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α cluster structure in nuclei has been long understood based on the geometrical configuration picture. By
using the spatially localized Brink α cluster model in the generator coordinate method, it is shown that the α

cluster structure has the apparently opposing duality of crystallinity and condensation, a property of supersolids.
To study the condensation aspects of the α cluster structure a field theoretical superfluid cluster model (SCM)
is introduced, in which the order parameter of condensation is incorporated by treating rigorously the Nambu-
Goldstone mode due to spontaneous symmetry breaking of the global phase. The α cluster structure of 40Ca,
which has been understood in the crystallinity picture, is studied by the SCM with ten α clusters. It is found that
the α cluster structure of 40Ca is reproduced by the SCM in addition to 12C reported in a previous paper, which
gives support to the duality of the α cluster structure. The emergence of the mysterious 0+ state at the lowest
excitation energy near the α threshold energy is understood to be a manifestation of the Nambu-Goldstone zero
mode, a soft mode, due to the condensation aspect of the duality similar to the Hoyle state in 12C. The duality of α

cluster structure with incompatible crystallinity and coherent wave nature due to condensation is the consequence
of the Pauli principle, which causes clustering.

DOI: 10.1103/PhysRevC.106.034324

I. INTRODUCTION

A supersolid is a solid with superfluidity, and has been
sought in recent decades in He II [1–5]. Recently it was
created experimentally in an optical lattice [6–13]. The ob-
servation of the Nambu-Goldstone mode [14–16] due to
spontaneous symmetry breaking (SSB) of the global phase
gives direct evidence of supersolidity for an optical lattice
[11–13]. Very recently the existence of supersolidity of sub-
atomic nature—supersolidity of the three α cluster structure
in the nucleus 12C—was discussed [17].

The α particle model, in which the boson α particle with
spin 0 is considered as a constituent unit of the nucleus, was
proposed as the first nuclear structure model in 1937 [18–20]
but criticized [21] in the advent of the shell model [22,23] and
the collective model [24]. However, the successful shell model
and the collective model [25–27] also encountered difficulty
explaining the emergence of very low-lying intruder states in
light nuclei such as the mysterious 0+

2 (6.05 MeV) state in
16O [28,29]. The α cluster model based on the geometrical
crystallinity picture, in which the effect of the Pauli prin-
ciple is taken into account, was revived and has witnessed
tremendous success in recent decades in explaining both shell-
model-like states and α cluster states comprehensively, which
are reviewed for light nuclei in Refs. [30–32] and for the
medium-weight nuclei in Refs. [33,34].

The Brink cluster model based on the geometrical crys-
tallinity picture using the generator coordinate method (GCM)
[35], the resonating group method (RGM), which is equiva-
lent to the GCM [36], and the orthogonality condition model
(OCM) [37] and the local potential model (LPM) [38–41]–

both of which are approximations of the RGM and take into
account of the Pauli principle by excluding the Pauli forbidden
states in the RGM—have been successful in understanding the
structure of nuclei [30–34]. Examples are the two α dumbbell
structure of 8Be [42,43], the three α triangle structure of
12C [44–46], and the α + 16O structure in 20Ne [47–49]. The
unified understanding of cluster structure in the low energy
region, and prerainbows and nuclear rainbows in the scattering
region, which are confirmed for systems such as α + 16O and
α + 40Ca [41,50], support the geometrical crystallinity picture
of the cluster structures.

Very recently Ohkubo et al. [17] used a field theoretical
superfluid cluster model (SCM) for 12C to report that the α

cluster structure has a duality of crystallinity and condensa-
tion, a property of supersolidity. According to this theory,
while the former is the view from the particle nature of the
cluster structure, the latter is the view from the wave nature
due to the coherence of the condensate cluster structure. It
is important to clarify whether this supersolidity of α cluster
structure is inherent only to the three α cluster structure of 12C
or a general property of α cluster structure with geometrical
crystallinity. α cluster structure was recently paid attention
from the viewpoint of quantum phase transition [51,52].

