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Fission barriers of superheavy nuclei for emitted fragment isotopes near proton magic numbers
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Fission barriers for supposed doubly magic 298Fl are calculated using a specialized binary macroscopic-
microscopic method. The microscopic effects are obtained from the developed binary Strutinsky shell correction
method. The main input data are the proton and neutron energy levels calculated with the deformed two-center
shell model. One is able in this way to provide the microscopic transition via the level schemes, from the parent to
two overlapped and finally separated level schemes. The macroscopic part is acquired by the deformed charged
liquid drop model with the double Yukawa-plus-exponential finite range potential. The method is applied to
the reactions accompanied by isotopes of Sn and Pb within the fission channels, as being favored by strongly
negative shell corrections.
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I. INTRODUCTION

Superheavy nuclei survive only due to shell effects. The
macroscopic part of the fission barrier is close to zero for most
of the possible decay channels. Due to negative shell effects,
a pocket in the total deformation energy is formed, capable
to accommodate the quasistable ground state of the parent.
Along the decay process, various barrier shapes are gener-
ated, depending on the nucleus deformation. For example, the
height of the static spontaneous fission barrier for superheavy
nuclei is calculated with the macroscopic-microscopic method
[1]. Axial symmetry of the parent nucleus is assumed for
Z = 98–102 in [1]. The deformation space used is βλ=2, 4, 6,
8. The crucial shell corrections are obtained by the Strutinsky
method for one level scheme of the Woods-Saxon potential,
so the barrier is the result of the parent nucleus deformation in
the {βλ} space.

Fission barriers for superheavy nuclei are approximated
in [2,3] using the Qα values of the measured decay chains.
The data are compared with the predictions of macroscopic-
microscopic models. Thus, fission barriers are estimated as
being a major factor contributing to the total cross section.
However, the Q values give information only on the separated
fragment configuration.

The deformed nuclear shapes are obtained in [4] by an
expansion in Legendre polynomials and perturbed spheroids.
Shell corrections are computed with the Woods-Saxon (one
center again) and modified oscillator potential.

The potential barriers have been studied within the gener-
alized liquid drop model, taking into account the proximity
forces acting between surfaces in regard to the charge and
mass asymmetry and the shell effects [5]. Transition is made
from one to two spheres. In very asymmetric channels,
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one-hump potential barriers appear. Reference [5] is related
to the present paper, as it takes into account various decay
reaction channels.

Fission probabilities are calculated using the “fusion by
diffusion” model [6]. Here the ground state, saddle point
properties and masses, shell corrections, and deformation
are calculated systematically within the multidimensional
macroscopic-microscopic method, based on the deformed
Woods-Saxon single-particle potential.

Stability and fission barrier height, being assimilated as
shell effects, are experimentally studied for 254No and 220Th
[7]. The extracted barrier agrees with the values predicted
by the macroscopic-microscopic model. Discrepancies are
underlying the single-particle spectra differences, hence the
domination of the shell energy.

The spontaneous fission process is studied within a
semiempirical WKB approximation [8]. The potential barrier
is obtained using the generalized liquid drop model, tak-
ing into account the nuclear proximity and mass asymmetry.
The shape-dependent shell corrections have been determined
within the droplet model, which gets the energy levels from
an axially deformed Woods-Saxon potential and applying
the Strutinsky method. The model is again a one center
equivalent.

Potential energy surfaces of superheavy nuclei are evalu-
ated again within the single macroscopic-microscopic approx-
imation [9]. A liquid drop type of mass formula is used to
determine the macroscopic part of the nuclear energy, and
the Strutinsky method is used again for shell corrections.
A mean-field potential is used to obtain the energy levels
as eigenvalues of the corresponding Hamiltonian. Nuclear
shapes are obtained through a Fourier shape parametriza-
tion, starting from the expansion of a sphere, followed by
deformation.

The fission barriers of compound nuclei are studied with
the time-dependent Hartree-Fock + BCS (TD-BCS) approach
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[10]. The initial configuration of the compound nucleus is
obtained by finite-temperature TD-BCS calculations. Fission
pathways forming the barrier in the quadrupole-octupole de-
formation space are obtained mainly for two asymmetric
channels, at AH=135.0 and 138.7. Self-consistent calculation
using the Skyrme force is applied to obtain the fission en-
ergy curve of 240Pu. [11]. Double-humped barriers are visible
for the actinide region, as expected. No information about a
specific fission channel can result here. A two-dimensional,
self-consistent Thomas-Fermi calculation of fission barriers,
adapted to rotating nuclei at finite temperature, is described in
[12]. It is shown that the computed fission barrier decreases
with increasing temperature and angular momentum. Fission
barriers of 254,256,258Fm, 258No, and 260Rf are investigated in
a fully microscopic way up to the scission point [13]. The
analysis is based on the constrained Hartree-Fock-Bogoliubov
theory and Gogny D1S force. The quadrupole, octupole, and
hexadecapole moments as well as the number of nucleons in
the neck region are used as constraints. Two fission paths
are found. Sn influence is emphasized in the two proton-
symmetric fission channel from 256Fm for the barrier obtained
along the quadrupole (elongation) coordinate. The systemat-
ics of fission barriers in superheavy elements, in the range
Z = 108–120 and N = 166–182, are investigated with the
relativistic mean field (RMF) model, as well as with the
nonrelativistic Skyrme-Hartree-Fock approach [14]. As a
comparison, the RMF predicts lower barriers than most
Skyrme interactions. As related to the present paper, heights
of the fission barriers are obtained as a function of the neutron
numbers. The barriers for the superheavy Fl are close to the
ones calculated in this paper for special fission channels.
Static fission barriers of even-even nuclei with 100 � Z �
110 are investigated using again the Skyrme-Hartree-Fock
model [15]. The energy density functional defined by the
Skyrme SLy4 and the seniority pairing force are used. Static
fission paths defining the barriers are obtained as reflection
symmetric for 264Fm due to doubly magic fragment 132Sn.
The dependence of fission barriers on the excitation energy
of the compound nucleus upon the survival probability of su-
perheavy nuclei is also studied with the self-consistent nuclear
density functional theory [16]. One predicts a rapid decrease
of the barrier with temperature for 278Cn as compared to 292Fl,
but again, no fission channel can be mentioned.

