely
reconstructed by the set of cumulants through the inverse
Fourier transform of the characteristic function:

ρ(z) =
∫

dmt
(2π )m e−it ·z exp

⎡
⎣∑

α∈Nm
0

Cα

α!
(it i )

α

⎤
⎦, (20)

which justifies the discussion using an arbitrary distribution
just with moments and cumulants.

As an example, let us consider the general Gaussian distri-
bution of m variables:

ρ(z) = 1√
(2π )m det G

exp

[
−1

2
(z − zc)TG−1(z − zc)

]
,

(21)

with zc ≡ 〈z〉c = 〈z〉 and G ≡ 〈zzT〉c = Covzz being the mean
and the covariance matrix of z, respectively. It is ready to
calculate the all-order cumulants using the definition of the
characteristic function (16):

ln φ(t ) = izc · t − 1
2 tTGt, (22)

where we find that the cumulant-generating function only has
two terms up to the second-order of t . This means that all the

higher-order cumulants {Cα}|α|�3 vanish for the Gaussian dis-
tribution. In other words, all the higher-order cumulants can
be regarded as the parameters of the non-Gaussian distortion
of the distribution from the underlying Gaussian distribution.
In this way, the distribution can be decomposed into the under-
lying Gaussian distribution specified by the cumulants up to
the second order and the non-Gaussian components specified
by the high-order cumulants. This is useful for the present
purpose of studying the effect of the phase-space distribution
deformation from the Gaussian distribution as discussed in
Sec. II A.

B. Formalism

Now, we can express the phase-space distribution of the nu-
cleons in Eq. (1) in terms of the various orders of cumulants.
We define the distribution f (zi ) as a function of zi:

f (zi )d
6zi ≡ f (ri, pi )d

3rid
3 pi, (23)

so that f (zi ) = |∂ (ri, pi )/∂ (zi )| f (ri, pi ) = 8−1 f (ri, pi ), where
|∂ (ri, pi )/∂ (zi )| is the Jacobian determinant. The distribution
is decomposed as

f (zi )

Np
= ρ(zi ) =

∫
d6t i

(2π )6 e−it i·zi exp

⎡
⎣∑

α∈N6
0

Cα

α!
(it i )

α

⎤
⎦, (24)

where the normalization Np = Nn = ∫
d6z f (z) is given by

the number of each nucleon species, zi ∈ R6 is the redefined
position of the ith nucleon in six-dimensional phase-space in
Eq. (10), and t i is the corresponding Fourier conjugate with
i = {1, 2, . . . , A} representing the index of nucleons inside the
light nuclei.

In this context, Cα ≡ 〈zα〉c is the cumulant of the phase-
space variables zi = √

2(ri/σA, σA pi ) of the order |α|, where
〈· · · 〉 = (1/Np)

∫
d6z f (z) · · · denotes the averaging over the

phase space under a single phase-space distribution f (r, p).
It should be noted that these are completely different types
of cumulants than the typical event-by-event cumulants of,
e.g., the anisotropic flows or the multiplicity distribution for
the net-proton number where 〈· · · 〉 denotes the event-by-event
average. In this paper, we call these cumulants of the phase-
space variables the “phase-space cumulants” hereafter.

To calculate the yield, we substitute Eqs. (12), (23), and
(24) for Eq. (1), perform the integration by

∏A
i=1 d6zi =∏A

i=1 d6Zi, and obtain the following formula:

NA = gA8A−1NA
p

∫ [
A∏

i=1

d6T i

(2π )3

]
(2π )3δ(6)(T A)

× exp

⎡
⎣−1

2

A−1∑
i=1

T 2
i +

A∑
i=1

∑
α∈N6

0

Cα

α!
(it i )

α

⎤
⎦. (25)

In the above summation with respect to α, the term of |α| = 0
vanishes due to C0 = 0. The sum of the first-order terms of
|α| = 1, which is proportional to T A, also vanishes due to
the δ function δ(6)(T A). This is a consequence of the transla-
tional symmetry of the Wigner function for the center-of-mass
motion. The second-order terms can be transformed by the
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orthogonal transformation T i = Oi jt j as

A∑
i=1

∑
|α|=2

Cα

α!
(it i )

α = −1

2

A∑
i=1

6∑
β,γ=1

C2(β,γ )ti,βti,γ

= −1

2

A∑
i=1

6∑
β,γ=1

C2(β,γ )Ti,βTi,γ , (26)

where C2(β,γ ) ≡ 〈zβzγ 〉c is the second-order cumulant. We
used the property OTO = 1 to obtain the second line. Finally,
the light-nuclei yield can be written in the form of the Gaus-
sian integration:

NA = gA8A−1NA
p

∫ [
A−1∏
i=1

d6T i

(2π )3

] ∞∑
m=0

[H({T i}A−1
i=1

)]m

m!

× exp

[
−1

2

A−1∑
i=1

6∑
β,γ=1

(C2(β,γ ) + δβ,γ )Ti,βTi,γ

]
, (27)

where H contains the higher-order terms written as a polyno-
mial of {T i}A−1

i=1 :

H({T i}A−1
i=1

) ≡
∞∑

k=3

Hk
({T i}A−1

i=1

)

≡
∞∑

k=3

A∑
i=1

∑
|α|=k

Cα

α!
[i(OTT )i]

α

∣∣∣∣
T A=0

. (28)

When the distribution is sufficiently close to the Gaussian
distribution so that the higher-order cumulants are sufficiently
small, we may perturbatively calculate the yield using Wick’s
theorem for the Gaussian integration, where (C2(β,γ ) + δβ,γ )−1

and Hk are identified to be the analogs of the “propagator”
and the “k-point coupling,” respectively. It should be noted
that the cumulant expansions can be asymptotic expansions
for the general distribution, so the perturbation might need
to be explicitly truncated to a finite order for the optimal
approximation. The lowest order with respect to m in Eq. (27)
reads

N (0)
A ≡ gANA

p 8A−1[det (C2 + I6)]−(A−1)/2, (29)

where det(C2 + I6) is the determinant of the 6 × 6 second-
order cumulant C2 ≡ C2(β,γ ) plus the identity matrix I6 ≡
δβ,γ . In the context of the Hanbury Brown–Twiss (HBT) effect
for the two-particle correlation function, a similar formula for
the size Rs of the source function is known [41,68,69,92].
Although we do not explicitly perform diagrammatic calcu-
lations for the present study, when the higher-order cumulants
are sufficiently small, the size of the higher-order corrections
may be estimated as

HA ≡ NA

N (0)
A

= 1 +
∫ {

A−1∏
i=1

d6T i exp
[− 1

2 T i(C2 + I6)T i
]√

(2π )6 det (C2 + I6)−1

}

×
∞∑

m=1

[H({T i}A−1
i=1

)]m

m!

