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We propose a semimicroscopic model for the simultaneous emission of two protons. This model has the
advantage of avoiding certain technical aspects of a fully microscopic three-body framework, while also allowing
the investigation of the influence of proton pairing on the total lifetime of the decaying nucleus. Thus, we use the
standard singlet two-proton wave function on the nuclear surface, provided by the Bardeen-Cooper-Schrieffer
(BCS) approach, as a boundary condition for the propagator operator. Our model allows for the estimation of
all quantities related to the 2p emission process, since it provides the three-body wave function over most of the
domain. We show that reasonable agreement with experimental values can be reached by varying the pp pairing
strength outside the nucleus in an interval close to the “bare” singlet value.
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I. INTRODUCTION

The emission of two protons is an intriguing and exotic de-
cay process, energetically possible in only a few nuclei close
to the proton stability line. The first theoretical studies in this
field were done in the 1960s by Goldansky [1], using a semi-
classical two-body formalism, who proposed two extreme
mechanisms for the emission, sequential and simultaneous.
Since then, various attempts have been made at describing the
two-proton emission. The simpler models, using semiclassical
tools, have various degrees of success [2–4]. They generally
depend on multiple parameters, but yield a relatively good
predictive power. Nevertheless, when applied systematically
to all known emitters, they reveal interesting patterns and help
shed light on this difficult theoretical problem [5].

The modern consensus is that, regardless of the underlying
mechanism, 2p emission is a three-body process by nature,
and rigor dictates it must be treated in the hyperspherical
harmonics framework [6]. A number of interesting models
have been developed in the last two decades: among others,
coupled channels (CC)-like ones [6–9] and the R-matrix de-
scription [10]. While detailed and exhaustive, these models
are also quite complex and various technical difficulties arise
in contrast to two-body processes. The spurious two-body
bound states in the nucleus-proton interaction have to be
removed in an accurate fashion. The interaction between the
emitted protons breaks the spherical symmetry, and accurately
finding three-body resonances requires a large number of
partial waves to be considered. However, such drawbacks are
unavoidable in fully microscopic three-body calculations.

For the above reasons we propose in this paper an al-
ternative to a fully microscopic theory. It has been shown

by Grigorenko [6] that neglecting all but pointlike Coulomb
interactions between the emitted fragments leads to a good
order-of-magnitude estimate of the lifetime of the decaying
nucleus. However, such a model does not provide much in-
sight into various nuclear quantities. We propose that pairing
correlations between the emitted protons can be investigated
by allowing the protons to interact also via a nuclear potential.
A great simplification can still be made by considering the
protons to interact with the nucleus only through Coulomb
potentials. However, this clearly cannot hold when the pro-
tons are close to the daughter nucleus. Consequently, in this
region we use the prescription of Delion et al. [11], with
some modifications, to compute the wave function of paired
protons in a resonant two-body state. In this sense our model
is semimicroscopic. The total wave function cannot be rigor-
ously determined together with its derivative. However, we
will show that interesting studies can be made on the influence
of the pp paring strength on the partial lifetime of the decaying
nucleus.

The paper is structured as follows: in Sec. II we elaborate
on the procedure to obtain the three-body wave function and
the decay width. We give recipes for the building of external
and internal region wave functions, then use the current for-
mulation to extract the (total and partial) decay width(s); in
Sec. III we analyze various aspects of the 2p emission prob-
lem. We discuss the nature of the potential matrix, revealing
that, from a certain radius, the problem becomes practically
uncoupled. We then study the partial waves obtained in the ex-
ternal region, showing that the asymptotic behavior is reached
relatively soon outside the barrier. Then, we study the depen-
dence and stability of the decay width on the proton pairing
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strength and matching point between internal and external
regions, respectively.