The barrier is taken as the Coulomb and proximity po-
tential sum in [17]. Different expressions for the universal
proximity potential function are given for different stages
of the binary configuration. The barrier height is calculated
here for every possible heavy-light nucleus channel. Spherical
shapes are considered and shell effects are taken phenomeno-
logically. Also, using the same model, the shell effects are
accounted for via the Q values [18] and the fission path barrier
is taken as the minimum driving potential with respect to the
mass and charge asymmetries. These calculations are related
to the present paper. They confirm the role of doubly magic
or nearly doubly magic configurations in fission. They also
stress that, in addition to closed shell effect, ground state
deformation also plays an important role in determining the
isotopic yield in the fission process. Of course, shell effects
decrease with the excitation energy of the system [19].

The Q values contain the shell effects for the final stage of
the decay process, and consequently influence the fission bar-
rier [20]. This quantity has been calculated using the isospin
cluster model and α-decay half-lives could be obtained. It
proves the impact of magicity, here namely the supposed
neutron closure at N=172.

The quantum mechanical fragmentation theory and the
preformed cluster-decay model are used to get the α-decay
half-lives [21]. Using the Strutinsky method, one shows that
motions in η and ηZ asymmetries are faster that the R motion
(elongation). It is also mentioned that the attraction between
nuclear surfaces changes the relative heights of the potential
energy minima (i.e., fission barrier height). Another related
approach uses α-nucleus interaction potentials with M3Y
deformation energy, forming the barrier which comprises
the sum of the nuclear, Coulomb, and centrifugal energies
[22,23]. The fragmentation theory is extended for the gen-
eralized nuclear proximity potential where the deformations
are included [24]. The fragmentation potential generates the
fission barrier by including the binding energy, Coulomb, and
nuclear proximity terms. The calculations are made also for
nonoverlapping nuclei.

The importance of mass asymmetry coordinates is stressed
along with the relative separation among the decay fragments,
for the estimation of the penetration barrier. The impact of
the fragmentation potential on the interaction, and therefore
on the barrier, is studied for different fission channel fragment
combinations in [25]. Reference [25] is more related to the
present paper. The importance of the transition region where
the two fragments are partially overlapped is stressed within
the model we are using. We present a theoretical approach
being able to account for a specific spontaneous fission chan-
nel. The charge and mass asymmetry are given from the
beginning, and the influence of the partially overlapped level
schemes is underlined with respect to the shell corrections,
and consequently on the fission barriers.

Section II presents the theoretical basis of the model, a
very specialized binary macroscopic-microscopic method for
fission. In Sec. III the resulting fission barriers are displayed
and discussed, followed by Conclusions.

II. THEORETICAL BINARY METHOD

The most appropriate fissionlike configuration is described
by two intersected spheroids forming an axially symmetric
shape. The corresponding barrier is constructed in two main
parts: the macroscopic term Emac, where the only deformation
dependent energies are the Coulomb and the finite range nu-
clear ones, and the microscopic term Eshell, played by the shell
corrections. The last one is totally dependent on the transition
of the parent proton and neutron level schemes from a singular
potential well to two overlapped and then separated ones.
These level schemes are input data for the Strutinsky method.
The two terms which form the fission barrier Eb, when applied
to the appropriate shape evolution, should describe the binary
process energetically:

Eb = Emac + Eshell. (1)

Each one is presented in the following subsections.
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A. The macroscopic Yukawa-plus-exponential energy

A charged liquid drop with finite range nuclear forces act-
ing on the surface generates the binary macroscopic term. It
follows the splitting transition from the parent shape, through
the two partially overlapped spheroids (heavy-daughter and
light-emitted fragment) up to separated nuclei. The total de-
formation dependent macroscopic energy reads

Emac = (
EC − E (0)

C

) + (
EYE − E (0)

YE

)
(2)

where EC and EYE are the Coulomb and finite range Yukawa-
plus-exponential (YE) energies. E (0)

C and E (0)
YE are the energies

for the initial parent nucleus values. The balance between
these two forces generates the macroscopic barrier. These two
terms vary with deformation in the charged liquid drop energy.

