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Quantum computing of the 6Li nucleus via ordered unitary coupled clusters
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The variational quantum eigensolver (VQE) is an algorithm to compute ground and excited state energy of
quantum many-body systems. A key component of the algorithm and an active research area is the construction
of a parametrized trial wave function—a so-called variational ansatz. The wave function parametrization should
be expressive enough, i.e., represent the true eigenstate of a quantum system for some choice of parameter
values. On the other hand, it should be trainable, i.e., the number of parameters should not grow exponentially
with the size of the system. Here, we apply VQE to the problem of finding ground and excited state energies of
the odd-odd nucleus 6Li. We study the effects of ordering fermionic excitation operators in the unitary coupled
clusters ansatz on the VQE algorithm convergence by using only operators preserving the Jz quantum number.
The accuracy is improved by two orders of magnitude in the case of descending order. We first compute optimal
ansatz parameter values using a classical state-vector simulator with arbitrary measurement accuracy and then
use those values to evaluate energy eigenstates of 6Li on a superconducting quantum chip from IBM. We post-
process the results by using error mitigation techniques and are able to reproduce the exact energy with an error
of 3.8% and 0.1% for the ground state and for the first excited state of 6Li, respectively.
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I. INTRODUCTION

The simulation of static and dynamic properties of quan-
tum many-body systems is a challenging task for classical
computers due to the exponential scaling of the Hilbert space.
In contrast, quantum computers could be natural devices to
solve such problems [1], avoiding the exponential scaling.
For example, quantum algorithms such as the quantum phase
estimation (QPE) [2] can perform eigenvalues calculations
in polynomial time [3] using future quantum error-corrected
hardware. Currently, the circuit depth required to implement
them is far greater than that of state-of-the-art noisy inter-
mediates scale quantum (NISQ) [4] devices. Nevertheless,
NISQ devices have attracted a lot of interest in nuclear physics
[5–18]. Presently available quantum hardware can be used to
compute the ground state energy E0 of a Hamiltonian H by
using the variational principle. The variational quantum eigen-
solver (VQE) [19–21] is a hybrid quantum-classical algorithm
[22] which classically minimizes the expectation value of a
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trial wave function in the form of a parametrized quantum
circuit [23]

E0 � 〈ψ (θ )|H |ψ (θ )〉
〈ψ (θ )|ψ (θ )〉 . (1)

The trainability of the VQE is closely related to the chosen
wave function ansatz. It has to be expressive enough to contain
the optimal solution, yet simple enough to enable training
and to avoid unpleasant effects like the barren plateaus [24].
Hardware efficient [25] and physically inspired ansätze [26]
are popular choices for this task. The former is as shallow
as possible in the circuit architecture, with the smallest num-
ber of CNOT gates executable on NISQ devices, whereas
the latter is built according to properties of the underlying
physical system. Although VQE simulations have been widely
and successfully used in quantum chemistry [19,20,25–29],
there are fewer applications in nuclear physics [5,11,13–15].
While both fields share many similarities, such as being for-
mulated as nonrelativistic quantum field theories in second
quantization, they differ in many other aspects. For instance,
protons and neutrons, the equivalent of α and β electrons
in quantum chemistry, interact via strong and short-ranged
forces, and symmetry breaking, i.e., nuclear deformation and
superfluidity, is abundant. This makes it important to reflect
this physics in the quantum circuit [13].

Starting from the work [13] on atomic nuclei, we study sev-
eral training strategies for the convergence of different ansätze
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for the 6Li nucleus and evaluate our results on supercon-
ducting quantum hardware. We note that the papers [13,15]
focused on even-even nuclei, which are simpler in structure
than the odd-odd nucleus 6Li. This makes the problem an
interesting step toward VQE applications in nuclear physics.

This paper is organized as follows. We define the theoret-
ical framework in Sec. II, introduce the model in Sec. II A,
and present the different ansätze used in the present work in
Sec. II C. We present results for the energies of the ground
state and first excited states obtained from simulations in
Sec. III B and from superconducting quantum hardware in
Sec. III C.