II. FORMALISM

The simultaneous emission of two protons from a parent
nucleus P can be written schematically as

A
ZP →A−2

Z−2 D(r3) + p(r1) + p(r2), (1)

where D is the daughter nucleus in ground state, and r j denote
the position of the three fragments in the laboratory frame.
We will work in the approximation of infinitely heavy nuclei,
hence D is at rest and we set r3 = 0. Also, the total kinetic
energy released in this process is called the Q value and is the
sum of the kinetic energies of the two emitted protons,

Q2p = ε1 + ε2. (2)

This process is governed by the time-dependent Schrödinger
equation

ih̄
∂�(r, t )

∂t
= H�(r, t ), (3)

where H is the Hamiltonian of the system and r denotes col-
lectively all the position vectors involved in the system. There
are two equivalent ways of choosing the remaining coordinate
frames. The T system consists of the relative position vector
of the emitted protons and the position of their center of mass
with respect to the nucleus. The Y system consists of the
positions of the two protons relative to the nucleus. In this
work we will employ the Y system, hence r ≡ {r1, r2}. This
choice is more natural (as will become clear later) for the
semimicroscopic description we propose.

Since all known 2p emitters have a partial half-life of the
order of 10−3 s or below, we can readily employ the Gamow
approximation assuming the 2p emission state is a resonant
one

�(r1, r2, t ) = e− i
h̄ (Q2p−i �

2 )tψ (r1, r2), (4)

where, as usual, � bears the significance of decay width and
� � Q2p. � is real and positive in this approximation. We
now replace Eq. (4) in Eq. (3) and neglect for the moment
� and obtain the time-independent Schrödinger equation for
ψ (r),

Hψ (r1, r2) = Q2pψ (r1, r2). (5)

The expression of the Hamiltonian is given by (recoil effects
are neglected in the assumption of an infinitely heavy nucleus)

H = −h̄2
2∑

j=1

1

2mp
� j +

2∑
j

Vj (r j ) + v(r1, r2), (6)

where the sums runs over the twp protons, mp is the pro-
ton mass, � j denotes the usual three-dimensional Laplacian
associated with the coordinate r j , Vj (r j ) is the interaction
potential between the nucleus and proton j, and v(r1, r2) is
the interaction potential between the emitted protons.

The hyperspherical harmonics (HH) formalism ([12])
makes it possible to factorize the six-dimensional space

(r1, r2) in one hyper-radial variable (ρ) and five hyperangles.
The usual convention one follows is

ρ =
√

r2
1 + r2

2 , ρ ∈ [0,∞),

φ = arctan(r2/r1), φ ∈
[
0,

π

2

]
,

θ1,2, ϕ1,2 = spherical angles of r j . (7)

where r j = |r j |. For briefness we denote 
 = (φ, θ1,2, ϕ1,2).
Using this transformation, Eq. (6) becomes

H = − h̄2

2mp

(
∂2

∂ρ2
+ 5

ρ

∂

∂ρ

)
− L2(
)

ρ2

+ V1(ρ sin φ) + V2(ρ cos φ) + v(ρ,
), (8)

with L, the grand-angular momentum, given by

L2(
)=−h̄2

[
∂2

∂φ
+ 4 cot 2φ

∂

∂φ
− 1

h̄2

(
l2
1

sin2 φ
+ l2

2

cos2 φ

)]
,

(9)

and l j, j = 1, 2 being the usual angular momenta of the two
protons. The eigenvalue equation for L2 is

L2Yc = λcYc, (10)

with a multi-index c, λc = K (K + 4), K = 2n + l1 + l2 an
even integer, n an integer, and

Yc =Nc(sin φ)l1 (cos φ)l2 Pl1+1/2,l2+1/2
n [cos(2φ)]

× [(il1Yl1,m1 ⊗ il2Yl2,m2 )J,MJ ⊗ (χ1 ⊗ χ2)S,MS ]L,M, (11)

with χ j, j = 1, 2 being the spin and projection of the jth
proton, and ⊗ denotes angular momentum coupling. Here,
L, M are the total recoupled angular momentum of the two
protons and its projection respectively, Pα,β

n are the Jacobi
polynomials, and Nc is a normalization constant. It is now
clear that c = {K, L, M, j, s, l1, l2}. We also note here that we
are working in the adiabatic approximation, hence no coupling
appears between the inert daughter core and the emitted pro-
tons.