= 1 + O({Cα}|α|�3), (30)

and thus

NA = gANp

[
8Np√

det (C2 + I6)

]A−1

[1 + O({Cα}|α|�3)]. (31)

Here, it should be noticed that the magnitude of the
higher-order correction HA is determined by the higher-order
cumulants {Cα}|α|�3 while the lower-order cumulants C2 do not
directly contribute to the magnitude because the lower orders
only appear in the width of the normalized Gaussian kernel in
Eq. (30). In this way, in the expression of the light-nuclei yield
NA = N (0)

A HA, we could successfully separate the contribution
of the phase-space distribution into its underlying Gaussian
component N (0)

A (written in terms of the cumulants up to the
second order) and non-Gaussian corrections HA (essentially
written in terms of the higher-order cumulants).

C. Generalized yield ratio

In Eq. (31), the lowest-order of the light-nuclei yields of
different mass numbers A share a common structure of NA ∝
[· · · ]A−1, where [· · · ] is a common factor that does not depend
on A (if we assume a common light-nuclei size σA ≡ σ ). Mo-
tivated by this common structure, we may consider particular
combinations of the product of light-nuclei yields to eliminate
the background effect of the lowest order. In general, suppose
the powers {pk}nk

k=1 for the mass numbers {Ak}nk
k=1 satisfy the

condition
∑nk

k=1 pk (Ak − 1) = 0, such a product can be con-
structed as

R
p1,...,pnk
A1,...,Ank

≡ N
−∑nk

k=1 pk
p

nk∏
k=1

N pk
Ak

=
(

nk∏
k=1

gpk
Ak

)
[1 + O({Cα}|α|�3)], (32)

where the lowest order is genuinely determined by the statis-
tical factors gAk . A useful case would be nk = 2 with pA =
−(B − 1) and pB = A − 1 for mass numbers A and B:

R1−B,A−1
A,B = NB−A

p NA−1
B

NB−1
A

= gA−1
B

gB−1
A

[1 + O({Cα}|α|�3)]. (33)

In fact, this corresponds to the yield ratio R−2,1
2,3 = Nt Np/N2

d
[28] with (A, B) being identified as (2,3), and thus it can be
regarded as the generalization of the yield ratio that roughly
eliminates the background effect. Therefore the generalized
yield ratio (32) gives the general formula for the light-nuclei
yield ratios that are free from the background effects of the un-
derlying Gaussian component of the background phase-space
distribution. It should be noted that the effect of different
numbers of protons and neutrons, Np �= Nn, also cancels in
the original yield ratio Nt Np/N2

d [28] while it does not in, e.g.,
N3 HeNp/N2

d . If we expect the same nature of the generalized
ratio (32), we may impose additional constraints on the nu-
cleus species in the ratio to balance the number of protons
and neutrons. More comprehensive studies on the isospin-
asymmetry effect are left for future study.

The dominant contribution from the second-order phase-
space cumulants is canceled out in the ratios (32) and (33).
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Here, let us see what kind of information about the back-
grounds has been physically eliminated. The second-order
phase-space cumulants are explicitly written by the nucleon
phase-space coordinates (r, p) as

C2 = 2

(
〈rrT〉
σ 2 〈rpT〉

〈prT〉 σ 2〈ppT〉

)
, (34)

where

〈abT〉 =

⎛
⎜⎝〈axbx〉c 〈axby〉c 〈axbz〉c

〈aybx〉c 〈ayby〉c 〈aybz〉c

〈azbx〉c 〈azby〉c 〈azbz〉c

⎞
⎟⎠.

The diagonal components are the variances of coordinates
〈r2

i 〉c and momentum 〈p2
i 〉c. The former corresponds to the

size of the fireball, and the latter roughly corresponds to the
effective temperature of the nucleon spectrum. On the other
hand, the nondiagonal components contain the correlation
among different r and p. These carry the information about
the deformation of the fireball profiles in the coordinate and
momentum space. In particular, the coordinate-momentum
correlation can be related to the radial flow, which will be
further discussed in Sec. V D. This means that all of these
background effects are canceled in the yield ratios so that the
yield ratio becomes constant at the lowest order regardless of
the background profiles.

Conversely, any nonconstant behavior of the light-nuclei
yield ratio coming from the background contributions can
be attributed to the higher-order phase-space cumulants
{Cα}|α|�3, namely, the non-Gaussian shape of the background
phase-space distribution. Such higher-order cumulants in-
clude 〈r3〉c and momentum 〈p4〉c as well as the higher-order
space-momentum correlation 〈r2 p2〉c. Here, we conclude that
the non-Gaussian components of the background phase-space
distribution, which are represented by the higher-order phase-
space cumulants, play an important role in understanding
the nonconstant behavior of the yield ratio observed in
experiments.

V. EXAMPLES OF BACKGROUND PHASE-SPACE
DISTRIBUTIONS

In Sec. IV B, we obtained the light-nuclei yield in terms
of the phase-space cumulants Cα with two assumptions: (i)
the same width parameter of the Wigner function σA ≡ σ and
(ii) the phase-space distribution being close to the Gaussian
shape. We then demonstrated that the yield ratio is a con-
stant up to the second-order phase-space cumulants, while the
higher-order ones are important in the nonconstant yield ratio.

To illustrate the result obtained in Sec. IV and also to
further investigate its physical properties, we here calculate
the light-nuclei yield ratio Nt Np/N2

d with different background
distributions and observe its behavior. Note that the exam-
ples we employ in this section are toy models for illustrative
purposes and qualitative discussions, which is far from the
realistic one that can be used for the quantitative discussions.
For the comprehensive modeling of the heavy-ion collision
reactions, one should carefully tune the parameters of a real-
istic dynamical model that are sensitive to the non-Gaussian

part of the phase-space density and compare the result with
the nonmonotonic behavior of the light-nuclei yield ratio in
the experimental data.

A. Gaussian phase-space distribution and size effects

We first revisit the Gaussian example in Sec. II A, where all
the higher-order phase-space cumulants vanish and reinterpret
it using the general formula (27). The second-order phase-
space cumulants of the Gaussian phase-space distribution (7)
are

C2 =
(

2R2
s

σ 2
A
I3 0

0 2σ 2
AmTI3

)
, (35)

where I3 is the 3 × 3 identity matrix. The higher-order cu-
mulants vanish: Cα = 0 (|α| � 3). The yields (9) can be now
immediately obtained by using Eq. (27).