In this paper, by using the Brink α cluster model it is
shown generally that α cluster structure has the duality of
apparently exclusive properties of crystallinity and conden-
sation, i.e., supersolidity. The α cluster structure of 40Ca,
which has been understood from the viewpoint of geometrical
cluster structure, is studied from the viewpoint of condensa-
tion, superfluidity, by using a field theoretical superfluid α

cluster model which rigorously treats spontaneous symmetry

2469-9985/2022/106(3)/034324(11) 034324-1 ©2022 American Physical Society

https://orcid.org/0000-0002-7869-7843
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.106.034324&domain=pdf&date_stamp=2022-09-28
https://doi.org/10.1103/PhysRevC.106.034324


S. OHKUBO PHYSICAL REVIEW C 106, 034324 (2022)

breaking of the global phase due to condensation. The mech-
anism of why the mysterious 0+ state in 40Ca emerges as a
collective state at very low excitation energy, which has been
a longstanding subject in the shell model and the collective
model, is investigated and is shown to arise as a member state
of the Nambu-Goldstone (NG) zero mode due to global phase
locking caused by the condensation aspect of the duality of α

clustering in 40Ca.
The organization of this paper is as follows. In Sec. II

by using the Brink cluster model it is generally shown that
α cluster structure has a dual property of crystallinity and
condensation. In Sec. III a field theoretical superfluid cluster
model with the order parameter of condensation, in which
spontaneous symmetry breaking of the global phase due to
condensation is rigorously treated, is given. In Sec. IV α

cluster structure in 40Ca is studied. First, historical attempts to
understand the mysterious 0+ state of 40Ca in the shell model,
collective model, and the α cluster model are briefly reviewed.
It is summarized that by the observation of the K = 0− band
with the α cluster structure, which was predicted from the
study of anomalous large angle scattering in α + 36Ar scatter-
ing, the geometrical α cluster model was confirmed. Second,
from the viewpoint of the duality of crystallinity and con-
densation, the condensation aspect of the α cluster of 40Ca is
studied using the superfluid cluster model. The mechanism of
the emergence of a mysterious 0+ state is investigated. Sec. V
is devoted to discussion. A summary is given in Sec. VI.

II. THE DUALITY OF THE α CLUSTER STRUCTURE:
CRYSTALLINITY AND CONDENSATION

I show that α cluster structure with crystallinity has con-
densate nature simultaneously by using the Brink α cluster
model based on the geometrical crystallinity picture. The n-α
cluster model based on a geometrical crystalline picture, such
as the two α cluster model of 8Be and the three α cluster model
of 12C, is given by the following Brink wave function [35]:

�B
nα (R1, . . . , Rn) = 1√

(4n)!
det

[
φ0s(r1 − R1)χτ1,σ1 · · ·

× φ0s(r4n − Rn)χτ4n,σ4n

]
, (1)

where Ri is a parameter that specifies the center of the ith α

cluster. φ0s(r − R) is a 0s harmonic oscillator wave function
with a size parameter b around a center R,

φ0s(r − R) =
(

1

πb2

)3/4

exp

[
− (r − R)2

2b2

]
, (2)

and χτ,σ is the spin-isospin wave function of a nucleon. Equa-
tion (1) is rewritten as

�B
nα (R1, . . . , Rn) = A

[
n∏

i=1

exp

{
−2

(X i − Ri )2

b2

}
φ(αi )

]
,

(3)

where X i is the center-of-mass coordinate of the ith α cluster
and φ(αi) represents the internal wave function of the ith α

cluster. A is the antisymmerization operator. The generator
coordinate wave function 	GCM

nα based on the geometrical

configuration of the Brink wave function is given by

	GCM
nα =

∫
d3R1 · · · d3Rn f (R1, . . . , Rn)

×�B
nα (R1, . . . , Rn). (4)

I show that the cluster model with crystallinity of Eq. (4)
has the property of condensation. For the sake of simplicity I
treat hereafter the simplest two α cluster structure of 8Be. The
generator coordinates R1 and R2, which specify the position
parameters of the two α clusters, are rewritten as follows by
using RG and R, which are the center-of-mass and the relative
vectors, respectively:

R1 = RG + 1
2 R, R2 = RG − 1

2 R. (5)

I take RG = 0 to remove the spurious center-of-mass motion
and use the notation �B

2α (R) for �B
2α ( 1

2 R,− 1
2 R). Thus Eq. (4)

is written as

	GCM
2α =

∫
d3R f (R)�B

2α (R). (6)

	GCM
2α is obtained by solving the Hill-Wheeler equation for

f (R). I introduce g(μ), which is related to f (R) by the
Laplace transformation

f (R) =
∫ ∞

0
dμx

∫ ∞

0
dμy

∫ ∞

0
dμz

× exp
[ − (

μxR2
x + μyR2

y + μzR
2
z

)]
g(μ), (7)

where μ = (μx, μy, μz ). Then Eq. (6) reads

	GCM
2α =

∫
d3μg(μ)

[ ∫
d3R exp

{−(
μxR2

x + μyR2
y

+μzR
2
z

)}
�B

2α (R)

]
. (8)

By rewriting the term [· · · ] in the right-hand side of Eq. (8) as
�PCM

2α (μ), defined by

�PCM
2α (μ) ≡

∫
d3R exp

[ − (
μxR2

x + μyR2
y

+ μzR
2
z

)]
�B

2α (R), (9)

∝ A

[
2∏

i=1

exp

{
−2

(
X 2

ix

B2
x

+ X 2
iy

B2
y

+ X 2
iz

B2
z

)}
φ(αi)

]
, (10)

with Bk =
√

b2 + μk
−1 (k = x, y, z), Eq. (8) reads

	GCM
2α =

∫
d3μg(μ)�PCM

2α (μ). (11)

The �PCM
2α in Eq. (10), which is called a nonlocalized clus-

ter model (NCM) or a THSR cluster wave function in
Refs. [53,54] and suggested to be a pseudocondensate model
(PCM) in Ref. [17], shows that α clusters are sitting in the
0s orbit of the trapping harmonic oscillator potential with
an oscillator parameter B = (Bx, By, Bz ) and represents the
condensed aspect of the α clusters. This trapping harmonic
oscillator potential corresponds to the trapping harmonic os-
cillator potential in the superfluid cluster model discussed in
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FIG. 1. Illustrative figures of crystallinity, condensation, and supersolidity of the α clusters (filled circles) proposed in 12C in Ref. [17]
are displayed for the simplest system 8Be discussed in the text and extended to 16O with four α clusters and 20Ne with five α clusters. As the
excitation energy increases vertically, the structure change occurs. In each nucleus crystallinity, condensation associated with a coherent wave,
and supersolidity with both crystallinity and the coherent wave of the α clusters are shown. The original Ikeda diagram based on the crystallinity
picture corresponds to (a), (d), (g), and (j) in each nucleus. In (b), (e), (h), and (k) of each nucleus α clusters are sitting in the 0s state of the
harmonic oscillator potential with a coherent wave (broad curve). In (c), (f), (i), and (l) of each nucleus, which illustrates supersolidity, the α

clusters are sitting in the 0s state of the distinct harmonic oscillator potentials separated due to the Pauli repulsion associated with a coherent
wave (broad curve).

the next section, where the condensation of the trapped α clus-
ters is rigorously treated by introducing the order parameter
due to SSB of the vacuum. While in Eq.(6) the GCM wave
function is expressed based on the geometrical picture using
the Brink function �B

2α (R) as a base function, in Eq. (11)
the same GCM wave function is expressed using the wave
function �PCM

2α (μ) as a base function. From Eqs. (6) and (11),
it is found that the Brink α cluster model in the generator co-
ordinate method has both the crystallinity and the condensate
nature simultaneously.