In this work we deal only with spin singlet states, i.e., L =
ML = J = MJ = S = MS = 0, hence l1 = l2 ≡ l . This greatly
simplifies the formalism and the multi-index c becomes now
c = {K, l} with K = 2n + 2l .

Similarly to the three-dimensional (3D) case, we now ex-
pand the total spatial wave function as

ψ (ρ,
) = ρ−5/2
∑

c

gc(ρ)Yc(
), (12)

where we have included the factor before the sum to cancel
the first derivative in the hamiltonian. We retrieve a system
of coupled equation by inserting the expansion in Eq. (12),
together with the factorized Hamiltonian (8) into Eq. (5). We
then project on a specific channel c and obtain

− h̄2

2mp

(
d2

dρ2
− λc

ρ2

)
gc(ρ) +

∑
c′

Vc,c′ (ρ)gc(ρ) = Egc(ρ),

(13)
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where

Vc,c′ (ρ) =
∫

d
Yc(
)[V1(ρ sin φ) + V2(ρ cos φ)

+ v(ρ,
)]Yc′ (
) (14)

are the potential matrix elements (PMEs). As usual, instead of
solving Eqs. (13) we will solve the system for the associated
fundamental matrix, which has in columns linearly indepen-
dent solutions of (13). By straightforward generalization this
system is given by

− h̄2

2mp

(
d2

dρ2
− λc

ρ2

)
gc,c′ (ρ) +

∑
c′′

Vc,c′′ (ρ)gc′′,c′ (ρ)

= Q2pgc,c′ (ρ). (15)

It is instructive to rewrite λc as λc = lc(lc + 1), with lc =
K + 3/2. This reveals one of the ways in which the three-
body decay is fundamentally different from the any two-body
process. The centrifugal barrier is present even in the lowest
channel (i.e., when K = 0).

In our model we keep all partial waves with l � 7 and
K � 30. We found that increasing K above this value, while
keeping l constant, induces no change in the decay width.

For the computation of the wave function, we define two
regions, internal and external, meeting at a matching radius
Rm, and we discuss them separately.

A. External wave function (ρ > Rm)

In this section we apply the tools presented above to build
a three-body wave function in the external region for the two-
proton emission process.

In order to solve the system given in Eq. (15), we need to
specify the potentials. It is well known that employing two-
body potentials that allow bound two-body states introduces
spurious effects. Such bound states are usually eliminated
either through projections [13] or through supersymmetric
transformations [13]. In order to avoid this extra difficulty,
we consider the nucleus-proton potential to be that of a point
charge interacting with a charged sphere of radius equal to the
nuclear radius. We considered the proton-proton potential to
be given by a simple central Gaussian. We denote |r1 − r2| ≡
r12 and

v(|r1 − r2|) = v(r12) = v0e−(r12/r0 )2 + e2

r12
, (16)

where v0 is a negative constant and r0 = 2 fm is the proton-
proton interaction radius. Even though this potential allows
shallow bound states (for v0 � −30 MeV and r0 = 2.0 fm),
we found no influence of this potential on our calculations.

The system (15) can be solved by the usual Numerov
method. However, we found that much better stability can be
achieved by employing the renormalized Numerov algorithm
[14]. In both cases the solution can be found by specifying
the boundary conditions (BCs) at ρ → ∞ for each gc,c′ . This
in itself can be achieved only in some approximation, since
the system is not asymptotically decoupled (in principle).
Grigorenko et al. [6] have analyzed the effects on accuracy
and precision of multiple boundary conditions and determined

that a good precision can be obtained through “diagonalized
Coulomb” potentials. We follow this approach and, for the
farthest two radial points, diagonalize the potential matrix.
The Sommerfeld parameter for each channel ηc is then used to
for building the BCs as outgoing Coulomb-Hankel functions
[15],

gc,c′ (ρ)|ρ→∞ = Hłc (ηc, kρ)δc,c′ , k = √
2mpE/h̄. (17)

B. Internal wave function (ρ < Rm)

Here we present the procedure to obtain the internal three-
body wave function, when the two protons are emitted from
a paired state. In order to avoid using the complicated three-
body framework presented above in the very complex internal
region, we first compute the energy levels and wave functions
of bound and resonant protons inside the parent nucleus in the
two-body framework. Details of the procedure can be found
in [16] together with the Woods-Saxon (WS) parametrization
including spin-orbit interaction. Here we briefly outline the
procedure.