While we have already observed that a particular yield ratio
Nt Np/N2

d becomes a constant 4/9 under the assumption of
a common light-nuclei size σ in Sec. II A, we now found
that the generalized yield ratios (32) and (33) also become
constants for this Gaussian phase-space distribution. Here, let
us further estimate the effect of the size differences of σ on the
generalized yield ratio. The light-nuclei ratio for the general
mass number A is written as

NA = gANA
p

[(
R2

s + σ 2
A

2

)(
mT + 1

2σ 2
A

)]−3(A−1)/2

. (36)

Now we represent the size-difference effect of σA by quantities
εA and ηA defined as

R2
s + σ 2

A

2
=
(

R2
s + σ 2

2

)
(1 + εA), (37)

mT + 1

2σ 2
A

=
(

mT + 1

2σ ′2

)
(1 + ηA), (38)

where σ 2 and σ ′−2 are typical sizes of σ 2
A and σ−2

A , respec-
tively, in the light-nuclei yield ratio. For example, in the
case of the yield ratio Nt Np/N2

d , these can be specified as
σ 2 ≡ (σ 2

d + σ 2
t )/2 � 3.8 fm2 and σ ′−2 ≡ (σ−2

d + σ−2
t )/2 �

0.30 fm−2. Given typical values R2
s ≈ 102 fm2 and mT ≈

1 × 0.1 GeV2 � 2.5 fm−2, the size-difference effects are
estimated as εd,t ≈ ±6.3 × 10−3 and ηd,t ≈ ∓1.9 × 10−2.
Therefore, it is allowed to estimate the size-difference effect
in the generalized yield ratio (32) up to the leading order in εA

and ηA:

N
−∑nk

k=1 pk
p

nk∏
k=1

N pk
Ak

=
[∏

k=1

gpk
Ak

][
1 − 3

2

nk∑
k=1

pk (Ak − 1)

× (
εAk + ηAk

)+ O((εA + ηA)2)

]
. (39)

Using this formula, the size-difference effect on, e.g., the yield
ratio Nt Np/N2

d can be estimated as Nt Np/N2
d ≈ (4/9)(1 −

7.5 × 10−2), which implies that the light-nuclei size differ-
ence is irrelevant for the typical fireball size of Rs ≈ 10 fm.
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FIG. 1. Comparison of Gaussian (7) and the Woods-Saxon (40)
distributions of the same root-mean-square radius. The density is
shown in units of fm−3. The parameters of the Woods-Saxon dis-
tribution are chosen as R0 = 5.0 fm and a0 = 1.0 fm. The width
of Gaussian distribution is determined so that the root mean square
of the radius matches that of the Woods-Saxon distribution: Rs ≡
(〈r2〉WS)1/2 = 3.099 fm. Assuming Np = 1, we obtain the normaliza-
tion as ρ0 = 2.133 × 10−3 fm−3 and ρWS = 1.369 × 10−3 fm−3 for
Gaussian and the Woods-Saxon distributions, respectively.

B. Woods-Saxon distribution and higher-order cumulants

To see how the higher-order phase-space cumulants affect
the yield ratio to produce nonconstant behavior, we here adopt
a widely used functional form, the Woods-Saxon distribution.
For illustrative purposes, we here assume that the phase-space
distribution can be factorized into the momentum and po-
sition distributions, as is done in Refs. [44,45], where all
the momentum distributions are Gaussian. The phase-space
distribution is parametrized as

f (r, p) = ρWS

1 + exp r−R0
a0

1

(2πmT )3/2 exp

(
− p2

2mT

)
, (40)

where the parameters R0 and a0 are the nuclear radius and
the skin-thickness parameter in the original context of the
Woods-Saxon distribution for a nucleus. It should be noted
that these parameters do not have these particular meanings
for the present purpose but are rather treated as free param-
eters. The parameter ρWS is determined by the normalization
Np = ∫

d3rd3 p f (r, p):

ρWS = Np

8πa3
0[−Li3(−eR0/a0 )]

, (41)

where Lin(λ) ≡ [1/(n − 1)!]
∫∞

0 t n−1dt/(et/λ − 1) is the
polylogarithm of the order n. Figure 1 compares the radial
profile of the Woods-Saxon distribution with that of Gaussian
distribution of the same root mean square of the fireball radius
(〈r2〉)1/2.

The characteristic function is

φ(t ) = e− 1
2 mT t2

p

∞∑
k=0

(itr)2k

(2k)!

× a2k
0

2k + 1

(2k + 2)!Li2k+3(−eR0/a0 )

2!Li3(−eR0/a0 )
, (42)

 0.28
 0.3
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 0.4
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 0.46
 0.48
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N
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a0 = 0.5 fm
a0 = 1.0 fm

FIG. 2. The light-nuclei yield ratio Nt Np/N2
d as functions of the

root-mean-square radius of the coordinate profile, 〈r2〉. These are
calculated for the common light-nuclei sizes σd = σt = 1.59 fm.
The freeze-out temperature and nucleon mass are assumed to be
T = 0.1 GeV and m = 0.939 GeV. The solid horizontal line rep-
resents the case with the Gaussian-shaped density profile. The other
curves are the cases with the Woods-Saxon shaped density profile
with different parameters of the skin thickness a0. The band shows
the statistical error of the Monte Carlo integration. Oscillation is due
to the statistical errors of the Monte Carlo integration.

where t r and t p are the coordinate and momentum part of the
vector t , and tr ≡ |t r| is the norm. The moments that contain
an odd index vanish due to the symmetry. The moments of
even orders are〈

r2l
x r2m

y r2n
z

〉 = a|α|
0

|α| + 1

(|α| + 2)!Li|α|+3(−eR0/a0 )

2!Li3(−eR0/a0 )

×
( |α|/2

l, m, n

)( |α|
2l, 2m, 2n

)−1

, (43)

where |α| = 2(l + m + n), and
( n

a,b,c

) ≡ n!/a!b!c! is the
trinomial coefficient. The higher-order cumulants of the
Woods-Saxon distribution that are constructed by these mo-
ments have nonvanishing values.

We first consider the case of a common light-nuclei size:
σd = σt = 1.59 fm and obtain the light-nuclei yields using the
Monte Carlo integration. In Fig. 2, we plot the light-nuclei
yield ratio Nt Np/N2

d with the Woods-Saxon distribution as a
function of the variance 〈r2〉c = ∑3

i=1〈r2
i 〉c, together with the

one obtained from the Gaussian-shaped density profile (9) for
comparison. It shows that Nt Np/N2

d is unchanged as a function
of 〈r2〉c for the Gaussian-shaped density distribution, whereas
Nt Np/N2

d decreases for the Woods-Saxon one. This shows the
importance of the non-Gaussianity of the coordinate profile in
the light-nuclei production.

