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Calculation of two-proton radioactivity and application to 9Be, 6,7Li, 3,6He, and 2,3H emissions
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The 2p radioactivity half-lives have been calculated within a tunneling process through the potential barrier
determined from the original version of the generalized liquid drop model and quasimolecular shapes. The sparse
experimental data on the 2p radioactivity half-lives of the 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, and 67Kr nuclei are
roughly reproduced when taking into account the Qexp

2p value. An analytic formula is provided to obtain rapidly
these different half-lives. Using the Q2p values extracted from the recent Nubase2020 table, extrapolations to
other perhaps possible 2p emitters are proposed. Within the same approach, formulas to determine the 9Be,
6,7Li, 3,6He, and 2,3H decay half-lives at low excitation energy are also provided.
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I. INTRODUCTION

The simultaneous emission of two protons by nuclei
near or beyond the proton drip line was first predicted by
Zel’dovich [1] and Goldansky [2,3] in the 1960s. The idea
was that the two-proton radioactivity may occur due to the
proton pairing in a nucleus, owing to which it is energetically
easier to eject from the nucleus a pair of protons at once
than to break them apart. This should be observed mainly for
neutron-deficient isotopes of even-Z light elements while for
odd-Z nuclei the one proton radioactivity remains the main
decay mode.

This 2p radioactivity (Q2p > 0 and Qp < 0) was observed
at GANIL [4] and GSI [5] in 2002 in 45Fe nucleus. The 2p
radioactivity observation of the 54Zn [6], 48Ni [7], and 67Kr
[8] nuclei has followed. The decay mechanism of the 67Kr
nucleus is actually discussed [9–11]. The two-proton emission
of the very short-lived nuclei 12O [12], 16Ne [13], 19Mg [14]
has been also reported. The experimentally measured Q2p and
T1/2 are given in [15,16]. The whole landscape of two-proton
radioactivity has been studied and some other possible 2p
emitters have been proposed [17].

Theoretically, several models have been used to study the
2p radioactivity: the direct decay model [17], the simultane-
ous versus sequential decay model [18], the diproton model
[19], the three-body potential [20], the effective liquid drop
model [15], a version of the generalized liquid drop model
including a spectroscopic factor and an assault frequency de-
pending on the kinetic energy and the mass of the emitted 2p
pair [16], a Gamow-like model [21], and the Coulomb and
proximity potential model for deformed nuclei [22]. A four
parameter empirical formula [23] and the two parameter new
Geiger-Nutall law [24] have been also proposed to reproduce
the experimental data.
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In spite of its complexity, it has been shown very recently
[25] that the two-proton emission process obeys similar rules
as for binary emission processes like proton, α, and heavy
cluster decays. The purpose of this paper is to verify this as-
sumption in determining the half-lives of the 2p radioactivity
with the first version of the generalized liquid drop model
(GLDM) [26] without changing anything and, also, in using
a simple three parameter formula looking like the α decay
half-life formula proposed in [27]. The experimental Q values
have been used when they are known. The half-lives being
highly sensitive to the Q values, the new values extracted from
the new Nubase2020 tables [28], which are different from the
ones given in Ref. [29], have been used for predictions of
other possibly 2p emitters. Finally, formulas of the same type
is also proposed to calculate the partial half-lives of other light
nucleus emissions.

II. GENERALIZED LIQUID DROP MODEL AND DECAY
THROUGH THE POTENTIAL BARRIER

The generalized liquid drop model (GLDM) has been de-
veloped first to study heavy-ion reactions and the fusion and
fission processes [26,30,31] within two- or one-body compact
and creviced quasimolecular shapes [32] and, later, to α and
clusters emissions [27,33]. The GLDM energy is given by [26]

E = EV + ES + EC + Eprox, (1)

where the different terms are, respectively, the volume, sur-
face, Coulomb, and nuclear proximity energies.

For one-body shapes, the first three contributions are ex-
pressed as

EV = −15.494(1 − 1.8I2)A MeV, (2)

ES = 17.9439(1 − 2.6I2)A2/3 S

4πR2
0

MeV, (3)
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I is the relative neutron excess and S is the surface of the
deformed nucleus,

EC = 0.6e2(Z2/R0)BC . (4)

The Coulomb shape dependent function BC is defined as

BC = 15

16π2R5
0

∫
dτ

∫
dτ ′

|r − r′| . (5)

It has been determined using the axial symmetry of the system
and complete elliptic integrals

BC = 0.5
∫

(V (θ )/V0)(R(θ )/R0)3 sin θdθ, (6)

where V (θ ) is the electrostatic potential at the surface and
V0 the surface potential of the sphere. The radius R0 of the
spherical nucleus is given by

R0 = (1.28A1/3 − 0.76 + 0.8A−1/3) fm. (7)

The elliptic lemniscatoid family has been defined and used to
describe the one-body shapes [32].