The single-particle (sp) state diagonalizing a spherical WS
+ spin-orbit + Coulomb mean field with eigenvalue ε is a
superposition of harmonic oscillator (ho) orbitals

|ψε,l, j,m〉 = c†
ε,l, j,m|0〉 =

∑
n

dn
ε,l, j

∣∣ϕβ
n, j, j,m

〉
, (18)

depending upon the radial quantum number n, angular mo-
mentum l , total spin j, spin projection m, and the ho parameter

β = mpω

h̄
. (19)

The coordinate representation of the ho wave function de-
pending on x ≡ (r, s) is given by

ϕ
β

n,l, j,m(x) = 〈
x
∣∣ϕβ

n,l, j,m

〉 = [
φ

β

n,l (r) ⊗ χ 1
2
(s)

]
j,m,

(20)
φ

β

n,l,m = Rβ

n,l i
lYl,m(r̂),

in terms of the radial ho function R(β )
n,l (r), given by the La-

guerre polynomial and the Euler gamma function

R(β )
n,l (r) = (−)n

[
2β3/2n!

�(n + l + 3/2)

]1/2

rl+1e−βr2
Ll+1/2

n (βr2).

(21)

Thus, the WS wave function can be rewritten as

ψε,l, j,m(x) = 〈x|ψε,l, j,m〉 = Rε,l, j (r)Y (l, 1
2 )

j,m (r̂, s), (22)

in terms of the radial WS wave function and spin-orbit har-
monics, respectively:

Rε,l, j (r) =
∑

n

dn
ε,l, jRβ

nl (r),

Y (l, 1
2 )

j,m (r̂, s) = [ilYl (r̂) ⊗ χ 1
2
] j,m. (23)
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A normalized pair state with a given spin-parity, labeled by J , is defined as follows:

|ab; JM〉 = Nab(J )[c†
a ⊗ c†

b]J,M |0〉

Na,b(J ) ≡
√

1 − δa,b(−)J

1 + δa,b
, (24)

where a ≡ (εa, la, ja), b = (εb, lb, jb). In the configuration space, the pair state is given by

�abJM (x1, x2) = 〈x1x2|ab; JM〉Nab(J )A{[ψa(x1) ⊗ ψb(x2)]JM}

= Nab(J )
1√
2
{[ψa(x1) ⊗ ψb(x2)]JM − [ψa(x2) ⊗ ψb(x1)]JM}. (25)

The complete wave function is given by

Xε,l, j�abJM (x1, x2) = Xε,l, j

√
2Nab(J )

∑
na,nb

dna
a dnb

b �abJM (x1, x2),

�abJM (x1, x2) = [(
φ

(β )
na,la

(r1) ⊗ χ 1
2
(s1)

)
ja

⊗ (
φ

(β )
nb,lb

(r2) ⊗ χ 1
2
(s2)

)
jb

]
J,M, (26)

in terms the pair formation amplitude

Xε,l, j = 1

2
〈BCS|[c†

ε,l, j ⊗ c†
ε,l, j]0|BCS〉

=
√

2 j + 1

2
uε,l, jvε,l, j, (27)

depending on standard BCS amplitudes. By changing � from
j j to LS coupling one considers the singlet component

�abJM (x1, x2)

→ [
φ

β

na,la
(r1) ⊗ φ

β

nb,lb
(r2)

]
J
⊗ [

χ 1
2
(s1) ⊗ χ 1

2
(s2)

]
0

×
〈
(lalb)J

(
1

2

1

2

)
0; J|

(
la,

1

2

)
ja

(
lb

1

2

)
jb; J

〉
. (28)

Notice that all pair phases (i)la+lb = (−)(la+lb)/2 of products
between sp wave functions (20) have the same sign, due to the
common angular momenta parities, and therefore the product
of these terms in the matrix element is positive.