II. THEORETICAL FRAMEWORK

We consider a simple shell model where the nucleus 6Li
is described as a valence proton and neutron added to the
inert 4He core. In this section, we describe the model space
and Hamiltonian, present the unitary coupled-cluster ansatz,
and discuss in detail the ordering and implementation of the
excitation operators.

A. Model space

The model space consists of the 0p3/2 and 0p1/2 harmonic
oscillator orbitals for the neutron and the proton, and we use
the Cohen-Kurath interaction [30]. Our work builds on the
recent computation of 6He in the same framework [13] and
extends it to a somewhat larger Hilbert space and a some-
what more complicated nucleus. In addition to being realistic
and nontrivial, our model has the advantage of being simple
enough to be run on current NISQ devices. The Hamiltonian
can be written in second quantization as

H =
∑

i

εiâ
†
i âi + 1

2

∑
i jkl

Vi jlk â†
i â†

j âk âl . (2)

Here, â†
i and âi are the creation and annihilation operators,

respectively, for a nucleon in the state |i〉. The single-particle
energies are denoted as εi and two-body matrix elements as
Vi jkl . All computed energies are with respect to the ground
state energy of the 4He core.

We have |i〉 = |n = 0, l = 1, j, jz, tz〉, where n and l de-
note the radial and orbital angular momentum quantum
numbers, respectively, j = 1/2, 3/2 the total spin, jz its pro-
jection, and tz = ±1/2 the isospin projection. Thus, the p
shell model space includes six orbitals for the protons and
six orbitals for the neutrons, and we need N = 12 qubits, one
per orbital. The Cohen-Kurath interaction preserves total spin
J and total isospin T , and their projections Jz and Tz. We
will exploit that Jz and Tz are conserved in our wave function
änsatz.

We convert the shell-model Hamiltonian (2) into a qubit
Hamiltonian via the Jordan-Wigner [31] transformation, i.e.,
we have the mapping

â†
i = 1

2

(
i−1∏
j=0

−Zj

)
(Xi − iYi ), (3)

TABLE I. Orbitals represented by the different qubits. Here, j is
the total angular momentum, jz its projection on the z axis, and tz is
the third component of the isospin.

qubit j jz tz

0 1/2 −1/2 −1/2
1 1/2 +1/2 −1/2
2 3/2 −3/2 −1/2
3 3/2 −1/2 −1/2
4 3/2 +1/2 −1/2
5 3/2 +3/2 −1/2
6 1/2 −1/2 +1/2
7 1/2 +1/2 +1/2
8 3/2 −3/2 +1/2
9 3/2 −1/2 +1/2
10 3/2 +1/2 +1/2
11 3/2 +3/2 +1/2

âi = 1

2

(
i−1∏
j=0

−Zj

)
(Xi + iYi), (4)

where Xi,Yi, and Zi are the Pauli matrices acting on the
ith qubit. The Bravyi-Kitaev [32] mapping is an alternative
to Jordan-Wigner that achieves exponentially shorter Pauli
strings in the asymptotic limit. However, both transformations
perform similarly for modest systems sizes [33]. As only the
Jordan-Wigner mapping enjoys an intuitive translation of the
Jz symmetry on the qubit system, we will only consider this
mapping in the present work. Each single-particle state is
represented by a qubit where |0〉 and |1〉 refer to an empty
and an occupied state, respectively. For completeness, we list
the different states in Table I.

Despite the simplicity of our model, the Hamiltonian (2)
consists of 975 Pauli terms. This large number arises be-
cause the short-range nuclear interaction is nonlocal when
expressed in the harmonic-oscillator basis, and the number
of Pauli terms naively scales as n4, which is reduced by an
order of magnitude because of the conservation of spin and
isospin. Eventually, it could be an advantage to use a lattice
formulation [34] where the short range of the nuclear interac-
tion reduces the number of Pauli terms. On lattices, nuclear
Hamiltonians exist that only include next-to-nearest neighbor
interactions [35] and therefor require resources similar to the
three-dimensional Hubbard model. At this moment, however,
the minimum 2 × 2 × 2 lattice requires 32 qubits because of
spin and isospin degrees of freedom, and our smaller shell-
model space yields more realistic results.