We also check the behavior of the light-nuclei yield with
the physical light-nuclei sizes. In Fig. 3, the light-nuclei
yield ratio Nt Np/N2

d is calculated with the physical val-
ues of σd = 2.26 fm and σt = 1.59 fm for the Gaussian
and the Woods-Saxon coordinate profiles. With the physical
light-nuclei sizes, the Gaussian case also becomes noncon-
stant at the very small fireball sizes Rs ∼ σd,t . In fact, the
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FIG. 3. The light-nuclei yield ratio Nt Np/N2
d for the physical

light-nuclei sizes σd = 2.26 fm and σt = 1.59 fm. The black dotted
curve is the result of the Gaussian profile. The solid horizontal line
shows the ideal value gt/g2

d = 4/9. The other curves show the result
for the Woods-Saxon shaped density profile. The setup is the same
as in Fig. 2.

size-difference effect (37) becomes εd,t � ±5.91 × 10−2 at
Rs = 3.0 fm, and the ratio increases by 27% as a consequence.
The qualitative behavior of the Woods-Saxon case does not
change compared with the case of the same sizes of deuterons
and tritons.

C. Double-Gaussian phase-space distribution

In more realistic setups, we may consider structures inside
the fireballs caused by random nucleon distribution in the
colliding nuclei. The double-peak structure by the incomplete
baryon stopping depending on the collision energy is also
an interesting background. We here consider the case of two
Gaussian baryon-number hot spots at r1 and r2 inside the
fireball. We may choose (r1 + r2)/2 as the coordinate origin
and r1 − r2 as the rz direction without loss of generality. The
phase-space distribution is written by

f (r, p) = NpG(p; mT )

× G
(
r − aRsez; R2

s

)+ G
(
r + aRsez; R2

s

)
2

, (44)

where G(x; s2) ≡ (2πs2)−3/2 exp(−x2/2s2) is Gaussian dis-
tribution of the variance s2, ez = (0, 0, 1)T is the unit vector
in the rz direction. The parameters Rs and a = |r1 − r2|/2Rs

specify the width and the relative separation of hot spots,
respectively. Figure 4(a) shows the coordinate profile in the
rz direction for different a, and Fig. 4(b) shows an example
profile for a = 1.35.

The cumulant-generating function becomes

ln φ(t ) = −1

2
R2

s t2
r − 1

2
mT t2

p + ln cos (aRstz )

= −1

2
R2

s t2
r − 1

2
mT t2

p

+
∞∑

k=1

(itz )2k

(2k)!
22k (22k − 1)

B2k

2k
(aRs)2k, (45)
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FIG. 4. Panel (a) shows the profile of the double-Gaussian distri-
bution for different a = |r1 − r2|/2Rs. Panel (b) shows the z-x profile
of the phase-space distribution f (r, 0)(2π )3(R2

s mT )3/2/Np for the
case a = 1.35 (α ∼ 0.401).

where t r, t p, and t z are the conjugate variables of r, p, and
rz, respectively, and B2k are the Bernoulli numbers: B2 = 1/6,
B4 = −1/30, B6 = 1/42, . . .. The cumulants are the same as
Sec. V A except for 〈r2k

z 〉c:〈
r2

z

〉
c = R2

s (1 + a2), (46)〈
r2k

z

〉
c/R2k

s = 22k (22k − 1)
B2k

2k
a2k, (k � 2). (47)

The analytical result of the light-nuclei yield is

NA = gANA
p

[(
R2

s + σ 2
A

2

)(
mT + 1

2σ 2
A

)]−3(A−1)/2

× 1

2A

A∑
r=0

(
A

r

)
αA[1−(2r/A−1)2], (48)

where
(A

r

) ≡ A!/r!(A − r)! is the binomial coefficient, and
α ≡ exp{−a2/[2(1 + σ 2

A/2R2
s )]} [see Appendix B for the

derivation of Eq. (48)]. With the assumption of a common
nuclei size σA ≡ σ , the light-nuclei yield ratio is

Nt Np

N2
d

=
(

4

9

)
1 + 3α8/3

(1 + α2)2 . (49)
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FIG. 5. Yield ratio as a function of α. The value α = 1 corre-
sponds to a = 0, and α = 0 corresponds to a = ∞.

Figure 5 shows the yield ratio as a function of α ∈ [0, 1].
It becomes the Gaussian value 4/9 for α = 0 and 1, which
correspond to the case a = ∞ and 0, respectively. In the
case of α = 1 (a = 0), this is simply because the phase-space
distribution is reduced to a single Gaussian distribution. An
interesting case is α = 0 (a = ∞) where we naturally expect
the Gaussian value 4/9 because the phase-space distribution
becomes the sum of two separate Gaussian distributions. Nev-
ertheless, the higher-order cumulants do not vanish for these
two separate Gaussian distributions. This means that the non-
vanishing higher-order cumulants do not always lead to the
deviation of the yield ratio. We see that the yield ratio becomes
smaller with the intermediate values of α where there is spatial
structures in a fireball. The yield ratio takes the minimum

value at α = (
3
√

3
√

33 + 17 − 3
√

3
√

33 − 17 − 1)3/2/
√

27 �
0.401, which corresponds to a � 1.35(1 + σ 2

2R2
s
)1/2 ≈ 1.35

(σ 2 � R2
s ). The case for a = 1.35 is shown by the red dotted

line in Fig. 4(a). The profile in the z-x plane shown in Fig. 4(b)
actually corresponds to this case a = 1.35.

D. Radial flow and coordinate-momentum correlation

So far, we have been assuming the factorization of the
coordinate and momentum profiles for illustrative purposes.
Nevertheless, our formula for the light-nuclei yield (27) is
also capable of dealing with the nonfactorizable form of the
phase-space distribution. In the realistic descriptions of the
heavy-ion collision reactions, the coordinate-momentum cor-
relation becomes important for the light-nuclei production
[52,53]. Here, we combine the Gaussian phase-space distri-
bution (7) with the blast-wave type of flow configuration in
the transverse plane:

v(r) = (vx, vy, vz )T ≡ 1

Rs
(rx, ry, 0)T. (50)

The phase-space distribution under the flow velocity v(r) in
the nonrelativistic regime becomes

f (r, p) = ρ0

(2πmT )3/2 e
− r2

2R2
s exp

(
− m

2T

[ p
m

− v(r)
]2)

,

(51)

where ρ0 = Np/(2πR2
s )3/2 is the same as in Sec. II A. Because

the exponent is a quadratic form of r and p, this phase-space
distribution is still Gaussian. The second-order phase-space
cumulants are obtained as

C2 = 2

(
R2

s

σ 2
A
I3 RsmI⊥

RsmI⊥ σ 2
A (mTI3 + m2I⊥)

)
, (52)

where I⊥ ≡ diag(1, 1, 0) is the projection to the transverse
plane. The coordinate-momentum correlations 〈rx px〉c =
〈ry py〉c = Rsm or 〈r⊥ · p⊥〉c ≡ 〈rx px + ry py〉c = 2Rsm is as-
sociated with the strength of the radial flow. The higher-order
phase-space cumulants {Cα}|α|�3 vanish. The light-nuclei yield
is

NA = gANA
p

[(
R2

s + σ 2
A

2

)(
mT + 1

2σ 2
A

)]−(A−1)/2

×
[(

R2
s + σ 2

A

2

)(
mT + 1

2σ 2
A

)
+ m2σ 2

A

2

]−(A−1)

. (53)

Finally, the light-nuclei yield ratio becomes constant
Nt Np/N2

d = 4/9 as a consequence of the vanishing higher-
order phase-space cumulants. This means that even the effect
of the background radial flow of the blast-wave type does not
affect the light-nuclei yield ratio with the Gaussian coordinate
profile.