Next, we change the radial part by using the Talmi-
Moshinsky (TM) transformation[

φ
β

na,la
(r1) ⊗ φ

β

nb,lb
(r2)

]
J,M

=
∑
nlNL

[
φ

β/2
n,l (r) ⊗ φ

2β
N,L(R)

]
JM

〈nlNL; J|nalanblb; J〉

(29)

from absolute to relative and center-of-mass (cm) coordinates

r = r1 − r2,
(30)

R = r1 + r2

2
,

by using in summation the conserving energy conditions

2na + la + 2nb + lb = 2n + l + 2N + L. (31)

The paired state wave function now has to be expanded in
hyperspherical harmonics. We do this by the usual Fourier

decomposition

�abJM (x1, x2) = ρ−5/2
∑

c

fc(ρ)Yc(
), (32)

fc(ρ) = ρ5/2
∫




d
�abJM (x1, x2)Yc(
). (33)

C. Decay width computation

Suppose we have complete knowledge of the spatial com-
ponent of the wave function in Eq. (4). Without neglecting �,
we can substitute Eq. (4) into Eq. (3), making use of Eq. (8)
but with an arbitrary potential V (r,
). For brevity we use
� = �1 + �2, the 6D Laplacian, and obtain for the wave
function and its conjugate(

Q − i
�

2

)
ψ =

[
− h̄2

2mp
� + V (ρ,
)

]
ψ, (34)

(
Q + i

�

2

)
ψ† =

[
− h̄2

2mp
� + V (ρ,
)

]
ψ†. (35)

Now we follow the usual prescription and multiply Eqs. [(34),
(35)] by ψ† and ψ , respectively. We then subtract the first
equation from the second one and obtain

�|ψ |2 = h̄2

2mpi
(ψ�ψ† − ψ†�ψ ). (36)

Next, we integrate over the volume of a hypersphere of ra-
dius R, large enough to contain most of the wave function
(
∫

dV |ψ |2 = 1). The definition becomes then

� = h̄2

2mpi

∫ R

0
dρ ρ5

∫



d
(ψ�ψ† − ψ†�ψ ). (37)

We now use the partial wave expansion of Eq. (12) and the
orthonormality of the HH to write

� =
∑

c

h̄2

2mpi

(
gc(R)

dg†
c(ρ)

dρ

∣∣∣∣
R

− g†
c(R)

dgc(ρ)

dρ

∣∣∣∣
R

)
. (38)
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From the expression above, it would appear that the decay
width depends on the hyper-radius of computation. However,
if this hyper-radius is large enough, gc are approximately the
Coulomb-Hankel functions. Since the quantity in brackets is
just the Wronskian, it follows that the decay width is inde-
pendent of computation point, at large hyper-radii. We have
observed that convergence is achieved at moderate distances
(30 fm) for interesting nuclei.

The advantage of using a semi-microscopic theory is that
finding the entire wave function is not mandatory. Instead, we
integrate the system (15) from far away and match a linear
combination of the matrix g to the internal wave function
f at Rm:

fc(Rm) =
∑

c′
gc,c′ (Rm)Nc′ . (39)

Nc are called scattering amplitudes and the decay width is
directly related to them, as we will show shortly. The obvious
drawback of such a method is that only the wave function
will be continuous, while its derivative will not. However,
this is important only if the evaluation of the probability
current is needed close to the nucleus. Describing emission
from narrow resonances does not carry such constraints. The
internal wave function is real and normalized to 1 up to the
hyper-radius Rm � R. In this case, Eq. (38) holds, but with
gc(R) = ∑

c gc,c′ (R)Nc′ . The usefulness of the scattering am-
plitudes becomes even more obvious in the limit R → ∞,
where gc,c′ (R) → NcHlc (ηc, kR)δc,c′ , the Wronskian is 2ki
and the decay width becomes