We deal with the large number of Pauli terms by group-
ing them into 250 sets of qubit-wise commuting operators.
Commuting operators are simultaneously diagonalizable, al-
lowing the computation of the expectation value from the
measurements of a single circuit. Additional techniques exist
to reduce further the number of circuits. References [36,37]
propose to further group the Pauli operators to include general
commutating operators at the cost of appending a circuit with
O(N2) gates before the measurements. General commutating
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operators O1,O2 satisfy [O1,O2] = 0, whereas qubit-wise
commuting operators [O1

i ,O2
i ] = 0 for all i. Reference [38]

obtained a cubic reduction by using low-rank factorization.
It is even possible to reduce the measurements to a single
operator [39], by using quantum information complete mea-
surements at the cost of a higher number of circuit executions
and ancilla qubits. Nonetheless, currently available resources
for this work were enough to evaluate the whole Hamiltonian
with the qubit-wise commutating grouping. We consequently
followed this technique to avoid deeper circuits.

B. The unitary coupled cluster ansatz

The unitary coupled clusters änsatz (UCC) is widely used
to obtain a correlated ground state from an initial Hartree-
Fock solution |ψ0〉 in quantum chemistry and nuclear physics
[27,28,40]. It lets the Hartree-Fock state evolve according
to the cluster operator T̂ . To be compatible with a quantum
computing paradigm, the operator has to be unitary. Therefore
we choose

|ψ (θ)〉 = ei(T̂ (θ)−T̂ †(θ))|ψ0〉. (5)

T̂ can be decomposed into singles, i.e., one-particle–one-hole
(1p-1h), doubles (2p-2h),..., excitation operators of the follow-
ing form:

T̂ = T̂1 + T̂2 + . . . (6)

with

T̂1 =
∑

i∈virt;α∈occ

θα
i â†

i âα (7)

and

T̂2 =
∑

i, j∈virt;α,β∈occ

θ
αβ
i j â†

i â†
j âα âβ. (8)

In the above definitions, the Latin indices run over virtual
(empty) states and the Greek over occupied states of the initial
state. The cluster operator drives occupied orbitals to empty
ones. To respect symmetries and reduce the number of terms,
we only considered excitation operators with a total angular-
momentum projection Jz = 0. The Jordan-Wigner mapping
is then used to transform the unitary cluster ansatz into a
qubit operator with trainable parameters θ. The UCC ansatz
is finally implemented using one step of the first order Trotter
formula.

The initial state |ψ0〉 is usually chosen as the Hartree-Fock
solution. However, it is often sufficient to lie close enough
to the actual ground state. For instance, the 6Li ground state
has spin J = 1 and therefore Jz = −1, 0, or 1. So, any prod-
uct state with this configuration, e.g., |1〉 ⊗ |6〉 or |0〉 ⊗ |7〉
should converge to the ground state. Moreover, this observa-
tion can help us find the first excited state (with spin J = 3),
which lies in the subspace with a total Jz of −3, −2, 2, or
3 orthogonal to the ground state. This observation provides
a particular advantage over other methods in finding excited
states with the VQE, such as the iterative constrained opti-
mization [41], the discriminative VQE [42], or those based
on the quantum equation of motion [43]. These techniques
require additional quantum or classical resources and rely on

the accuracy of the prepared ground state, therefore suffering
from the error amplification phenomenon. On the other hand,
enforcing the ansatz to stay in a particular region of the Hilbert
space by choosing the right quantum numbers, produces sta-
ble and accurate solutions which are easy to obtain, when
applicable.

C. Excitation ordering

In the following, we describe different strategies to study
the convergence of the variational method. The ordering of
the excitation operators impacts the training landscape and the
convergence behavior. Hence, an ansatz may quickly converge
while another remains trapped in a local minimum. We ob-
served this in our work by trying different ordering strategies.