For two-body shapes the volume, surface, and Coulomb
energies of the two nuclei have been added as well as the
interaction Coulomb energy. There is no frozen density ap-
proximation or parabolic approximation.

All along the deformation path the proximity energy term
Eprox takes into account the nuclear attractive forces between
nucleons in the neck, in the case of a deformed one-body
shape, or across the gap, in the case of two separated frag-
ments. In the quasimolecular shape valley where the necks
are narrow and well developed this correction to the surface
energy plays a main role on a large part of the deformation
path and specially around the touching point. When the prox-
imity energy is taken into account, the potential barrier is
smooth and the maximum corresponds to two separated nuclei
maintained in unstable equilibrium by the balance between the
repulsive Coulomb forces and the attractive nuclear proximity
forces. The proximity energy is defined as

Eprox(r) = 2γ

∫
�[D(r, h)/b]2πhdh, (8)

where r is the distance between the mass centers. � is the
proximity function. h is the transverse distance varying from
zero, for separated fragments or the neck radius for one-body
shapes, to the height of the neck border. b the surface width
fixed at the standard value of 0.99 fm. D is the distance
between the opposite surfaces on a line parallel to the fission
axis. Finally the surface parameter γ is given by a geometric
mean between the surface parameters of the two fragments:

γ = 0.9517
(
1 − ksI

2
1

)1/2(
1 − ksI

2
2

)1/2
MeV fm −2. (9)

This model has helped to explain and reproduce some
of the fusion [26,34], fission [30,35], cluster [33,36], and α

radioactivity [27] data. Its advantage is its relative simplicity
(as the mass formula), its weakness here is its adjustment to
reproduce the Q value.

The α [27] and cluster [33] emissions have been viewed
as an adiabatic tunneling process through a potential barrier
like a very asymmetric fission process. The same approach

TABLE I. Comparison between the experimental decimal loga-
rithm of the half-lives (in s) for 2p emission from 12

8 O, 16
10Ne, 19

12Mg,
45
26Fe, 48

28Ni, 54
30Zn, 67

36Kr, and the theoretical values calculated from the
GLDM and formula (16).

Qexp
2p log10(T1/2) log10(T th

1/2) log10(T th
1/2)

Nucleus (MeV) Exp Ref. GLDM Formula (16)

12
8 O 1.820(120) −20.94+0.43

−0.21 [13] −19.62 −21.75
12
8 O 1.790(40) −21.10+0.18

−0.13 [12] −19.58 −21.67
12
8 O 1.800(400) −21.12+0.78

−0.26 [38] −19.60 −21.70
16
10Ne 1.330(80) −20.64+0.30

−0.18 [13] −17.69 −18.77
16
10Ne 1.400(20) −20.38+0.03

−0.03 [39] −17.88 −19.10
19
12Mg 0.750(50) −11.40+0.14

−0.20 [14] −13.1 −11.98
45
26Fe 1.100(100) −2.40+0.26

−0.26 [5] −3.16 −1.66
45
26Fe 1.140(50) −2.07+0.24

−0.21 [4] −3.65 −2.32
45
26Fe 1.154(16) −2.55+0.13

−0.12 [7] −3.80 −2.54
45
26Fe 1.210(50) −2.42+0.03

−0.03 [40] −4.43 −3.40
48
28Ni 1.350(20) −2.08+0.40

−0.78 [41] −4.13 −3.43
48
28Ni 1.290(40) −2.52+0.24

−0.22 [7] −3.52 −2.60
48
28Ni 1.310(40) −2.52+0.24

−0.22 [42] −3.72 −2.88
54
30Zn 1.480(20) −2.43+0.20

−0.14 [43] −3.94 −3.45
54
30Zn 1.280(210) −2.76+0.15

−0.14 [6] −1.86 −0.66
67
36Kr 1.690(17) −1.70+0.02

−0.02 [8] −1.47 −1.12

has been applied here to the 2p radioactivity. Then, the decay
constant is simply given by

λ = ν0P, (10)

the assault frequency ν0 being taken as

ν0 = 1020 s−1. (11)

The barrier penetrability P is determined within the action
integral

P = exp

[
−2

h̄

∫ √
2B(r)(E (r) − E (sphere))dr

]
. (12)

(E (r) − E (sphere)) is the difference between the energy of
the decaying deformed nucleus at distance r and the energy
of the initial spherical nucleus within the GLDM. The inertia
B(r) defined in [33] has been retained but the reduced mass
plays the essential role since the main part of the potential
barrier corresponds to two separated nuclei.