The Coulomb term is calculated as [26]

EC = 2π

3

(
ρ2

eH FCH + ρ2
eLFCL + 2ρeHρeLFCHL

)
(3)

where ρeH and ρeL are the charge densities of the heavy
and light fragments. The last term accounts for the Coulomb
interaction between the reaction partners. FCH , FCL, and FCHL

are only shape dependent integrals:

FCH = ∫ zs

−a1
dz

∫ zs

−a1
dz′GH (z, z′),

FCL = ∫ R+a2

zs
dz

∫ R+a2

zs
dz′GL(z, z′),

FCHL = ∫ zs

−a1
dz

∫ R+a2

zs
dz′GHL(z, z′) (4)

where a1 and a2 are the spheroid semiaxes along the sym-
metry axis, zs is the separation point, and R is the distance
between the fragment centers. The Coulomb integrands read

Gi(z, z′) =
{
ρi(z)ρi(z

′)
K (k) − 2D(k)

3

[
2
(
ρ2

i (z) + ρ2
i (z′)

) − (z − z′)2 + 1.5(z − z′)
(

dρ2
i (z′)

dz′ − dρ2
i (z)

dz

)]

+ K (k)

{
ρ2

i (z)ρ2
i (z′)

3
+

[
ρ2

i (z) − 0.5(z − z′)
dρ2

i (z)

dz

][
ρ2

i (z′) + 0.5(z − z′)
dρ2

i (z′)
dz′

]}}

× 1

[(ρi(z) + ρi(z′))2 + (z − z′)2]1/2
(5)

where i stands for H and L individual fragment terms. ρH,L(z) are the nuclear surface equations in cylindrical coordinates, for
axially symmetric shapes. The third Coulomb integrand responsible for the H-L interaction reads

GHL(z, z′) =
{
ρH (z)ρL(z′)

K (kHL ) − 2D(kHL )

3

[
2
(
ρ2

H (z) + ρ2
L(z′)

) − (z − z′)2 + 1.5(z − z′)
(

dρ2
H (z′)
dz′ − dρ2

L(z)

dz

)]

+ K (kHL )

{
ρ2

H (z)ρ2
L(z′)

3
+

[
ρ2

H (z) − 0.5(z − z′)
dρ2

H (z)

dz

][
ρ2

L(z′) + 0.5(z − z′)
dρ2

L (z′)
dz′

]}}

× 1

[(ρH (z) + ρL(z′))2 + (z − z′)2]1/2
. (6)

The spherical Coulomb term is

EC0 = 3Z2e2

5r0A1/3
. (7)

The second component of the macroscopic energy is gen-
erated by the finite range nuclear surface forces and produces
the YE energy [27], which reads

EYE = 1

4πr2
0

[csH DYH + csLDYL + 2(csH csL )1/2DYHL ] (8)

where [26]

DYH =
∫ 2π

0

∫ zs

−a1

∫ zs

−a1

E (1)
YH

E (1)
YL

Q(1)dφdzdz′, (9)

DYL =
∫ 2π

0

∫ R+a2

zs

∫ R+a2

zs

E (2)
YH

E (2)
YL

Q(2)dφdzdz′, (10)

DYHL =
∫ 2π

0

∫ zs

−a1

∫ R+a2

zs

E (12)
YH

E (12)
YL

Q(12)dφdzdz′. (11)

(12)

The integrand terms are

E (i)
YH

= ρ2
i (z) − ρi(z)ρi(z

′)cosφ − 0.5(z − z′)
dρ2

i (z)

dz
,

E (i)
YL

= ρ2
i (z′) − ρi(z)ρi(z

′)cosφ + 0.5(z − z′)
dρ2

i (z′)
dz′ ,

Q(i) = 2 −
[(σi

a

)2
+ 2

σi

a
− 2

]
e− σi

a
1

σ 4
i

(13)

with i = H, L, and

σi = [
ρ2

i (z) + ρ2
i (z′) − 2ρi(z)ρi(z

′)cosφ + (z − z′)2
]1/2

.

(14)
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The interaction term for the Yukawa energy reads

E (HL)
YH

= ρ2
H (z) − ρH (z)ρL(z′)cosφ − 0.5(z − z′)

dρ2
H (z)

dz
,

E (HL)
YL

= ρ2
L(z′) − ρH (z)ρL(z′)cosφ + 0.5(z − z′)

dρ2
L (z′)

dz′ ,

Q(HL) = 2 −
[(σHL

a

)2
+ 2

σHL

a
− 2

]
e− σHL

a
1

σ 4
HL

, (15)

and

σHL = [
ρ2

H (z) + ρ2
L(z′) − 2ρH (z)ρL(z′)cosφ + (z − z′)2

]1/2
.