Shuffling is a strategy that consists of choosing the best
sorting over multiple runs with a random shuffling. It quickly
becomes prohibitive to explore the shuffled space when en-
larging the system size, but is interesting to consider since the
ordering has a non-trivial effect on the optimization proce-
dure. We will refer to this strategy as best shuffle throughout
this paper.

Ordering represents a second option, where we proceed
to order the operators by their absolute magnitude of the
corresponding term in the Hamiltonian. Hence, the singles
excitation refers to the corresponding single-particle energy εi

while the doubles excitation â†
i â†

j âα âβ refers to the two-body
term Vi jβα . The considered Hamiltonian permits only to apply
this ordering on singles and doubles terms, but more complex
models could be considered to order 3p-3h or 4p-4h excitation
as well. This approach, similar to the qDrift [44] algorithm
for time evolution (which chooses the terms randomly to be
evolved according to their relative magnitude), orders the
excitation operator in descending order of magnitude such
that the most important ones are placed at the beginning.
We observed that this technique, which we will refer to as
ordered UCCSD, is the most promising ansatz among the
ones considered in this work. Moreover, when coupled to a
layerwise learning scheme, it achieves arbitrary accuracy in a
polynomial number of optimization steps.

Adaptive derivative-assembled problem-tailored (ADAPT)-
VQE is another efficient strategy to adaptively order the
operators with respect to the magnitude of their gradient.
ADAPT-VQE [29] constructs the ansatz by picking from a
pool of operators {τ̂0, . . . , τ̂n} the one which has the most
impact on the expectation value, namely the one with the
largest gradient magnitude∣∣∣∣∂E

∂θi

∣∣∣∣
θi=0

= |〈ψ |[H, τ̂i]|ψ〉|. (9)

The chosen operator is recursively added to the current ansatz,
leading to

|ψ (θ)〉 = e−iθl τl e−iθl−1τl−1 . . . e−iθ0τ0 |ψ0〉, (10)

after adding l operators. We set θl = 0 to allow a smooth tran-
sition between the architecture’s update. The picking action is
followed by k optimization steps, and it is repeated until con-
vergence is reached. We note that in the original proposition,
the circuits are optimized until convergence, before picking
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a new term. However in our experience, it may be beneficial
to apply early stopping, after k steps to avoid being trapped
in a local minima. Hence, we compared k = 10 to k = 100,
and only k = 10 was able to reach an error ratio below 1%.
It generally leads to accurate solutions with minimal depth.
The computation of the gradients of all the operators in the
pool, which is time-consuming, can in principle be performed
in parallel.

Grimsley et al. [29] demonstrated with numerical exper-
iments that ADAPT-VQE is superior to random or lexical
ordering of the excitation operators in terms of convergence
and circuit depth. However, our study suggests that reducing
the operator pool using symmetries and ordering with respect
to their magnitude achieves quicker convergence. Studies of
the Lipkin-Meshkov-Glick model [15] showed that the num-
ber of operators needed to achieve 1% accuracy increases
linearly with the number of valence neutrons. However, this
behavior has only been simulated within nuclei with an even
number of valence neutrons and without valence protons: it
remains an open question whether this result also holds with
neutron-proton interactions.

Finally, we consider layerwise learning, a technique
initially proposed to mitigate barren plateaus in quantum ma-
chine learning [45]. The idea is to consider m singles terms
first, perform k optimization steps, add m new singles terms,
and continue until all singles terms have been used before
moving to higher-order interactions. In an ordered approach,
the first m operators added to the ansatz are instead chosen
according to the selected ordering. We choose m = 1 for the
remaining of this paper.