� = h̄2k

mp

∑
c

|Nc|2. (40)

Following this recipe, we verified that Eqs. (40) and (38) give
the same result within machine precision for R � 30 fm. How-
ever, in contrast with a fully microscopic theory, � depends
in the matching radius between the internal and external wave
functions. This is a well-known drawback of semimicroscopic
theories. Nevertheless, it avoids the need to remove two-body
bound states from the nucleus-proton potentials and allows us
the study of proton pairing on the lifetime. Anyway, we will
show that the decay width weakly depends upon the matching
radius in a relative large interval beyond the nuclear radius.

III. RESULTS AND DISCUSSIONS

In this section we will analyze various aspects of the
three-body problem using the semimicroscopic model built
above. To this purpose we consider three nuclei, with input
parameters specified in Table I. We first diagonalized the WS
mean field for protons by adjusting its real part in order to
obtain at the Fermi level the positive experimental proton
energy ε = Q2p/2 (the paired nucleons have equal energies).
Then we solved BCS equations by using the interproton force
given by the nuclear Gaussian interaction in Eq. (16). By
changing the nuclear strength v0, we obtained the pairing
gap at the Fermi level equal to the experimental pairing gap
�F = �exp = 12/

√
A, considered as an input parameter.

TABLE I. Parameters of analyzed nuclei. The second column
contains the atomic number of the daughter nucleus. The third col-
umn contains the Q value of the 2p decay. The forth column gives the
angular momentum of the state from which protons are emitted. The
last column contains the logarithm of the experimental decay width.

Nucleus ZD Q2p (MeV) l log10 �exp (MeV) Ref.

19Mg 10 0.750 2 −10.121 [17]
45Fe 24 1.210 3 −18.941 [18]
54Zn 28 1.480 1 −18.911 [19]

A. Potential matrix

We discuss here the nature of the potential matrix given
by Eq. (14). One fundamental difference between three-body
scattering and the two-body analog is the channel coupling
even at large hyper-radius. Indeed the exact solution at large
distances should account for situations in which there can be
residual two-body interactions. It is our purpose in this paper,
however, to establish a set of approximations that simplify
the picture as much as possible while retaining most of the
mathematical rigor. The first aspect we draw attention to is
the diagonality of the potential matrix.

One way of measuring how diagonal the matrix is consists
of estimating the Pearson’s correlation coefficient between
rows and columns [20]. In Fig. 1 we plot this quantity of
the matrix (14) for 45Fe. In case of a diagonal matrix, this
coefficient is 1. In our case, after the monopole turning point
(�100 fm) stability at about 0.8. This implies the matrix is di-
agonally dominant, which to first order allows for a decoupled
treatment at infinity. The above consideration is reinforced in
Fig. 2, where we plot the ratio of

Sd =
√∑

c

V 2
cc and S =

√∑
c,c′

V 2
cc′,

showing that the diagonal accounts for 95% of the Froebinius
norm. Again this points towards the possibility of using de-
coupled solutions at large radii.

FIG. 1. Pearson’s correlation coefficient for the potential matrix
as function of the hyper-radius (for 45Fe with v0 = −35 MeV and
r0 = 2 fm).

034602-5



S. A. GHINESCU AND D. S. DELION PHYSICAL REVIEW C 106, 034602 (2022)

FIG. 2. Potential matrix diagonal dominance as function of
hyper-radius (for 45Fe with v0 = −35 MeV and r0 = 2 fm). See text
for definitions.