(16)

The spherical Yukawa-plus-exponential part is

E (0)
Y =

{
1 − 3

(
a

R0

)2

+
(

R0

a
+ 1

)[
2 + 3

a

R0

+ 3

(
a

R0

)2]
e− 2R0

a

}
E (0)

S (17)

where

E (0)
S = csA

2/3. (18)

The intermediate surface coefficients read

csi = as

[
1 − κ

Ni − Zi

Ai

]
. (19)

The use of these expressions ensures taking into ac-
count the Coulomb and nuclear surface interaction between
the two partially splitting fragments within the macroscopic
deformation energy.

B. Shell effects

The shell effects are the reason superheavy nuclei exist.
The shell correction term allows the survival of such a massive
system, overcoming the large electrostatic repulsion. When a
negative value occurs, a pocket in the total deformation energy
is generated. Thus, the energy minimum so formed accommo-
dates the ground state of the parent nucleus. At the same time,
a potential barrier rises against any possible fission channel.
In order to calculate the values of the shell corrections, one
has to keep in mind the following.

(1) The input data for computing these microscopic ener-
gies must be the proton and neutron level schemes.

(2) The proton and neutron level schemes must follow the
geometry of the fission configuration.

(3) Such a requirement is acquired by a specialized po-
tential able to follow the microscopic transition from one
quantum well, the parent one, through two partially over-
lapped configurations, up to two separated wells, each one
corresponding to the correct level scheme of the individ-
ual fission fragments. Such a specialized shell model shall
be briefly presented, followed by the binary shell correction
procedure.

1. The deformed two-center shell model

A specialized microscopic tool to assess for the changes
within the structure of the binary configuration is provided
by the two-center shell model. The symmetric version was
presented for the first time in [28] and used in two-molecular
state studies. An asymmetric spherical two-center shell model
has been developed for nuclei in [29], based on two spheri-
cal oscillators. Another version takes advantage of the more
realistic finite wells of two Woods-Saxon based potentials to
achieve the binary configuration structure [30]. All the above
demands are also fulfilled by the deformed two-center shell
model (DTCSM) [31]. The model is based on two deformed,
partially overlapped, oscillators, as the core of the potential:

VDTCSM(ρ, z) =
{

VH (ρ, z) = 1
2 m0ω

2
ρH

ρ2 + 1
2 m0ω

2
zH

(z + zH )2, for AH

VL(ρ, z) = 1
2 m0ω

2
ρL

ρ2 + 1
2 m0ω

2
zL

(z − zL )2, for AL

(20)

where zH and zL are the centers of the heavy and light fragments. The frequencies ωρi and ωzi are shape dependent, being related
to the spheroids semiaxes of each of the fragments. The residual interactions of spin-orbit l̂ ŝ and the squared orbital momentum
l̂2 are added:

Vl̂ŝ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
{

h̄

m0ω0H
κH (ρ, z), (∇VDTCSM × p̂)ŝ

}
, AH − region

−
{

h̄

m0ω0L
κL(ρ, z), (∇VDTCSM × p̂)ŝ

}
, AL − region

(21)

and

Vl̂2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
{

h̄

m2
0ω

3
0H

κHμH (ρ, z), (∇VDTCSM × p̂)2

}
, AH − region

−
{

h̄

m2
0ω

3
0L

κLμL(ρ, z), (∇VDTCSM × p̂)2

}
, AL − region

(22)
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FIG. 1. Comparison of Coulomb, Yukawa-plus-exponential, and
macroscopic barrier terms against the reduced distance between
centers for Sn fission channels from 298Fl.

where κH,L(ρ, z) and μH,L(ρ, z) are the usual interaction
strength function parameters for the heavy and light fragment
regions AH and AL. The Schrödinger equation is solved for the
total Hamiltonian HDTCSM,

HDTCSM = − h̄2

2m0
� + VDTCSM(ρ, z) + Vl̂ŝ(ρ, z) + Vl̂2 (ρ, z),

(23)

separately for protons and neutrons. As a result, the sequence
of level schemes will describe the microscopic transition from
the parent to two overlapped and finally separated fragment
energy levels.

FIG. 2. Comparison between the smoothed distribution Fermi
level for protons and neutrons against the reduced distance between
centers, for Sn fission channels from 298Fl. The 142Sn reaction has
the highest proton and neutron Fermi level during the overlapping
configuration.

2. The Strutinsky binary method

The sequence of level schemes enters as input data in
the Strutinsky procedure. One notes that the energy levels
already carry the binary microscopic character for the fission
process. The pairing corrections are missing. One knows that
the pairing energy smears out the shell effects. Their energy
value has always an opposite sign to the shell ones. Moreover,
the absolute value of the pairing energy is about 0.2 of the
shell corrections. Due to these assumptions, one states that
the pairing interaction changes a little the shape of the barrier,
but not much of the height or the width. Thus, one can assume
that the ordering of the fission barriers for different channels
does not change. Consequently, as a first approximation, at
this stage of the calculations the pairing corrections have been
neglected, but will be considered in the future.
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FIG. 3. Comparison between the proton g̃p(λ̃p) and neutron
g̃n(λ̃n) smoothed densities evolution at the Fermi level against the
reduced distance between centers, for Sn fission channels from 298Fl.
The last part of the variation is mainly due to the individual fragment
level schemes influence.