D. Hardware efficient änsatz

Because of the Jordan-Wigner mapping, fermionic ex-
citation operators act on O(N ) qubits. They are therefore
expensive to be implemented on NISQ devices due to the
increased connectivity requirement and the consequent in-
crease in the number of CNOT and Swap gates needed after
circuit transpilation. A simple and alternative way to re-
duce this expense is to consider qubit-based excitation (QBE)
[46,47] operators. QBE efficiently implements the excitation
operators on O(1) qubits by neglecting the Z terms in the
Jordan-Wigner mapping. Essentially, creation operators are
mapped to

â†
i = 1

2 (Xi − iYi), (11)

and annihilation operators to

âi = 1
2 (Xi + iYi ). (12)

The difference between the Jordan-Wigner mapping is that the
resulting operator will not respect fermionic anti commuta-
tion relations, which are enforced by the product of Pauli Z
matrices. Single excitation operators between qubits i and j
read

Ui j (θ ) = exp

[
i
θ

2
(XiYj − YiXj )

]
(13)

and double excitation operator between qubits i, j, k, and l are

Ui jkl (θ ) = exp

[
i
θ

8
(XiYjXkXl + YiXjXkXl

+ YiYjYkXl + YiYjXkYl − XiXjYkXl

− XiXjXkYl − YiXjYkYl − XiYjYkYl )

]
. (14)

Even if QBE-UCC ansätze do not respect the fermionic anti
commutation relations, they show a comparable efficiency for
ground state calculations. Those ansätze are hardware efficient
as they act on a fixed number of qubits (two for the singles,
four for the doubles, and 2k for the kth excitation operators).
The exact circuit formulation can be found in the original
paper [46].

Finally, we also considered an efficient excitation-
preserving ansatz (EPA), such as the one proposed in [25,48]
for quantum chemistry. These ansätze are based on gates
preserving the number of occupied orbitals. Moreover, time-
reversal symmetry can lead to further simplifications. They
have the advantage of using fewer CNOT gates resulting in
a more shallow circuit, an advantage for near-time devices.
However, they cannot respect the total Jz symmetry as they act
on the protons and neutrons separately. In our investigations,
this led to circuits suffering from barren plateaus [24] which
are expected in generic circuits using a global cost func-
tion [49], such as the expectation value of the Hamiltonian.
We remark that the gradient vanishes from the beginning,
and changing the number of layers, optimizer, learning rate,
parameters initialization, and even using an automatic differ-
entiation framework to compute the gradient did not permit us
to train the ansatz. This observation suggests that symmetries
play a non-negligible role in nuclear structure calculations
since it is the significant difference between UCC based an-
sätze and excitation preserving ones. More details about the
construction of this type of ansätze can be found in the Ap-
pendix.

III. RESULTS

In the following, we present the results obtained with the
different circuit architectures discussed in Sec. II C. The in-
vestigations are performed on a state-vector simulator and the
hardware-friendly QBE-UCCSD ansatz is evaluated on a real
quantum processor.

State-vector simulations allow one to probe the poten-
tial of this approach under ideal conditions, such as using
exponentially many shots or without noise. UCC ansätze
are notoriously deep, and the noise heavily deteriorates the
outcome, even when using error mitigation techniques. We
address these difficulties in the following, showing the results
step by step.

A. Optimization

For the optimization, we use the simultaneous perturba-
tion stochastic approximation (SPSA) [50] optimizer with
a fixed number of iterations. SPSA efficiently approximates
the gradient with only two circuit evaluations by shifting the
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parameters in two random directions. The learning rate lr =
0.1, is halved at every 25 iterations until lr = 0.001 to ensure
a fast convergence at the beginning and avoid oscillations at
the end. Looking at realistic experiments, the stochastic nature
of SPSA makes it resilient to the statistical noise coming from
the finite number of measurements, making it appealing for
quantum devices. All the initial parameters, except the first
one, are set to zero at the beginning of the optimization in
an attempt to mitigate barren plateaus [51], while the first is
chosen at random between 0 and 2π , but fixed for the different
experiments. We remark that the value of the first parameter
has a negligible effect on the convergence.

A quantum natural variant of the SPSA optimizer using the
geometry of the Hilbert space has been recently proposed by
Gacon et al. [52]. It uses six circuit evaluations to approximate
the Hessian (which can be used to compute the quantum
natural gradient) and significantly improves the optimization
efficiency of quantum circuits. In the present work, the effect
of the quantum natural gradient is mainly appreciated on
hardware-friendly ansatz such as QBE-UCC.