The partial half-life is related to the decay constant λ by

T1/2 = ln 2

λ
. (13)

III. EXPERIMENTAL 2p RADIOACTIVITY Q2p

VALUES AND HALF-LIVES

The experimental 2p radioactivity Q2p values and half-lives
given in [15,16,22,24] are recalled in Table I. The uncertainty
on the experimental Q2p and T1/2 is relatively large. The values
of the log10(T1/2) obtained from the original version of the
GLDM are indicated in the fifth column of this table. No
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TABLE II. Comparison between the logarithm of the half-lives (in s) for 2p emission from various nuclei calculated from the GLDM and
formula (16) and Qth

2p and Qth
1p values extracted from Nubase2020.

Qth
2p (MeV) log10(T1/2) log10(T1/2) Qth

1p (MeV)
Nucleus Nubase2020 GLDM Formula (16) Nubase2020

True 2p radioactivity
22
14Si 1.584 −15.93 −17.0 −0.739
39
22Ti 1.058 −6.43 −5.26 −0.539
42
24Cr 1.472 −8.44 −8.75 −0.539
49
28Ni 1.082 −1.08 0.752 −0.489
59
32Ge 1.602 −3.59 −3.30 −0.119

Not true 2p radioactivity
26
16S 2.357 −16.98 −19.02 0.201
30
18Ar 3.422 −18.04 −20.97 0.761
34
20Ca 2.512 −15.45 −17.52 0.061
36
21Sc 2.792 −15.68 −18.02 3.671
38
22Ti 3.242 −16.29 −18.97 0.301
40
23V 2.142 −12.72 −14.13 2.681
47
27Co 1.022 −1.19 0.823 2.12
56
31Ga 2.822 −11.06 −13.14 3.141
58
32Ge 3.232 −11.97 −14.49 0.541
61
33As 1.982 −5.82 −6.43 3.041
63
34Se 2.362 −7.48 −8.77 0.281

variable assault frequency and no spectroscopic factor have
been added since the decay is considered as a fission like
process. The values are slightly lower than the experimental
data but there is a correct agreement at 20 orders of magnitude.
The root mean square deviation σ between the experimental
and theoretical (GLDM) decimal logarithms of the half-lives
is 1.6, which compares favorably with the values obtained by
different models and recalled in [22].

To describe analytically all the α-decay half-lives several
formulas have been proposed to generalize the Geiger and
Nutall law [37]. One of these formulas has the following form:

log10 [T1/2(s)] = a + bA
1
6

√
Z + cZ√

Q
, (14)

where A, Z , and Q are the mass and charge numbers of the
emitter and Qα value; a, b, and c being adjustable parameters.

For example, in Ref. [27], the following formula was pro-
posed to determine the α-decay half-lives. It was fitted on
373 data and leads to a root mean square (rms) deviation of
0.42 between the experimental data and theoretical values of
log10(T1/2):

log10 [T1/2(s)] = −26.06 − 1.114A
1
6

√
Z + 1.5837Z√

Q
. (15)

The same procedure has been applied for the 2p radioactivity
on the 16 known experimental data. It leads to the following
coefficients and formula:

log10 [T1/2(s)] = −24.054 − 1.541A
1
6

√
Z + 1.501Z√

Q
, (16)

and a rms deviation σ of 1.00. The values are displayed
in the sixth column of Table I. Once more, the terms of
the formula (14) are very efficient. The adjustment is done
from only 16 data which strongly limits the efficiency of
extrapolation.

IV. PREDICTED HALF-LIVES OF OTHER
ENERGETICALLY POSSIBLE 2p EMITTERS

The half-lives of the main energetically possible and still
unknown 2p emitters have been determined within the GLDM
and formula (16). The values are displayed in Table II. The
unique input data is Q2p. They have been extracted from the
Nubase2020 [28]. Q2p is the difference between the mass
excess of the parent nucleus and the sum of the mass excess
of the 2p system and the daughter nucleus. The mass excess
of the 2p system is twice the proton mass excess since the
2p system is unbound. The Q1p values are also given. Com-
parisons with other provided values [15,16,22,24] are difficult
since they have been often calculated with the Nubase2016
data [29]. As examples, Table III indicates a change of some Q
values between the Nubase2016 and Nubase2020 for several
nuclei.

The mass excess of these nuclei are still only extrapolations
with large uncertainty error bars for the mass of the parent and
daughter nuclei.

The fact that a two-body approach and a quantum tunnel-
ing allow to reproduce the half-lives seems to indicate that
the effect of the repulsion between the daughter nucleus and
the two proton system play the main role at the beginning
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TABLE III. Comparison between the Qth
2p and Qth

1p values given in Nubase2016 [29] and Nubase2020 [28].