The above discussion for the simplest two α cluster system
can be generalized to the n-α cluster system. The Laplace
transformation relation is generalized to

f (R1, . . . , Rn) =
∫ ∞

0
dμ exp

[
−

n∑
i=1

(
μxR2

ix + μyR2
iy

+μzR
2
iz

)]
g(μ). (12)

Equation (9) generalized to n-α clusters is given by

�PCM
nα (μ) =

∫
d3R1 · · · d3Rn exp

[
−

n∑
i=1

(
μxR2

ix

+ μyR2
iy + μzR

2
iz

)]
�B

nα (R1, . . . , Rn), (13)

∝ A

[
n∏

i=1

exp

{
−2

(
X 2

ix

B2
x

+ X 2
iy

B2
y

+ X 2
iz

B2
z

)}
φ(αi )

]
. (14)

Similarly to Eq. (11), one gets

	GCM
nα =

∫
d3μg(μ)�PCM

nα (μ). (15)

Thus from Eqs. (4) and (15) it is found generally that the
n-α cluster wave function in the geometrical cluster model
picture has the property of condensation. This shows generally
that the GCM n-α cluster wave function has the duality of
crystallinity and condensation independently of the Hamilto-
nian used.

Illustrative pictures based on the above geometrical struc-
ture and the condensate structure of the α clusters in 8Be, 12C,
16O, and 20Ne are displayed in Fig. 1. The pictures (a), (d),
(g), and (j) correspond to the Ikeda diagram [47,55] based on
the crystallinity. The pictures (b), (e), (h), and (k) represent the
wave aspect of the α cluster structure due to the condensation.
The two exclusive pictures, the duality of crystallinity and
a condensate coherent wave, can be unified in the pictures
displayed in (c), (f), (i), and (l) of each nucleus in Fig. 1 where
the α clusters sitting in the 0s state of the distinct potentials
due to the Pauli repulsion between the α clusters [56] form a
coherent wave.

The de Broglie wavelength of each 0s state α cluster with
very low energy is far longer than the geometrical distance
between the α clusters. In other word, the phases of the
waves are locked to form a coherent wave function, i.e., su-
perfluidity (condensation) of the system. This is general and
independent of the geometrical configuration and number of
the α clusters involved, n. Therefore in principle, whatever
the geometrical configuration is—triangle (n = 3) structure
of 12C, tetrahedron (n = 4) structure of 16O [57–61], trigonal
bipyramid (n = 5) structure of 20Ne [62–66], linear chain
n-α cluster (n = 2, 3, 4, . . . ), etc.—the geometrical α cluster
structures have the potential to form a coherent wave function
(superfluidity). Whether the state is superfluid depends on the
superfluid density ρs, which encapsulates the structure and
degree of clustering. The previous study of 12C [17] finds
that the superfluid ground state is stable with a condensation
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rate 5%, giving energy levels similar to the GCM, RGM, and
experiment.

III. FIELD THEORETICAL SUPERFLUID CLUSTER
MODEL FOR CONDENSATION OF α CLUSTERS

The traditional cluster models involve no order parame-
ter that characterizes condensation. A theory with no order
parameter is unable to conclude whether a system under in-
vestigation is condensate or not. In Eqs. (15) and (4) no order
parameter to characterize the condensation is involved. In
Eq. (4) the parameter R is the order parameter to characterize
the geometrical clustering. In fact, R = 0 corresponds to the
shell model with no clustering and R �= 0 represents the de-
gree of geometrical clustering. On the other hand, in Eq. (15)
the parameter B is not self-evidently the order parameter of
condensation because global phase locking caused by sponta-
neous symmetry breaking due to condensation is not explicitly
involved. In fact, B = 0 has no physical meaning and B �=
0 does not necessarily mean condensation in Eq. (15). To
conclude whether the α cluster structure has Bose-Einstein
condensate (BEC) nature, it is necessary to use a theory in
which the order parameter to characterize condensation is
implemented.

I briefly present the formulation of the field theoretical
superfluid cluster model developed in [67–69] to study BEC
of α clusters in the Hoyle state and the excited states above
it in 12C. The model Hamiltonian for a bosonic field ψ̂ (x)
[x = (x, t )] representing the α cluster is given as follows:

Ĥ =
∫

d3x ψ̂†(x)

(
−∇2

2m
+ Vex(x) − μ

)
ψ̂ (x)

+ 1

2

∫
d3x d3x′ ψ̂†(x)ψ̂†(x′)U (|x − x′|)ψ̂ (x′)ψ̂ (x).