We now investigate the eigenvalues of the potential matrix.
To this purpose, we diagonalize the matrix through V D =
Dλ(v), where D is the matrix of eigenvectors and λ(v) is a
diagonal matrix with eigenvalues as nonzero elements. As-
suming, then, the potential to be of type V (r)/Q � 2ηc/kr
when r → ∞, we can extract the Sommerfeld parameters as

ηc = 1

2
kr

V (r)

Q2p
= 1

2
kr

λ(v)
c

Q2p
. (41)

The problem that remains is how to assign these eigenval-
ues to the (n, l ) channels. To this purpose, in Fig. 3 we
show the squared amplitude (weight) of each channel in the
eigenvectors corresponding to the minimum and maximum
eigenvalue of the potential. While there is strong mixing in
the sub-barrier region, at large distances each eigenvector has
a dominant component in one channel. This allows us to
assign each eigenvalue, hence ηc, to one channel as shown
in Fig. 4. We note here that the largest Sommerfeld param-
eters of Eq. (41) do not reach an asymptotic behavior. This
is expected since the problem is essentially coupled even at
large distances. Nevertheless, outside the turning point, the
Sommerfeld parameter has little relevance since the Coulomb
function modulus is of the order of unity.

B. Wave function

Some insight into the nature of our problem can be gained
through the examination of the wave function behavior chan-
nel by channel. Moreover, the case of 45Fe allows the study of
the channel mixing since the paired protons have l = 3 at the
Fermi level, hence they cannot be on the lowest hyperspherical
channel on the nuclear surface. In Fig. 5, we plot external
wave function components after matching at r = 7 fm. We
see that immediately after the nuclear surface, the components
populated by the BCS function are dominant. However, after
a few tens of fm, the entire wave function flows essentially
in the lowest two hyperspherical channels. This effect can
be understood in terms of both the centrifugal barrier, which
is significantly smaller in the (0,0) and (2,0) channels, and
of the potential matrix which couples every channel to the

FIG. 3. Weight of each (n, l ) channel in the eigenvectors as-
sociated to the lowest (a) and highest (b) eigenvalues. The same
parameters as in Fig. 1 are used.

monopole. This is again quite different from the axially de-
formed two-body case, where only neighboring channels are
coupled. An important consequence is the following: despite
the apparent complexity of the three-body problem, the strong
coupling of various channels to the monopole allows for a
great simplification by discarding all but a few low-lying
channels.

FIG. 4. Sommerfeld parameters as function of the hyper-radius.
The legend specifies the (n, l ) channel to which the eigenvalue has
been ascribed. The same parameters as in Fig. 1 are used.
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FIG. 5. Wave function components squared for l = 0 and l = 3
for the 45Fe nucleus with v0 = −35 MeV and r0 = 2 fm.

C. Decay width

A final check for the stability of our method concerns the
decay width. The variation with distance of the decay width
is given by Eq. (38). The term in brackets is the Wronskian
W (g†

c, gc). In the two-body case, it is proportional to the
Wronskian of outgoing Coulomb functions, which, in turn is
constant and equal to 2i. We show in Fig. 6 that the same
holds for the three-body case, still under the barrier, but at
greater distances than in the two-body case. In other words,
the three-body decay resembles the two-body decay after a
certain hyper-radius, when all couplings can be ignored.

We turn now to analyzing the proton pairing effects. Fig. 7
shows the dependence of the decay width as function of the
matching radius for 19Mg, 45Fe, and 54Zn. We note that the se-
quential (i.e., no proton interaction) and diproton cases bound
the microscopic estimates from below and above respectively.
This has been remarked in the past by several authors. It is also
important to underline that including only the Coulomb inter-
action between the protons leads to serious underestimations
of the decay width. This is true for both low masses (where
the pN and pp potentials are of the same order of magnitude)
and at high masses (where the pN interaction is dominant on
most of the radial range).

FIG. 6. Decay width as function of the hyper-sphere radius R in
Eq. (38) computed using the same parameters as in Fig. 5.

FIG. 7. Decay width dependence on matching radius, for mul-
tiple proton-proton interaction strengths for 19Mg (a), 45Fe (b), and
54Zn (c). The parameter r0 is fixed at 2 fm in all cases.