Nucleus Qth
2p (MeV) (2016) Qth

2p (MeV) (2020) Qth
1p (MeV) (2016) Qth

1p (MeV) (2020)

26
16S 1.76 2.36 0.05 0.20
34
20Ca 1.47 2.51 −0.48 0.061
38
22Ti 2.74 3.24 0.06 0.30
42
24Cr 1.00 1.47 −0.88 −0.54
59
32Ge 2.1 1.60 0.38 −0.12

of the decay and during the tunneling of the potential bar-
rier, the weaker repulsion between the two protons and the
three-body process playing finally a main role for the angular
distribution of the two separated protons at the end of the
decay.

Naturally for o-o, e-o, o-e nuclei the angular momen-
tum plays a role. Here, for 2p emission one knows, for
only around 15 emitters, the experimental Q2p and Q1p val-
ues and with a large uncertainty. Furthermore, the Q2p and
Q1p values calculated for other possible emitters are deter-
mined from a roughly extrapolated mass of the parent and
daughter nuclei. Consequently, it is very difficult to adjust
new terms in the formulas to take into account the angu-
lar momentum dependence. Furthermore, at least for the
α emission, the improvement by the introduction of new
terms depending on the angular momentum is relatively
weak.

V. Be, Li, He, AND H DECAY HALF-LIVES AT
LOW EXCITATION ENERGY

As for the α and 2p emissions, formulas given log10(T1/2)
have been researched for the 9Be, 6,7Li, 3,6He, and 2,3H emis-
sions viewed as a very asymmetric fission without adjustable
preformation factor. For these decays the Q value is negative
and it is necessary to extend the formula (14) to take into
account a low excitation energy E∗, lower than the decay bar-
rier height to remain within the quantum tunneling approach.
The experimental data do not allow to realize an adjustment
and the following formulas have been obtained in adjusting
on numerous nuclei and calculated with the GLDM for each
cluster [44].

As an example, for the 209Pb nucleus, the decay barrier
height is 39.9 MeV for the emission of 9Be, 36.8 for 7Li, 37.6
for 6Li, 29.2 for 6He, 32.0 for 3He, 20.2 for 3H, and 19.7 for
the 2H.

For 9
4Be with σ = 0.48,

log10[T1/2(s)] =
(

−31.69 − 2.238A
1
6

√
Z + 4.47183 Z√

Q + E∗

)
(1 + 2.384 × 10−3 E∗ − 9.556 × 10−5 E∗2). (17)

For 7
3Li with σ = 0.38,

log10[T1/2(s)] =
(

−27.55 − 1.796A
1
6

√
Z + 3.0016 Z√

Q + E∗

)
(1 + 2.665 × 10−3 E∗ − 1.109 × 10−4 E∗2). (18)

For 6
3Li with σ = 0.36,

log10[T1/2(s)] =
(

−27.45 − 1.647A
1
6

√
Z + 2.8051Z√

Q + E∗

)
(1 + 3.107 × 10−3 E∗ − 1.213 × 10−4 E∗2). (19)

For 6
2He with σ = 0.35 :

log10[T1/2(s)] =
(

−24.85 − 1.424A
1
6

√
Z + 1.8773Z√

Q + E∗

)
(1 + 2.873 × 10−3 E∗ − 1.288 × 10−4 E∗2). (20)

For 3
2He with σ = 0.24,

log10[T1/2(s)] =
(

−23.60 − 1.003A
1
6

√
Z + 1.3665Z√

Q + E∗

)
(1 + 3.896 × 10−3 E∗ − 1.662 × 10−4 E∗2). (21)

For 3
1H with σ = 0.14,

log10[T1/2(s)] =
(

−22.65 − 0.7187A
1
6

√
Z + 0.6775Z√

Q + E∗

)
(1 + 3.079 × 10−3 E∗ − 1.795 × 10−4 E∗2). (22)
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For 2
1H with σ = 0.16,

log10[T1/2(s)] =
(

−22.02 − 0.6039A
1
6

√
Z + 0.5626Z√

Q + E∗

)
(1 + 3.060 × 10−3 E∗ − 1.871 × 10−4 E∗2). (23)

The one proton radioactivity has been soon studied with the
GLDM [45].

VI. CONCLUSION

The 2p radioactivity can be viewed at the beginning of the
process as a tunneling process through a potential barrier de-
termined from the original GLDM and quasimolecular shapes.
The sparse experimental data on the 2p radioactivity of the
12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn, and 67Kr nuclei are roughly
reproduced using the Qexp

2p value. A new analytic formula
dependent on three parameters allows to determine rapidly

these different half-lives, as for the α decay, but adjusted
only on 16 experimental data. Extrapolations to other perhaps
possible 2p emitters are proposed from the GLDM and the
new formula. They are based on the Q2p value extracted from
the most recent but still extrapolated data provided in the
Nubase2020 table. Formulas to calculate the 9Be, 6,7Li, 3,6He,
and 2,3H decay half-lives at low excitation energy are also
given.
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