(16)

Here, the potential Vex is a mean field potential introduced
phenomenologically to trap the α clusters inside the nucleus,
and is taken to have a harmonic oscillator form, Vex(r) =
m�2r2/2. U (|x − x′|) is the residual α–α interaction. I set
h̄ = c = 1 throughout this paper.

When BEC of α clusters occurs, i.e., the global phase
symmetry of ψ̂ is spontaneously broken, I decompose ψ̂ as
ψ̂ (x) = ξ (r) + ϕ̂(x), where the c number ξ (r) = 〈0|ψ̂ (x)|0〉
is an order parameter and is assumed to be real and isotropic.
To obtain the excitation spectrum, one needs to solve three
coupled equations, which are the Gross-Pitaevskii (GP)
equation, Bogoliubov–de Gennes (BdG) equation, and the
zero-mode equation [67,69]. The GP equation determines the
order parameter by{

−∇2

2m
+ Vex(r) − μ + VH (r)

}
ξ (r) = 0, (17)

where VH (r) = ∫
d3x′ U (|x − x′|)ξ 2(r′). The order parameter

ξ is normalized with the condensed particle number N0 as∫
d3x |ξ (r)|2 = N0. (18)

The BdG equation describes the collective oscillations on the
condensate by∫

d3x′
( L M

−M∗ −L∗

)(
un

vn

)
= ωn

(
un

vn

)
, (19)

where

M(x, x′) = U (|x − x′|)ξ (r)ξ (r′),

L(x, x′) = δ(x − x′)
{
−∇2

2m
+ Vex(r) − μ + VH (r)

}
+M(x, x′). (20)

The index n = (n, �, m) stands for the main, azimuthal, and
magnetic quantum numbers. The eigenvalue ωn is the excita-
tion energy of the Bogoliubov mode. For isotropic ξ , the BdG
eigenfunctions can be taken to have separable forms,

un(x) = Un�(r)Y�m(θ, φ),

vn(x) = Vn�(r)Y�m(θ, φ). (21)

One necessarily has an eigenfunction belonging to zero
eigenvalue, explicitly (ξ (r),−ξ (r))t , and its adjoint function
(η(r), η(r))t is obtained as

η(r) = ∂

∂N0
ξ (r). (22)

The field operator is expanded as

ϕ̂(x) = −iQ̂(t )ξ (r) + P̂(t )η(r) +
∑

n

{âun(x) + â†v∗
n(x)},

(23)

with the commutation relations [Q̂, P̂] = i and [ân, â†
n′] =

δnn′ . The operator ân is an annihilation operator of the Bo-
goliubov mode, and the pair of canonical operators Q̂ and P̂
originate from the SSB of the global phase and are called the
NG or zero-mode operators.

The treatment of the zero-mode operators is a chief feature
of the present approach. The naive choice of the unperturbed
bilinear Hamiltonian with respect to Q̂ and P̂ fails due to their
large quantum fluctuations. Instead, all the terms consisting
only of Q̂ and P̂ in the total Hamiltonian are gathered to
construct the unperturbed nonlinear Hamiltonian of Q̂ and P̂,
denoted by ĤQP

u with

ĤQP
u = − (δμ + 2C2002 + 2C1111)P̂ + I − 4C1102

2
P̂2

+ 2C2011Q̂P̂Q̂ + 2C1102P̂3 + 1

2
C2020Q̂4

− 2C2011Q̂2 + C2002Q̂P̂2Q̂ + 1

2
C0202P̂4, (24)

where

Ci ji′ j′ =
∫

d3xd3x′ U (|x − x′|){ξ (x)}i{η(x)} j

×{ξ (x′)}i′ {η(x′)} j′ , (25)

and δμ is a counterterm that the criterion 〈0|ψ̂ |0〉 = ξ de-
termines. I set up the eigenequation for ĤQP

u , called the
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zero-mode equation,

ĤQP
u |	ν〉 = Eν |	ν〉 (ν = 0, 1, . . . ). (26)

This equation is similar to a one-dimensional Schrödinger
equation for a bound problem.