The dependence on the proton pairing strength (v0) shows
some remarkable features. First of all, for all three nuclei,
the value of � from our model is in agreement with the
experiment for v0 � −43 MeV, which is a reasonable value,
considering the degree of approximation in our work (the
“bare” value is v0 � −35 MeV). We also note that the varia-
tion of the decay width with v0 decreases as the mass number
increases. This effect is caused by two components. The first
is that the proton pairing strength inside the nucleus decreases
with increasing mass. This leads to a smaller gap and, conse-
quently, to a more confined wave function on the surface. The
second component is the relative importance of the proton-
proton nuclear interaction with respect to the proton-nucleus
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FIG. 8. Partial decay widths of the first six dominant channels at
v0 = −45 MeV and r0 = 2 fm as function of the matching radius for
19Mg (a), 45Fe (b), and 54Zn (c). The dashed line with open diamond
symbols is the sum of the displayed partial widths.

Coulomb interaction. Since the pN Coulomb potential is more
than twice stronger than the pp interaction, it is expected that
small variations of the latter will not matter much. For the
54Zn case, the stability plateau is large (between 8 and 11.5
fm) at v0 = −45 MeV. Towards the end of this interval, a vari-
ation of even 15 MeV in v0 influences the total decay width
by a factor less than 5. Notice also that the effective value of
the nuclear strength v0 inside nucleus, given by solving BCS
equations, is by almost one order of magnitude smaller than
its “bare” value in the free space.

In Fig. 8 we plot the partial widths corresponding to the
first six most important channels, again as function of the

FIG. 9. Decay width dependence on Q value for 45Fe, with vari-
ous v0 values. The solid vertical bar corresponds to the central value
of Q, reported in [18]. The dashed vertical bars correspond to the
±1σ interval. See text for details on computation.

matching radius and for the same three nuclei. First of all,
we note that in all three cases there is a dominant channel
which is either the monopole (for 19Mg and 45Fe) or the
n = 0, l = 1 channel (for 54Zn). This is expected due to the
monopole centrifugal barrier being lower than on the other
channels. For the 54Zn case, the internal wave function is
already built on the l = 1 channels. The flow from l = 1 chan-
nels towards l = 0 channels is hindered by the Raynal-Revay
coefficients.

Finally, we discuss the decay rate dependence on Q value in
our model. Intuitively, one expects a rather strong correlation
between the two, as illustrated by the binary processes (proton
and α decay) and previous three-body studies [7]. However,
for a rigorous statement, the calculations are presented in
Fig. 7 for various values of Q. For this we chose the 45Fe
nucleus, for which the most recent measurement [18] gives
Q = 1.21 ± 0.05 MeV. In Fig. 9 we plot the logarithm of
�/�exp as function of Q value for three v0 values. The the-
oretical decay width was computed at the matching radius
R = 7.3 fm. This is well inside the interval in which the
matching radius does not play any significant interval. We
note that the computed width varies by more than 1 order of
magnitude inside the ±1σ interval for Q.

IV. CONCLUSIONS

In this paper we built a semimicroscopic model in hyper-
spherical coordinates for the two-proton emission process. We
assumed that the protons are emitted from a paired state and
that the transition happens between the ground states of the
parent and daughter nuclei.

By splitting the radial domain into an external region and
an internal region, we avoid several difficulties associated to
other models in literature. We achieved the plateau condition
for decay widths beyond the nuclear radius. More importantly,
we show that our model is sensitive to pairing correlations
between the emitted protons. We studied the effect of these
correlations on three nuclei, of significantly different masses.
We showed that the partial lifetimes of these nuclei can
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be well reproduced using reasonable values for the pp po-
tential (v0 ≈ −45 MeV and r0 ≈ 2 fm). In the matching
radius plateau, these values lead to at most a factor 2.5 be-
tween measured and theoretical decay widths. The predictive
power of our model is thus on par with other models in
literature.

As expected, the decay widths predicted with our model lie
between the two extreme mechanisms proposed by Goldan-
sky. In turn, this implies that the two-proton emission process

is a valuable tool for investigating the proton-proton potential
both inside the nuclear medium and far away from it.
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