E. Elliptic flow

In Sec. V D, we have introduced isotropic radial flow.
With the current framework, it is even possible to introduce
anisotropic flow. The way to introduce the anisotropic flow in
the phase-space distribution is not unique. In this section, we
first consider the following simple flow configuration for the
phase-space distribution (51):

v(r) = 1

Rs
[rx(1 + ε), ry(1 − ε), 0]T, (54)

where ε is a parameter to control the anisotropy. The flow
profile is shown in Fig. 6(a). The corresponding phase-space
distribution is still Gaussian as is in the case of the isotropic
radial expansion (50). The second-order cumulants become

C2 = 2

(
R2

s

σ 2
A
I3 Rsm(I⊥ + ελ3)

Rsm(I⊥ + ελ3) σ 2
A [mTI3 + m2(I⊥ + ελ3)2]

)
,

(55)

where λ3 = diag(1,−1, 0), and the higher-order phase-space
cumulants vanish.

Using the second-order cumulants, one can relate the
asymmetry of the coordinate-momentum correlations to the
anisotropy parameter:

〈rx px − ry py〉c

〈rx px + ry py〉c
= 〈rTλ3 p〉c

〈rTI⊥ p〉c
= ε. (56)

The momentum eccentricity is expressed by the momentum
cumulants:

εp =
〈
p2

x − p2
y

〉〈
p2

x + p2
y

〉 = 〈pTλ3 p〉c

〈pTI⊥ p〉c
= ε

1 + ε2 + T
m

. (57)
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(a)

(b)

FIG. 6. Panels (a) and (b) show the flow configurations of
Eqs. (54) and (60), respectively. The anisotropy parameters are ε =
0.5 and u2 = 0.3, respectively.

Although the elliptic-flow coefficient v2 cannot be directly
calculated by the second-order phase-space cumulants, it can
be analytically calculated (see Appendix C):

v2 ≡ 〈cos 2φp〉 =
√

ρ+ − √
ρ−√

ρ+ + √
ρ−

, (58)

where φp ≡ arg(px + ipy), and ρ± ≡ 1 + m
T (1 ± ε)2. The

light-nuclei yield is

NA = gANA
p

[(
R2

s + σ 2
A

2

)(
mT + 1

2σ 2
A

)]− A−1
2

×
[(

R2
s + σ 2

A

2

)(
mT + 1

2σ 2
A

)
+ m2σ 2

A

2
(1 + ε)2

]− A−1
2

×
[(

R2
s + σ 2

A

2

)(
mT + 1

2σ 2
A

)
+ m2σ 2

A

2
(1 − ε)2

]− A−1
2

.

(59)

As expected from the fact that the phase-space distribution
is Gaussian, the light-nuclei yield ratio becomes the constant
Nt Np/N2

d = 4/9 for the same light-nuclei sizes σt = σd . This
means that the background effect of the elliptic flow of the
form (54) is also canceled out in the yield ratio. The size-
difference effect is checked with the physical light-nuclei

FIG. 7. Light-nuclei yield ratio for the elliptic flow configuration
(54) with the physical light-nuclei sizes σt and σd . The black solid
line shows 4/9 for the same size case σt = σd . The other curves show
the results for different fireball sizes Rs.

sizes in Fig. 7. Although we observe the deviation of the
yield ratio from the ideal value 4/9, the deviation does not
depend on the anisotropy parameter ε, which means that the
value of the yield ratio is mostly determined by that of the
vanishing-flow case (ε = 0).

F. Blast-wave–type anisotropic flow

In the previous section, we have studied a naive elliptic-
flow configuration (54). We may consider another type of the
flow configuration for the phase-space distribution (51), the
blast-wave–type anisotropic flow [93]:

v(r) = 1

Rs
(rx, ry, 0)T(1 + 2u2 cos 2φs), (60)

where φs ≡ arg(rx + iry) is the spatial azimuthal angle, and
u2 is a parameter to control the anisotropy. The flow config-
uration is illustrated in Fig. 6(b). Even though this second
type of the flow configuration is often used in the context
of the blast-wave model, it should be noted that this is not
necessarily be the flow configuration generated in the realistic
setups. As the elliptic flow is mainly created by the pressure
gradient of the initial almond shape, it is not necessarily in
the radial direction from the fireball center. The flow config-
uration of the previous section (54) shown in Fig. 6(a) may
better capture the qualitative behavior naively. Nevertheless,
it is instructive to compare the behavior of these two different
phenomenological flow configurations to check the robustness
of the elliptic-flow effect on the yield ratio. It is difficult
to perform analytical calculations for this flow configuration
due to cos 2φs = cos2 φs − sin2 φs = (r2

x − r2
y )/(r2

x + r2
y ) in

the exponent of the distribution function. Instead, the results
are obtained numerically. The red solid line in Fig. 8 shows
the numerical result for the elliptic flow v2 as a function of
the parameter u2. Figure 9 shows the light-nuclei yield ratios
for different fireball sizes, Rs, as functions of the anisotropy
parameter u2. We here assumed the fixed light-nuclei size,
σ = 2.0 fm. There is a deviation of the yield ratio from the
ideal value 4/9 unlike the case for the flow configuration of
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FIG. 8. Azimuthal anisotropy vn = 〈cos nφ〉 of the order n as a
function of the anisotropy parameter un in the phase-space distribu-
tion of the blast-wave–type flow configuration Eqs. (60) and (61).

the previous section (60). This means that the light-nuclei
yield ratio is not just determined by the values of the azimuthal
anisotropy but largely depends on the detailed flow configura-
tion of the evolving systems. We also find that the deviation of
the yield ratio from 4/9 is more significant for smaller sizes of
fireballs, which are closer to the light-nuclei size σ . We may
also consider the general order of the anisotropic flow:

v(r) = 1

Rs
(rx, ry, 0)T(1 + 2un cos nφs), (61)

where un is the nth order anisotropy parameter. In Fig. 8,
we confirm that the phase-space distribution induces the az-
imuthal anisotropy vn = 〈cos nφ〉. The resulting light-nuclei
yield ratio is shown in Fig. 10. We observe that the

FIG. 9. Light-nuclei ratios Nt Np/N2
d as functions of the elliptic

anisotropy parameter u2 (60) in the phase-space distribution. We
here assumed the fixed σ = 2.0 fm. The light-nuclei yields (1) are
calculated by the Monte Carlo integration with importance sampling
(see Appendix D). The values are normalized by the ideal value 4/9.
Different lines show the results for different fireball sizes, Rs. The
band shows the statistical errors of the Monte Carlo integration. The
freeze-out temperature and nucleon mass are set as T = 0.1 GeV and
m = 0.939 GeV.