The total unperturbed Hamiltonian Ĥu is Ĥu = ĤQP
u +∑

n ωnâ†
nân. The ground state energy is set to zero, E0 = 0.

The states that I consider are |	ν〉|0〉ex with energy Eν , called
the zero-mode state, and |	0〉â†

n|0〉ex with energy ωn, called
the BdG state, where ân|0〉ex = 0.

IV. α CLUSTER STRUCTURE IN 40Ca

In order to discuss the macroscopic concept of conden-
sation in nuclei, it seems suitable to study a nucleus which
involves many α clusters. I take 40Ca with ten α clusters.
In this section I apply the field theoretical superfluid cluster
model to α cluster structure study of 40Ca with the mysterious
0+ state at 3.35 MeV.

First, I review briefly how the mysterious 0+ state in the
doubly magic nucleus has been understood from the view-
point of mean field theory, i.e., the shell model and the
collective model, in recent decades and how the α cluster
model based on the crystallinity picture has explained the
mysterious 0+ state. Second, I study whether the α cluster
states explained in the geometrical configuration picture can
be understood in the viewpoint of condensation of the duality
by using the SCM.

A. The mysterious 0+ state and geometrical α

cluster structure of 40Ca

The emergence of the 0+
2 at the very low excitation en-

ergy 3.35 MeV of the doubly shell-closed magic nucleus
40Ca as well as the 0+

2 state at 6.05 MeV in 16O had been
mysterious from the viewpoint of the shell model [28,70–
72]. Brown and Green [70] pointed out the importance of
deformed four-particle four-hole (4p-4h) excitations in low-
ering the excitation energy of the 0+

2 state in 16O. Gerace
and Green [71] showed that the same situation occurs for the
0+

2 state in 40Ca. Gerace and Green [72] showed that 8p-8h
excitation is important in understanding the third 0+

3 state at
5.21 MeV. In the shell model calculations in which the 32S
core is assumed, Sakakura et al. [73] argued that the 0+

2 and
0+

3 states are dominated by the 4p-4h excitations and the 0+
4

state at 7.30 MeV is dominated by the 8p-8h excitation.
These studies show that the vacuum ground state of 40Ca is

not a simple 0p-0h spherical shell model state but involves
a non-negligible amount of 4p-4h correlations. To under-
stand the excited structure is to reveal the correlations, the
predisposition, of the vacuum ground state. From this view-
point Marumori and Suzuki [29] suggested to understand the
mechanism of the emergence of the mysterious 0+ state as
a collective state by defining a vacuum with correlations of
the 4p-4h mode. Following this idea, the four-particle and
four-hole mode-mode coupling was investigated in 16O [74]
and 40Ca [75].

The nuclear energy density functional (EDF) approach
has been applied to describe the ground state properties and

the collective excitations including clustering, especially the
microscopic analysis of the formation and evolution of the
cluster structure from the vacuum ground state. The authors of
Ref. [76] consider that cluster structures can be a transitional
phase between the quantum liquid phase and the crystal phase.
It is very interesting to know whether the mysterious 0+ states
in 40Ca as well as in 16O are reproduced in the EDF and how
its mechanism of low excitation energy is understood from
the viewpoint of the mean field. However, the structures of
the excited energy levels in 40Ca as well as 16O have not been
reported yet.

Also ab initio approaches, such as fermionic molecular dy-
namics (FMD) [77] used for 12C and antisymmetric molecular
dynamics (AMD) [78] used for 42Ca, have not been applied
to explain the mysterious 0+ state of 40Ca. In 16O ab initio
calculations have been unable to explain the very low excita-
tion energy of the mysterious 0+ state providing an excitation
energy 13.3 MeV in Ref. [79] and 19.8 MeV in Ref. [80],
which are two or three times larger than the experimental
value, 6.05 MeV.

From the viewpoint of α cluster structure, Ogawa, Suzuki,
and Ikeda [81] investigated the structure of 40Ca using the
α + 36Ar cluster model, in which no K = 0− band, which
is a parity-doublet partner of the K = 0+ band built on the
mysterious 0+

2 state, was obtained. Since this situation looked
very different from 16O where the well-developed α cluster
K = 0− band appears, which is a parity doublet partner of
the K = 0+ band built on the mysterious 0+

2 (6.05 MeV) state
[82,83], Fujiwara et al. [49] discussed that the K = 0+ band
in 40Ca has rather strong shell model aspects than the α cluster
structure.