We did not consider any other optimization methods,
such as the gradient-based ADAM [53] or the gradient-free
COBYLA [54] optimizer. Hence, SPSA only requires two
sampling execution per step and is resilient to statistical noise
due to its stochastic nature, making it one of the most suitable
optimizer for NISQ devices. Moreover, we did not need to use
more expensive techniques since it achieved an exponential
convergence for this particular case. However, we did try
ADAM and COBYLA for the EPA since they were suffering
from BP. Nevertheless, it did not change the optimization
landscape which remained flat, as argued in Ref. [55].

B. State-vector simulations

The gate-based quantum circuits used in this section are
built using the open-source framework qiskit-nature [56]
and are run on pennylane [57] using the C++ lightning.qubit
plugin.

We first assess the effect of ordering on the fermionic-UCC
ansatz starting from the initial state |2〉 ⊗ |11〉. This state has
Jz = 0, and has the largest operator pool on which we perform
500 optimization steps. The optimization curve, which shows
the error ratio ∣∣∣∣
E

E

∣∣∣∣ :=
∣∣∣∣EVQE − Eexact

Eexact

∣∣∣∣, (15)

for different ordering is shown in Fig. 1. We observe that
the descending ordering (pink) strategy leads to fast conver-
gence while the ascending ordering (green) strategy converges
slowly. Thus, most important operators should be placed first.
We also note that a favorable convergence trend is also given
by the best shuffle curve (orange), which is taken among 20
independent runs, and by some random run combinations, for
which the relative differences are not easily interpreted.

1. Ground state calculation

We now compare the different ansätze presented in
Sec. II C to prepare the ground state. For the fermionic-UCC
ansatz, we start again from |2〉 ⊗ |11〉 state, and we train with

FIG. 1. Training curve in a semilog scale for fermionic UCC
ansatz with different ordering. The best shuffle curve is taken among
20 independent runs. The grey area corresponds to the 1% margin,
which is acceptable in most applications.

the SPSA optimizer. In the iterative approaches (ADAPT-
VQE, Layerwise Learning), k = 10 iterations are performed
between each architecture update. This choice has shown to be
a good trade-off between a slow convergence (for large k) and
deep circuits (for small k). For the QBE-UCC ansatz, more
favorable results were obtained using |0〉 ⊗ |7〉 as initial state,
which also has the smallest operator pools and is consequently
better suited for noisy devices.

The learning curves are shown in Fig. 2 and we observe
that descending ordering strategies are among the fastest and
more accurate ones, the best being the layerwise learning with
descending ordering (pink). Interestingly, the ADAPT-VQE
(brown) approach does not perform as well as the former. We
suspect that the gradient evaluated at θ = 0 does not contain
enough information to obtain the optimal solution. On the

FIG. 2. Training curve in a semilog scale for all different ansätze
with different training strategies. The grey area corresponds to the
1% margin, which is acceptable in most applications.
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one hand, the circuit at the beginning is too shallow, which
explains the slow convergence curve. On the other hand, the
algorithm mainly picks the same operators which may prevent
convergence to the optimal solution. Hence, it only used half
of the available operators before becoming too deep to be
trained efficiently.

The quantum natural SPSA optimizer significantly im-
proves the optimization of the QBE-UCC ansatz, compared
to the standard SPSA. This can be seen by comparing the
QBE (QNSPSA) curve (dark green) with the QBE (orange)
one. The descending ordered UCC ansatz achieves an expo-
nentially fast convergence, that can be deduced from the linear
behavior on a log scale, and the descending layerwise learning
strategy reaches arbitrary accuracy, since it approaches the 16
digits numerical precision of the ground truth exponentially
fast.

2. First excited state

As pointed out in Sec. II B, the choice of the initial state
allows us to find the first excited state. Hence, an initial state
with Jz = −3, −2, 2, or 3 will remain in a subspace is or-
thogonal to the ground state. For instance, the state |1〉 ⊗ |11〉
has Jz = 2 and it is therefore a possible candidate. The result
obtained in this case, for a fermionic UCC ansatz optimized
on a state-vector simulator, achieves an error ratio of 10−11.