At every step of the decay, the shell corrections are calcu-
lated separately for protons and neutrons,

Eshp,n =
n∑

ν=1

2Eν − Ũ , (24)

and the results are added:

Eshell = Eshp + Eshn . (25)

{Eν} are the DTCSM energy levels. The important quantity to
be computed is Ũ , the “smoothed part” of the spectrum, which
is the total level energy if the levels are uniformly distributed.
One defines a smoothed-level distribution energy g̃(ε) by
the average of the real one over an arbitrary interval, here
γ ≈ h̄ω0:

g̃(ε) =
∫ ∞

−∞
ζ

(
ε − ε′

γ

)
g(ε′) = 1

γ

∑
i

ζ

(
ε − εi

γ
.

)
(26)

One uses as a smoothing function

ζ (x) = 1√
π

e−x2
m∑

k=0

a2kH2k(x) (27)

where Hk (x) are the Hermite functions. This quantity becomes
important in calculating the total smoothed energy Ũ . As a
difference from the usual Strutinsky procedure, one obtains
the smoothed density as influenced by both heavy and light
fragments, via the DTCSM levels. The smoothing takes place
up to the smoothed distribution Fermi level λ̃. The λ̃ energy
will determine how much one subtracts from the initial level
sum, and subsequently how deep the shell correction will
be within the total energy at every step of the splitting. The
smoothed Fermi level is obtained from the conservation of
the total number of protons, resulting in λ̃p, and neutrons,
resulting in λ̃n:

Np = 2
∫ λ̃

∞
g̃(ε)dε. (28)

One uses recurrence relations for the Hermite functions:

H2k (x) = (−1)2kex2 d2k

dx2k
e−x2

(29)

and, hence, solving the integral one obtains

Np =
∞∑

i=1

[
1 + erf(xiF ) − 2√

π
e−x2

iF

m∑
k=1

a2kH2k−1(xiF )

]
(30)

where

xiF = (λ̃ − εi )/γ , a2k = (−1)k/(22kk!). (31)

The binary character is included by {εi}, which are the
DTCSM single particle energy levels. The final smoothed
distribution total energy Ũ is calculated, considering a contin-
uous energy value along the energy range up to the smoothed
Fermi level:

Ũp,n = 2
∫ λ̃p,n

−∞
g̃p,n(ε)εdε. (32)

The results for proton and neutron level schemes are added
for every deformation point. Finally the evolution of the total
shell corrections, by summing the proton and neutron terms,
is obtained for a given fission channel. After solving the
Hermite function dependent integral, the result for the
smoothed energy is

Ũp,n =
∑

i

{
εi

[
1 + erf(xiF ) + 1√

π
e−x2

iF

∑
a2kH2k−1(xiF )

]

+ γ√
π

e−x2
iF [1 +

∑m

k=1
a2k (H2k + 4kH2k−2)

}
. (33)

One performs the sum up to m = 3 for the plateau condition.
Then one applies Eq. (24) for protons and neutrons, and sums

034616-6



FISSION BARRIERS OF SUPERHEAVY NUCLEI FOR … PHYSICAL REVIEW C 106, 034616 (2022)

FIG. 4. Proton Eshellp , neutron Eshelln , and total shell correction Eshell evolution along the Sn-channel fission paths. One observes the
transition from one hump (neutron-poor Sn) towards two-humped behavior (neutron-rich Sn).

the results to obtain the total shell correction for every step of
the fission process, along the distance between centers R.

III. RESULTS AND DISCUSSION

Calculations have been performed for the decay of the
superheavy nucleus 298Fl. This nucleus is preferred as being
considered doubly magic, and hence one of the most sta-
ble in the superheavy region. Since the 1960′s, calculations
have been made for the stability and possible existence of
superheavy nuclei. Theoretical predictions show the region
around the doubly magic 298114, later becoming flerovium.
Calculations have been made first within the macroscopic-
microscopic method, with local and nonlocal potentials [32],
emphasizing a center of stability for Z = 114 and N = 184.
A prominent ground state has been also observed within
the Woods-Saxon potential, for the ground state of 298114,
enforcing this nucleus as being spherically stable [33]. The
self-consistent calculations support the prediction of the next
doubly magic superheavy as 298Fl [34], where it is demon-

strated that Z = 114 and N = 184 are proton and neutron
shell closures, within the calculations with Skyrme SkI4.
If one adds the experimental results from Dubna [35] and
GSI-Darmstadt [36], one can conclude that 298Fl is consid-
ered, if not the most, one of the very stable nuclear systems
in the superheavy region. For this reason, calculation of the
fission barriers along some specific channels will provide a
picture about how this nuclear ground state is capable of
survival.

Due to the fact that strong negative shell corrections occur
around magicity, two fission channel directions have been
chosen for the emitted fragment: Sn and Pb as main reaction
partners. One takes advantage of their proton magicity and
browses their mass range in order to study which neutron
number division is favored for fission.

A. The Sn fission valley

The quasisymmetric isotopic channel of Sn + Gd is stud-
ied by varying the neutron division between the two partners.
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FIG. 5. Shell correction, macroscopic and potential barrier evolution against the reduced distance between centers. One observes the
two-humped barriers for more symmetrical reactions (132−142Sn fragment).