FIG. 10. Light-nuclei ratios Nt Np/N2
d as functions of different

orders of the anisotropy parameter un in the blast-wave–type phase-
space distribution. The fireball and the light-nuclei sizes are fixed
as Rs = 5.0 fm and σ = 2.0 fm. Different lines show the results for
different orders, n, of the anisotropy. The band shows the statistical
errors of the Monte Carlo integration (see Appendix D). The other
setup is the same as in Fig. 9.

higher-order anisotropy creates more deviation of the light-
nuclei yield from the ideal value 4/9. This is because
the higher-order anisotropy creates smaller structures in the
phase-space distribution of the flow profile.

VI. CONCLUSION AND OUTLOOK

Within the framework of the coalescence model, we have
studied the effect of noncritical fluctuation on the yield ra-
tio of the light-nuclei. To achieve the conceptual clarity
of the dependence on the phase-space distribution f (r, p),
we employed the characteristic function of the distribution,
with which we derived the expression of the light-nuclei
yield in terms of the cumulants of the phase-space distribu-
tion in Sec. IV. Through the characteristic function of the
phase-space distribution, we decomposed the phase-space dis-
tribution into different orders of the phase-space cumulants.
The second-order phase-space cumulants correspond to the
underlying Gaussian component of the phase-space distribu-
tion, whereas the higher-order cumulants correspond to the
non-Gaussian distortion of the phase-space distribution. This
enabled us to study the contribution of the Gaussian part and
the various non-Gaussian parts separately in a systematic way.
We found that the leading terms (up to the second-order of
phase-space cumulants) in the light-nuclei yield with arbi-
trary mass numbers A share the same structure. Thus, under
the approximation of the same light-nuclei radii σA ≡ σ , we
constructed the generalized light-nuclei yield ratio

R1−B,A−1
A,B = NA−1

B NB−A
p

NB−1
A

so that the leading-order terms are canceled out. The above
yield ratio can be regarded as the generalization of the yield
ratio R−2,1

2,3 = Nt Np/N2
d [28].

The canceled leading-order terms contain the second-
order phase-space cumulants C2 that represent the underlying
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Gaussian shape in the phase space. Specifically, C2 consists of
the variance in the coordinate space 〈rir j〉c and the momentum
space 〈pi p j〉c as well as the coordinate-momentum correlation
〈ri p j〉c, which are respectively related to the fireball size and
shape, the broadening of the momentum at the freeze-out
surface (i.e., roughly the kinetic freeze-out temperature), and
the expansion rate θ ≡ ∂μuμ induced by the radial flows and
the longitudinal expansion, respectively. Here, it is remark-
able that the second-order cumulants can be canceled out in
the light-nuclei ratios. In particular, we can see the global
expansion of the fireball, whose dominant component can be
expressed by the mixed second-order cumulants 〈r · p〉c, is
canceled in the light-nuclei ratio. This means that these impor-
tant effects of the backgrounds are already roughly canceled
in the light-nuclei yield ratio, which supports the fact that the
light-nuclei yield ratio is a desirable observable to search the
critical point.

In understanding any deviation and the variation of the
light-nuclei yield ratio from the ideal values gA−1/gB−1

A ,
the higher-order cumulants, i.e., the non-Gaussianity, of the
phase-space distribution plays a significant role. The higher-
order phase-space cumulants {Cα}|α|�3, such as the skewness,
kurtosis of the coordinate and momentum, as well as the
coskewness and cokurtosis between them, become the dom-
inant factors of the background effect in the ratio. This
non-Gaussianity of the phase-space shape may arise from
various physics, including the initial Woods-Saxon profile,
the nontrivial time evolution of the speed of sound cs(t ), the
long-lived resonance decay that contributes to the long expo-
nential tails of the phase-space, and also the event-by-event
modification from the critical fluctuations.

To reveal the qualitative feature of the background con-
tributions to the light-nuclei yield ratio in more detail, we
investigated several parametrized background phase-space
distributions based on the perspective obtained by the charac-
teristic function and the phase-space cumulants. In Sec. V A,
we first considered the Gaussian spatial profile and obtained
the light-nuclei yield (36) for the general mass number A
with the spherical harmonic-oscillator Wigner function. We
also estimated the effect of different nuclei sizes σt �= σd . In
Sec. V B, we observed the effect of the higher-order phase-
space cumulants using the Woods-Saxon spatial profile of the
phase-space distribution. We also checked the effect of the
size difference between tritons and deuterons. In Sec. V C,
we obtained the analytic expression of the light-nuclei yield
ratio for another non-Gaussian phase-space distribution with
two hot spots, where we found that the yield ratio takes a
minimum at an intermediate distance between the two hot
spots. In Sec. V D, we argued that the radial flow in the
Gaussian profile introduced by a naive nonrelativistic blast-
wave–type flow configuration does not affect the yield ratio.
In this sense, the yield ratio is also unaffected against the
coordinate-momentum correlations in the phase-space distri-
bution caused by some types of radial expansion. In Secs. V E
and V F, we introduced the elliptic flows with two different
flow configurations. We showed that a naive elliptic flow
configuration (54) is still a Gaussian phase-space distribution

so results in the constant yield ratio of 4/9. On the other hand,
we found that another blast-wave–type configuration (60) may
largely affect the light-nuclei yield ratio. The size of the effect
depends on the fireball size; the effect is mostly negligible
when Rs = 15 fm while it is significant in the smaller sys-
tems. We also checked different orders of the blast-wave–type
anisotropic flows to find that the higher orders have larger
effects on the light-nuclei yield ratio.

For future studies, the quantitative analysis with more re-
alistic setups would be important. In this study, a part of the
effect of the radial expansion and flows is turned out to be
canceled in the yield ratio, which implies that the variation of
the yield ratio carries the information about more details of the
dynamics. This suggests that the future quantitative analysis
of various related physics would provide promising insights
into the experimental measurements, which requires com-
prehensive studies. The related physics include the complex
evolution of fluids (possibly related to the nontrivial initial
conditions and the subsequent hydrodynamic evolution with
realistic EoS), the contribution of the non-Gaussian profile
from the long-lived resonance, and, most importantly, the
critical fluctuations. In the realistic setup of the high-energy
heavy-ion collisions, the event-by-event fluctuations are also
important ingredients, which can also affect the light-nuclei
yields. The presented analysis by the characteristic function
and the phase-space cumulants can also be naturally extended
to include the effect of the critical fluctuations and other
effects not considered in the present analysis such as the devi-
ation of the Wigner function from the Gaussian and the isospin
asymmetry of the phase-space distribution. Other challenges
would include the extension of the analysis for the boost-
invariant backgrounds associated with dynamically expanding
coordinates of τ = (t2 − z2)1/2 and ηs = tanh−1(z/t ), i.e., the
Milne coordinates, and the relativistic form of the phase-space
distribution, as well as the effect of the finite rapidity accep-
tance in experiments.