C. Hardware

We evaluate the most hardware-efficient ansatz, i.e., QBE-
UCC, previously trained on the state-vector simulator, on a
superconducting chip from IBM. Gate-based quantum cir-
cuits, ran on the cloud using the IBM Quantum Lab, are
transpiled onto the hardware topology by using the SWAP-
based BidiREctional (SABRE) heuristic search algorithm
[58]. Multiple runs are performed to select the circuit which
minimizes the total number of CNOT gates needed. The
SABRE algorithm enables a 50% CNOT reduction compared
to a naive approach for a total of 209 CNOTs. Measure-
ment error mitigation is performed efficiently, as proposed in
Ref. [59], by individually inverting the error matrices

Sk =
(

P(k)
0,0 P(k)

0,1

P(k)
1,0 P(k)

1,1

)
. (16)

Here, P(k)
i, j is the probability of the kth qubit to be in state j ∈

{0, 1} while measured in state i ∈ {0, 1}. While this only cor-
rects the uncorrelated readout errors, it is argued in Ref. [59]
that they are the predominant ones, making it a useful tool for
measurement error mitigation for large number of qubits.

Regarding CNOT errors, the zero-noise extrapolation
[60–62] represents a powerful mitigation technique by artifi-
cially stretching the noise to be extrapolated to the noise-less
regime. However, the structure of the considered Hamiltonian
amplified the effect of CNOT errors considerably and pre-
vented us from using this strategy. Hence, states with a wrong
number of occupied orbitals belong to different nuclei, which
can have much lower energy. We observed a discrepancy of

almost 300% by stretching the noise with a factor two and did
not investigate zero-noise extrapolation further.

Our tests are executed on the IBM Quantum 27 qubits
architecture ibmq_mumbai and repeated ten times for the
ground state and five for the first excited state, using 8092
shots each. The results are reported in Table II, alongside the
number of parameters and CNOT gates after transpilation.
We observe that the energy is reproduced up to 3.81% and
0.12% accuracy for the ground and first excited state, re-
spectively. Both lie within one standard deviation confidence
interval. Moreover, the standard deviation for the ground state
is ten times smaller than the energy gap with the first ex-
cited state, which accentuates the accuracy of our results.
We remark that measurement error mitigation increases the
accuracy by more than 10%, making it appealing for readout
error mitigation in quantum circuits with a large number of
qubits.

IV. CONCLUSIONS

We performed shell-model quantum-computations of the
nucleus 6Li, composed of a frozen 4He core and two valence
nucleons. We studied the effect of the ordering of excita-
tion operators in unitary coupled clusters type ansätze for
the variational quantum eigensolver. We empirically observed
that the ordering strongly affects the learning curve and that
arranging in descending order of magnitude with respect to
the Hamiltonian leads to a better convergence behavior than
random ordering or ADAPT-VQE. Hence, operators with high
magnitude have more importance in the system’s descrip-
tion, which should be reflected in the ansatz construction.
Moreover, adopting a layerwise learning scheme, where the
operators are iteratively added to the circuit, has shown an
accuracy of the order of 10−7. By choosing an initial state
with a suitable Jz quantum number, we were also able to
compute the energy of the first excited state with a precision
of 10−11.

Finally, we evaluated the qubit based excitation-UCC
(QBE-UCC), which neglects the fermionic anti commutation
relation to reduce the number of CNOT and SWAP gates
needed. We performed, for the first time to our knowledge,
these calculations on a real quantum device, a 27 qubits ma-
chine (ibmq_mumbai), and we were able to reproduce the
exact ground state and first excited state energy up to one
standard deviation.