The browsing covered the doubly magic 100Sn and 132Sn and
beyond, up to equal number of neutrons for Sn and Gd. The
large part of the barrier is the Yukawa-plus-exponential en-
ergy. Even if small, it scales the total deformation energy on
account of the shell corrections to play the main role.

As presented, the deformation dependent macroscopic part
consists of the Coulomb and the nuclear surface Yukawa-
plus-exponential energies. A larger YE energy against the
Coulomb part increases the height of the macroscopic barrier.
This is the case of the neutron-poor 98Sn fragment, with a
12.35-MeV macroscopic barrier height. As the Sn-neutron
number increases, the YE energy decreases. The Coulomb
term, though the Z splitting is the same, has a slight variation,
thus the macroscopic barrier decreases as the neutron division
becomes more symmetrical. This is due to the modifying
geometry configuration, since some of the partners are β2

deformed. Also, since the reactions are considered adiabatic,
the charge density varies with the neutron-number variation. A
comparison between the composing terms of the macroscopic

barrier for the Sn valley is displayed in Fig. 1. One can see
that 98Sn has the highest variation curve for the YE term
(upper plot), but also the largest (in absolute value) values in
Coulomb energy (middle plot). However, the YE surpasses the
electrostatic change in this case. The lowest variation curve of
the YE energy belongs to 142Sn, making the total macroscopic
barrier (lower plot) almost nonexistent. As a partial conclu-
sion, the system prefers neutron symmetry up to now.

The shell effects for the Sn valley are studied next. As
discussed above, the first step is to find the Fermi level for
protons λ̃p and neutrons λ̃n, assuming a smoothed level dis-
tribution. One solves Eq. (28) for every step along R, the
distance between the centers of the fragments, during fission
splitting. As the smoothed Fermi level is higher, more levels
are accounted for in the averaged energy. Ri is the initial
distance between centers, when the emitted fragment is still
embedded in the parent, and Rt is the touching point distance.
One can observe an increasing tendency for both quanti-
ties, slightly more pronounced towards the neutron-rich Sn
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FIG. 6. Fission barriers for Sn-channel reactions from 298Fl. The
one-hump behavior for the highest barriers occurs for the neutron-
poor Sn reaction, and two-hump barrier shapes take place for the
neutron-rich Sn channels.

fragment. This behavior is even more obvious in Fig. 2 where
λ̃p and λ̃n are shown separately. The neutron-rich 138,140,142Sn
have the highest increase towards the final steps of the split-
ting, for the proton and neutron smoothed Fermi level.

Once the counting limit λ̃p and λ̃n is established along
every step of the elongation, one calculates the level density
g̃(λ̃) for the smoothed level distribution, with Eq. (26). Due to
the smoothing function expression in Eq. (27), which contains
the exponential, only the levels around λ̃p and λ̃n will count. A
larger value of g̃(λ̃) will ensure a higher value of the smoothed
distribution energy Ũ , hence the possibility to have a total neg-
ative value of the shell corrections. Negative shell corrections
lower the total deformation energy, and consequently one will
have a lower fission channel barrier.

TABLE I. YE maximum E (max)
mac , fission barrier height Eb, and

their position on the reduced distance Rn between centers for
Sn-channel reactions.

Reaction E (max)
mac (MeV) Eb (MeV) Rn

98Sn + 200Gd 12.35 24.94 0.35
100Sn + 198Gd 12.12 26.54 0.39
108Sn + 190Gd 10.11 24.82 0.4
116Sn + 182Gd 5.39 18.3 0.32
124Sn + 174Gd 2.57 14.93 0.27
132Sn + 166Gd 1.07 13.44 0.26
136Sn + 162Gd 0.60 13.13 0.25
138Sn + 160Gd 0.31 12.96 0.25
140Sn + 158Gd 0.31 12.81 0.25
142Sn + 156Gd 0.23 12.57 0.26

TABLE II. YE maximum E (max)
mac , fission barrier height Eb, and

their position on the reduced distance between Rn centers for
Pb-channel reactions.

Reaction E (max)
mac (MeV) Eb (MeV) Rn

182Pb + 116Ge 0.13 8.44 0.28
186Pb + 112Ge 0.32 9.29 0.29
190Pb + 108Ge 0.86 10.54 0.30
194Pb + 104Ge 2.07 12.61 0.27
198Pb + 100Ge 2.57 14.93 0.28
202Pb + 96Ge 2.96 15.46 0.30
208Pb + 90Ge 2.97 17.33 0.46
212Pb + 86Ge 4.06 19.82 0.50
216Pb + 82Ge 7.54 22.59 0.58
220Pb + 78Ge 9.15 26.71 0.55
224Pb + 74Ge 8.62 23.92 0.53
228Pb + 70Ge 10.97 25.86 0.54
232Pb + 66Ge 12.53 29.53 0.49
236Pb + 62Ge 15.12 31.45 0.51
240Pb + 58Ge 18.58 33.46 0.53

For the evolution of the proton and neutron smoothed
level density distributions, g̃p(λ̃p) and g̃n(λ̃n), at the smoothed
Fermi levels, with the reduced elongation, a generally decreas-
ing behavior is observed, due to the decreasing level density,
both for protons and neutrons, as the nuclear mass decreases.
This is the effect of the increase of the distance between
levels for lighter nuclei (the ∼A−1/3 dependence). The neutron
level density is seen to be rapidly decreasing since one in-
creases the neutron number for the Sn partner, in the second
part of the splitting region. However, the higher g̃p(λ̃p) values
along the first region ensure a higher range of smoothed distri-
bution energy, and thus a higher value for Ũ . One point to be
observed is that the doubly magic 132Sn does not account for
the highest smoothed proton level densities along the overlap-
ping region.