In this paper, for the critical-point search, we have focused
on the yield ratios where the noncritical background effect
becomes minimal but is still non-negligible. Nevertheless, our
analysis may also be naturally extended for the observables of
the light-nuclei production that largely affected by the back-
ground effects, such as the coalescence factor BA(pT), which
has attracted attention recently [94].
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APPENDIX A: LIGHT-NUCLEUS YIELDS WITH A SIMPLE
GAUSSIAN PHASE-SPACE DISTRIBUTION

The light-nuclei yield for the mass number A under the
phase-space distribution (7) is written as

NA = gA8A−1

[
Np(

2πR2
s

)3/2
(2πmT )3/2

]A ∫ [
A∏

i=1

d3rid
3 pi

]

× e
− 1

2R2
s

∑A
i=1 r2

i − 1
2mT

∑A
i=1 p2

i

× e
− 1

σ2
A

∑A−1
i=1 R2

i −σ 2
A

∑A−1
i=1 P2

i
. (A1)

We can actually easily calculate this integration using the
transformation introduced in Sec. III. We rewrite (ri, pi ) with
(Ri, Pi ) using the relation (14):

NA = gA8A−1

[
Np(

2πR2
s

)3/2
(2πmT )3/2

]A ∫ [
A∏

i=1

d3Rid
3Pi

]

× e
− 1

2R2
s

R2
A− 1

2mT P2
A

× e
−( 1

2R2
s
+ 1

σ2
A

)
∑A−1

i=1 R2
i −( 1

2mT +σ 2
A )
∑A−1

i=1 P2
i
. (A2)

Now, we are ready to perform the Gaussian integrations to
obtain the result:

NA = gA8A−1

[
Np

(2πR2
s )3/2(2πmT )3/2

]A

× (
2πR2

s

)3/2
(2πmT )3/2

×
[

2π

(
1

R2
s

+ 2

σ 2
A

)−1

(2π )

(
1

mT
+ 2σ 2

A

)−1] 3(A−1)
2

= gANA
p

[(
R2

s + σ 2
A

2

)(
mT + 1

2σ 2
A

)]− 3(A−1)
2

. (A3)

APPENDIX B: DERIVATION OF EQ. (48): THE
LIGHT-NUCLEI YIELD FOR THE DOUBLE-GAUSSIAN

DISTRIBUTION

Here, the derivation of Eq. (48) is explained. First, we
define the distribution functions for each hot spot:

f (r, p) = 1
2 [ f+(r, p) + f−(r, p)], (B1)

f±(r, p) ≡ NpG
(
r ∓ aRsez; R2

s

)
G(p; mT ). (B2)

The yield is written as

NA = gA

2A

∑
{±i}i

∫ [
A∏
i

d3rid
3 pi f±i (ri, pi )

]
WA
({ri, pi}A

i=1

)
,

(B3)

where
∑

{±i}i
sums over {±i}A

i=1 ∈ {+,−}A. The cumulant
expansion of the hot-spot phase-space distribution is given by

f±(zi )

Np
=
∫

d6t i

(2π )6 e−it i ·zi eit i·ai− 1
2 tT

i C2t i , (B4)

where ai ≡ √
2(0, 0,±iaRs/σA, 0, 0, 0)T, and C2 is the same

as the simple Gaussian case (35). The yield is written by the
cumulants as

NA = gA8A−1NA
p

2A

∑
{±i}i

∫ A−1∏
i=1

d6T ie− 1
2 T T

i (C2+I6 )T i+iT i·Ai

(2π )3

= gA8A−1NA
p det (C2 + I6)−(A−1)/2

× 1

2A

∑
{±i}i

e− 1
2

∑A−1
i=1 AT

i (C2+I6 )−1Ai , (B5)

where Ai ≡ ∑A
j=1 Oi ja j . The exponent is calculated as

A−1∑
i=1

AT
i (C2 + I6)−1Ai

=
A∑

i=1

aT
i (C2 + I6)−1ai − AA(C2 + I6)−1AA

= 1

2R2
s /σ

2
A + 1

⎡
⎣ A∑

i=1

a2
i,r − 1

A

(
A∑

i=1

ai,r

)2
⎤
⎦

+ 1

2mT σ 2
A + 1

⎡
⎣ A∑

i=1

a2
i,p − 1

A

(
A∑

i=1

ai,p

)2
⎤
⎦

= AVar[{ai,r}i]

2R2
s /σ

2
A + 1

+ AVar[{ai,p}i]

2mT σ 2
A + 1

, (B6)

where OT O = 1 has been used to obtain the second line, ai,r

and ai,p are the coordinate and momentum parts, respectively,
of the vector ai, and Var[· · · ] is the variance. For the present
case, the momentum part vanishes: Var[{ai,p}] = 0. The coor-
dinate part is

Var[{ai,r}i] = 2a2R2
s

σ 2
A

⎡
⎣1 −

(
1

A

A∑
i=1

±i1

)2
⎤
⎦

= 2a2R2
s

σ 2
A

[
1 −

(
2r{±i} − A

A

)2]
, (B7)

where r{±i} is the number of + signs in {±i}A
i=1. Finally,

1

2A

∑
{±i}i

e− 1
2

∑A−1
i=1 AT

i (C2+I6 )−1Ai

= 1

2A

∑
{±i}i

e
− a2

2

2R2
s /σ2

A
2R2

s /σ2
A+1

A[1−(2r{±i }/A−1)2]

= 1

2A

A∑
r=0

(
A

r

)
αA[1−(2r/A−1)2]. (B8)

APPENDIX C: DERIVATION OF EQ. (58): THE ELLIPTIC
FLOW FOR THE ANISOTROPIC DISTRIBUTION

FUNCTION

Here, we see how the analytic result Eq. (58) is obtained.
Using cos 2φp = cos2 φp − sin2 φp = (p2

x − p2
y )/(p2

x + p2
y ),
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the elliptic-flow coefficient can be calculated by

v2 =
∫

d3rd3 p f (r, p)
p2

x−p2
y

p2
x+p2

y∫
d3rd3 p f (r, p)

. (C1)

To perform the integration, we consider the Schwinger
parametrization 1/(p2

x + p2
y ) = ∫∞

0 dte−t (p2
x+p2

y ):

v2 =
∫∞

0 dt
∫

d3rd3 p f (r, p)e−t (p2
x+p2

y )
(
p2

x − p2
y

)∫
d3rd3 p f (r, p)