The number of nuclear states grows factorially with the
number of valence nucleons, making the scaling of VQE
applications impractical. Even if the numbers of singles and
doubles excitation operators seem to grow linearly [15], it
may be necessary to use triples and quadruples excitation
operators as well. Reference [13] demonstrated that quadruple
operators acting on all valence nucleons were necessary in a
UCC ansatz for a 8Be nucleus, composed of two protons and
two neutrons in the p shell, and achieved 1% error ratio on
statevector simulations with 118 parameters. This motivates
symmetry considerations to reduce the number of operators,
in order to prevent deep ansätze, which are not easily train-
able, while keeping all the operators needed to reproduce the
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TABLE II. Hardware results of the QBE-UCC ansatz for the ground state (g.s.) and first excited state (1st es), alongside the number
of parameters and CNOT gates after transpilation. The exact result, obtained with exact diagonalization, are reproduced up to one standard
deviation.

hardware No. parameters No. CNOT mean st. deviation exact error ratio

ibmq_mumbai raw (g.s.) 9 209 -6.27 0.269 -5.529 13.36%
ibmq_mumbai mitigated (g.s.) 9 209 -5.319 0.24 -5.529 3.81%
ibmq_mumbai raw (1st es) 3 41 -2.907 0.87 -3.420 14.97%
ibmq_mumbai mitigated (1st es) 3 41 -3.424 0.08 -3.420 0.12%

exact energy. This will be the focus of future research in this
direction.
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APPENDIX: EXCITATION-PRESERVING ANSATZ

In this Appendix, we recall the construction of the
excitation-preserving änsatz (EPA), as presented in [25,48].
As the name suggests, these types of circuits preserve the total
number of excited orbitals present in the initial state. In the
context of this work, this ensures that the states obtained with
the VQE represent the same nuclei, which are defined in terms
of number of protons and neutrons. The building blocks of
the EPA U (θ, φ), are two-qubit gates which are themselves
excitation-preserving and read

U (θ, φ) =

⎛
⎜⎜⎝

1 0 0 0
0 cos (θ ) eiφ sin (θ ) 0
0 e−iφ sin (θ ) − cos (θ ) 0
0 0 0 1

⎞
⎟⎟⎠. (A1)

FIG. 3. U(θ, φ) gate decomposition. Decomposition of U (θ, φ)
in terms of elementary gates where R(θ, φ) = Rz(φ + π )Ry(θ +
π/2) and Rz(θ ) = e−iθZ/2, Ry(θ ) = e−iθY/2.

This is a valid choice since this matrix maps

|00〉 �→ |00〉, (A2)

|01〉 �→ cos (θ )|01〉 + eiφ sin (θ )|10〉, (A3)

|10〉 �→ e−iφ sin (θ )|01〉 − cos (θ )|10〉, (A4)

|11〉 �→ |11〉. (A5)

This gate can be efficiently implemented on a gate-based
quantum circuit as shown in Fig. 3.

The ansatz is then built on top of an initial product state
with the correct number of excited orbitals p, using

(n
p

)
U (θ, φ) gates, where n = 6 is the total number of orbitals
in each register. This precise number of gates [48] is chosen
such that the ansatz is maximally expressive, while having the
minimal amount of parameters. It is preferable, because of the
limited connectivity of NISQ devices, to act only neighboring
qubits, starting from the occupied orbital in a pyramidal man-
ner. The 6Li nuclei consists of one proton and one neutron.
Therefore p = 1 in both the proton and neutron registers and
we choose as initial state |001000〉 for both of them, as illus-
trated in Fig. 4. The main bottleneck of the EPA is its inability
to take into account global symmetries, like the conservation
of the total angular momentum Jz. Hence, the proton and
neutron registers cannot be entangled, since it would enlarge
the Hilbert space of the final state, which could have two
neutrons and zero protons (6He), or zero neutrons and two
protons (6Be). In practice, we run into barren plateaus early on
in the training phase [24], and gradient-based (ADAM [53],

FIG. 4. Excitation-preserving ansatz for one single register (e.g.,
for the protons). The circuit starts from the initial state |001000〉 and
is built with the excitation preserving gate U (θ, φ) in a pyramidal
and efficient way.
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stochastic gradient descent), gradient-free (COBYLA [54],
SPSA [50]) optimizers or layerwise learning [45] strategy
did not permit us to avoid them. We note that time reversal

symmetry can be accounted for by setting φi = 0 ∀i. Never-
theless, this additional symmetry did not change the general
behavior of the EPA’s optimization.
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