A comparison between the smoothed density functions is
presented in Fig. 3, for protons g̃p(λ̃p) (upper plot) and for
neutrons g̃n(λ̃n). Since the proton partition does not change,
the variations for g̃p(λ̃p) are entirely due to the geometrical
differences along the splitting. The final region of elongation
produces the largest shape changes, ending at the two final
fragment deformations, and hence the strongest level density
variation. Due to the neutron partition variation, the neutron
smoothed density g̃n(λ̃n) varies sooner with elongation against
different Sn and Gd isotopes. Each of the two distribution
densities produces the final smoothed energy Ũp (protons) and
Ũn (neutrons), which are subtracted from the corresponding
sum of the real DTCSM energy levels, resulting in the proton
and neutron shell corrections by Eq. (24).

The proton, neutron, and total shell corrections are
displayed in Fig. 4 for all the Sn + Gd fragment pairs. One
can see a prominent minimum at the beginning of the splitting
process for all pairs. This minimum is responsible for the
pocket in the total potential, allowing a quasistable position
for the ground state of 298Fl. A one-hump behavior can be
observed for neutron-poor Sn reactions. As the neutron num-
ber NSn increases, a second minimum appears both in proton
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FIG. 7. Comparison between the macroscopic components of the fission barrier for the Pb fragment: the Yukawa-plus-exponential energies
(upper plot), the Coulomb term (middle plot), and the total charged liquid drop energies as a function of reduced elongation. The YE term
takes larger values as the Pb-neutron number increases, and consequently the macroscopic barrier is lower for neutron-poor Pb-partner reactions
(182Pb is the lowest).

and neutron, and subsequently in the total shell correction
energy. This kind of behavior will generate the well-known
double-humped fission barriers. The Sn-valley fission barriers
thus obtained, as the sum of macroscopic and shell correction
energies, are displayed in Fig. 5, together with their compo-
nents. The one-hump barrier is visible for the neutron-poor
Sn fragment reaction, as generated by the shell correction
evolution. As the Sn mass number increases, the barrier starts
to display the second hump, induced also by shell effects. The
important feature one can observe is the drastic decrease in
height and width of the barrier, once the fragment masses are
closer to each other. This trend is also due to the macroscopic
part of the deformation energy: the system lowers the liquid
drop term, via the Yukawa-plus-exponential part, and the
Coulomb energy increases. The result is a lowering of the
total fission barrier as the system becomes more symmetric.

The comparison between the Sn-reaction fission barriers
is presented in Fig. 6. The barriers have been scaled to the

ground state energy of 298Fl. The height is maximum for
the largest mass asymmetry, with 98Sn. It nearly constantly
decreases as the neutrons are quasisymmetrically disposed.
At the same time, the double-humped appearance becomes
more visible. Another aspect worth mentioning is the exit
point from the barrier. The reduced distance between fragment
centers, (R − Ri )/(Rt − Ri ), is 1 at the touching point (tangent
configuration). All reactions are out of the barrier way before
that point, meaning the exit point takes place when the frag-
ments are still partially overlapped. Table I presents the height
of the Sn-valley fission reaction, together with the reduced
distance point where the maximum occurs. One can see the
difference of more than half height (≈ 14 MeV) between
the highest (100Sn) and lowest (142Sn) barrier. An interesting
observation would be that the double magicity of 100Sn and
the even stronger 132Sn does not ensure a much lower fis-
sion barrier. The reaction channel is influenced also by the
macroscopic part and the other partner (Gd) shell corrections.
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FIG. 8. Proton Eshellp , neutron Eshelln , and total shell correction Eshell evolution along the Pb-channel fission paths. One observes the
transition from two-hump (neutron-poor Pb) towards one-humped shell correction (neutron-rich Pb), the reverse behavior against the
Sn case.

There is no influence from the shell closure during the over-
lapping region.

B. The Pb fission valley

The study of the Pb valley follows the same chain of steps
as the Sn one. One starts from the very neutron-poor 182Pb up
to the neutron-rich 240Pb accompanied fission.

The macroscopic behavior is completely reversed against
the Sn channel cases. A weak YE energy results in the lowest
macroscopic barrier for the 182Pb reaction. As the neutron
number increases for Pb isotopes, the YE nuclear surface
term increases also. Slow variations are observed for the
Coulomb term, due mainly to different deformation paths. In
Fig. 7, the macroscopic terms are compared, together with
the total macroscopic part. The smallest difference is observ-
able when neutron-poor Pb fragments are present. As the Pb
neutron number increases, so does the macroscopic barrier.