=
∫∞

0 dt
∫

d6z′e− 1
2 z′TC2(t )−1z′(

p2
x − p2

y

)
∫

d6z′e− 1
2 z′TC2(t=0)−1z′ , (C2)

where z′ ≡ (r
p

)
, and

C2(t )−1 =
⎛
⎝I3+ m

T (I⊥+ελ3 )2

R2
s

−I⊥+ελ3
T Rs

−I⊥+ελ3
T Rs

1
mT I3 + 2tI⊥

⎞
⎠. (C3)

The determinant is det C2(t ) = [det C2(t )−1]−1 =
(R2

s mT )3/(1 + α+t )(1 + α−t ) with α± ≡ 2mT [1 +
(m/T )(1 ± ε)2], and the second-order phase-space cumulants
become

C2(t ) = [C2(t )−1]−1 =
(

R2
s

1+2mTI⊥t
1+αI⊥t mRs

I⊥+ελ3
1+αI⊥t

mRs
I⊥+ελ3
1+αI⊥t

α
2

1
1+αI⊥t

)
, (C4)

where α ≡ diag(α+, α−, 2mT ). Now, we are ready to evaluate
Eq. (C2):

v2 =
∫∞

0 dt
√

(2π )6(R2
s mT )3

(1+α+t )(1+α−t )
1
2

(
α+

1+α+t − α−
1+α−t

)
√

(2π )6(R2
s mT )3

= α+ − α−
2

∫ ∞

0

dt

(1 + α+t )3/2(1 + α−t )3/2

= − 1

α+ − α−

[
α+

√
1 + α−t

1 + α+t
+ α−

√
1 + α+t

1 + α−t

]t=∞

t=0

= α+ + α− − 2
√

α+α−
α+ − α−

= (
√

α+ − √
α−)2

(
√

α+)2 − (
√

α−)2

=
√

α+ − √
α−√

α+ + √
α−

. (C5)

Finally, we can eliminate the common factor 2mT as ρ± ≡
α±/2mT to obtain Eq. (58).

APPENDIX D: IMPORTANCE SAMPLING
OF MONTE-CARLO INTEGRATION OF

LIGHT-NUCLEI YIELDS

We here give a method to evaluate the light-nuclei yield un-
der the blast-wave–type anisotropic flow configuration (61):
The direct numerical integration for the light-nuclei yield
given by the integral (1) has unrealistically large computa-
tional cost, in particular for a larger mass number A. For
example, we naively need to perform the 18-dimensional in-
tegration for the triton yield (A = 3). Instead of the direct

numerical integration, we here consider the Monte Carlo in-
tegration. However, even with the Monte Carlo integration,
the convergence is not sufficient within realistic statistics with
a larger A due to the curse of dimensionality. We consider
the importance sampling of the Monte Carlo integration by
utilizing the fact that the phase-space distribution becomes
multivariate Gaussian distribution for the case un = 0. We
sample the phase-space coordinates following the integrand
(including the Wigner function and A phase-space distribu-
tions) of the case un = 0 and evaluate the contribution of
nonvanishing un.

The phase-space distribution for un = 0 is written as

f0(r, p) = fz(rz, pz )e− 1
2 (zT

x A0zx+zT
y A0zy ), (D1)

A0 :=
( 1

2R2

(
1 + m

T

)
σ 2

A − 1
2T R

− 1
2T R

1
2T mσ 2

A

)
, (D2)

where the (rz, pz ) part is factorized as fz(rz, pz ), and zx,y =
(rx,y/σA, σA px,y). The phase-space density for the nonvanish-
ing un can be expressed by

f (r, p) = f0(r, p)e−V (r,p), (D3)

V (r, p) := m

2T

[
r2
⊥

R2
δ(δ + 2) − 2

r⊥ · p⊥
mR

δ

]
, (D4)

where δ(r) = 2un cos(nφs), r⊥ = (rx, ry), and p⊥ = (px, py).
With this setup, the (rz, pz ) integration can be factorized and
analytically performed so that we focus on the integrations by
(rx, px, ry, py) hereafter.

For the importance sampling, we first sample the A phase-
space coordinates according to the multivariate Gaussian
distribution given by [

∏A
i=1 f0(ri, pi )]WA({ri, pi}A

i=1). This can
be done by expressing the distribution as exp[− 1

2 ZTC−1Z],
diagonalizing the covariance matrix C to obtain the eigen-
modes (i.e., the principal components) of Z, and ran-
domly sampling the eigenmodes according to the Gaussian
random numbers with the variance determined by the
eigenvalues. Using the sampled phase-space coordinates,
{r(1)

i , p(1)
i }A

i=1, {r(2)
i , p(2)

i }A
i=1, . . . , we evaluate the integration

by

NA = gA

∫ [
A∏

i=1

d3rid
3 pi f (ri, pi )

]
WA
({ri, pi}A

i=1

)

= C
1

Ns

Ns∑
s=1

e−∑A
i=1 V (r(s)

i ,p(s)
i ), (D5)

where C = gANA
p 4A−1[det C/(R2

s mT )2A]1/2[(R2
s + σ 2

A/2)
(mT + 1/2σ 2

A )]−(A−1)/2 is a constant, Ns is the sample size,
and · · ·(s) is the index of the sample point.

We further tweak the sampling distribution to avoid the
unstable behavior of the Monte Carlo integration for large
values of zi by mixing the gamma distribution with the normal
distribution. We modify the sampling probability of n (=4A)
random variables x = (x1, . . . , xn) of the standard normal
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distribution used in the above sampling as

Pr (x; ε, β )dnx

=
[

(1 − ε)
1

Z1
e− 1

2 x2 + ε
1

Z2
e−|x|/β

]
dnx

= (1 − ε)
e− 1

2 x2
dnx

(2π )n/2 + ε
rn−1e−r/βdr

βn−1�(n)

d�n−1

Sn−1
, (D6)

where the parameters ε = 1/32 and β = 2 are the frac-
tion and scale of the gamma distribution, Z1 = (2π )n/2 and
Z2 = Sn−1β

n−1�(n) are the normalization for e− 1
2 x2

dnx and
e−|x|/βdnx, respectively, and Sn−1 = 2πn/2/�(n/2) is the sur-
face area of an (n − 1) hypersphere. In the third line, r = |x|

and d�n−1 are the radius and the infinitesimal element of
the angular integration in the n-dimensional space. With this
modified distribution, the integration is evaluated as

NA = C
1

Ns

Ns∑
s=1

w(s)e−∑A
i=1 V (r(s)

i ,p(s)
i ), (D7)

where the reweighting factor reads

w(s) = w(x(s); ε, β )

=
1

(2π )n/2 e− 1
2 x2

(1 − ε) 1
(2π )n/2 e− 1

2 x2 + ε 1
Sn−1βn�(n) e

−|x|/β . (D8)
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