Contrary to the Sn case, the highest charged liquid drop en-
ergy is attained for neutron-rich Pb fragment reactions. If the
182−190Pb channels have practically no macroscopic barriers
(0.13–0.9 MeV), the 240Pb reach a 19-MeV height. Again,
the tendency towards mass symmetry is dominant for the
macroscopic part.

One adds the shell correction energy now. Once the en-
ergy levels are obtained within the deformed two-center shell
model, they are input data for the microscopic part of the
deformation energy. The calculations are made separately for
protons and neutrons, and the results are summed.

Figure 8 presents the shell correction variation with
the reduced distance between centers for all the Pb chan-
nels that have been considered. Though not the same, the
variation curves for proton and neutron shell corrections fol-
low more or less the same trend. A first minimum is present
for all reactions. This minimum will generate the ground state
for 298Fl, similar to the Sn cases. Then a second minimum
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FIG. 9. The YE charged liquid drop Emac, shell correction Eshell, and total barrier Eb against the reduced distance between fragment centers,
for Pb fission channels from 298Fl. The macroscopic term heightens as the Pb neutron number increases. The shell corrections dictates the
shape of the barrier.

appears for neutron-poor Pb fragments, that will induce the
double-humped final fission barrier for that specific reaction
channel. The second minimum gradually disappears, as the Pb
neutron number increases. An observable feature is that the
shell correction values do not vary too much in height from
one channel to another, but the shape of the curves does. As
a particular feature, one can see the low minimum of the total
corrections at the end of the splitting for 208Pb. Obviously,
this is due to the strong double magicity (Z = 82, N = 126)
of the heavy fragment. Another final prominent minimum is
visible for 216Pb + 82Ge, because of the magic N = 50 of Ge,
besides the Pb proton number. The macroscopic YE and the
shell corrections are added and the final fission barrier for a
certain reaction channel is obtained.

A comparative result is displayed in Fig. 9. The abrupt
decrease in macroscopic YE energy cuts off the shell correc-
tions for neutron-poor 182−194Pb, which have a much lower
barrier height than the neutron-richer Pb isotopes reactions.

One can see that the second part of shell corrections has no
role for these reactions. Once the Pb mass number increases,
so does the barrier height. Also, the width of the fission barrier
increases drastically, even though, for example, 208Pb should
have been advantaged by its double magicity at the end of the
decay process.

A comparison between the Pb barriers, scaled to the ground
state energy, is presented in Fig. 10 as a function of the
reduced distance between centers. The first range of these
deformation energies, 182−212Pb (left plot), shows a height
domain between 8.44 MeV (182Pb) and 19.82 MeV (212Pb).
The lowest height is also connected with the smallest width:
the exit point from the barrier lies down at less than half the
distance between centers. The second range of the reactions,
216−240Pb, has a height domain between 22.6 MeV (216Pb) and
33.46 MeV (240Pb). Hence, the behavior of the total defor-
mation energy is completely opposite to the Sn valley: as the
neutron number of Pb increases, the barrier height increases
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FIG. 10. Fission barriers for Pb-channel reactions from 298Fl. The fission barriers are lower and narrower as the system tends towards mass
symmetry, hence for the neutron-poor Pb reaction partner.

as well, and the width becomes larger. The barrier values are
presented in Table II. The explanation comes out from the two
deformation energy terms: the system tends to mass symmetry
beyond charge symmetry. This tendency is mainly due to the
Yukawa short range forces in the macroscopic part and the
deformation dependent shell corrections, via smoothed Fermi
levels, in the microscopic one. The shell corrections are not
very influential within the partially overlapping region, but
magicity manifests itself at the end, upon the second part of
the fission barrier. The lowest fission barriers are obtained
for neutron-rich Sn accompanied fission 138−142Sn ≈ 12-MeV
height, and for the neutron-poor Pb channel, around 8.44 MeV
(182Pb), 9.29 MeV (186Pb), and 10.54 MeV (190Pb).

IV. CONCLUSIONS

A highly specialized binary macroscopic-microscopic
method has been developed to calculate the fission barri-
ers around two microscopically, via shell effects, advantaged
fragments. Sn and Pb fragments have been chosen due to
their proton magicity. Neutron magicity has been covered as

well. A slight dominance of the Coulomb forces against the
nuclear short range Yukawa-plus-exponential ones decreases
the fission barrier in the neutron-rich Sn region. Both pro-
ton and neutron shell corrections contribute to the lowering
of the Sn fission valley barrier when the system inclines
towards mass symmetry, via the neutron-rich Sn accompanied
reaction.

The reverse is available for the Pb valley. Neutron-poor
182Pb displays the lowest height (8.44 MeV) together with the
narrowest width. As the Pb neutron number increases, both the
macroscopic part and the shell corrections enlarge the barriers.
Double magicity for 100,132Sn or 208Pb plays no role in the
overlapping region of the fragments. Their negative shell cor-
rection effect manifests only at the end of the splitting, beyond
the exit point of the fission barrier.
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