On the other hand, from the viewpoint of unification of
cluster structure in the bound and quasibound states and
backward angle anomaly (BAA) or anomalous large angle
scattering (ALAS) in α + 36Ar scattering, Ohkubo and Ume-
hara [84] showed that the 2+ (3.90 MeV), 4+ (5.28 MeV),
and 6+ (6.93 MeV) states built on the mysterious 0+

2 state
form a K = 0+ band with the α + 36Ar cluster structure and
predicted the existence of a parity-doublet partner K = 0−
band with the well-developed α cluster structure at slightly
above the α threshold energy. The observation of the pre-
dicted α cluster K = 0− band by Yamaya et al. [85–87] in
an α transfer reaction experiment showed that the K = 0−
band and the K = 0+ band have the α cluster structure. The
α spectroscopic factor, S2

α = 0.30, extracted from α transfer
reactions [85–87] shows that the ground state has a significant
α cluster correlation. The α cluster structure of 40Ca was
further confirmed theoretically by semimicroscopic α cluster
model calculations using the orthogonality condition model
by Sakuda and Ohkubo [88,89], in which not only the α

cluster model space but also the shell model space are incor-
porated. In the OCM calculations not only the α cluster states
but also the shell-model-like states in 40Ca are reproduced in
the α + 36Ar cluster model.

Thus the mysterious 0+ state of 40Ca was found to emerge
from the ground state with the predisposition of α cluster-
ing. The finding that the vacuum ground state involves α

cluster correlations is consistent with the shell model stud-
ies in Refs. [28,70–72] and the collective model viewpoint
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FIG. 2. Illustrative pictures of ten α clusters (filled red circles) in
40Ca. (a) The crystallinity picture of the α cluster structure of 40Ca
with the α + 36Ar geometrical configuration. (b) The condensation
picture of the α cluster structure of 40Ca in the superfluid cluster
model where the ten α clusters associated a coherent wave (broad
curve) are trapped in the 0s orbit of the confining potential.

in Refs. [29,75], which suggests that the ground state in-
volves multiparticle-multihole, dominantly 4p-4h, shell model
components. The geometrical α cluster model has been also
successful in describing well the α cluster structure in the
40Ca – 44Ti region [34,50,89].

Recently Manton [90] reported that the energy levels of
40Ca can be classified as the vibration and rotation of the ten
α clusters using a Skyrme model. Microscopic ten α cluster
model calculations using the RGM and the GCM as well as
the semimicroscopic OCM may be desired; however, such
ten-body calculations are far beyond the power of the modern
supercomputers. From the microscopic cluster model point of
view the α + 36Ar cluster model is an approximation of the
ten α cluster model with R1 = R2 = · · · = R9 in Eq. (4), as
illustrated as in Fig. 2.

Since the crystallinity picture of the α cluster structure in
40Ca has been confirmed theoretically and experimentally, the
problem is to reveal the origin and the collective nature of the
mysterious 0+ state as well as the excited α cluster states from
the condensation viewpoint of the duality.

B. Superfluid cluster model study of 40Ca

Because the α cluster structure invokes the duality of geo-
metrical structure and condensation as discussed in Sec. II, it
is expected that the α cluster states in 40Ca can be also under-
stood from the condensation viewpoint using the SCM with
the order parameter of condensation. In a previous paper [17]
the SCM was applied to understand the duality of the α cluster
structure of 12C, for which the α cluster condensation of the
Hoyle state had been thoroughly investigated theoretically and
experimentally. In contrast to the computational difficulties of
the ten α cluster GCM calculations, the SCM calculation is
tractable for many α cluster systems. In fact, the SCM has
been successfully applied to study the BEC of α clusters at
high excitation energies in many nuclei, 12C, 16O, 20Ne, etc.,
and in 48Cr and 52Fe with thirteen α clusters [69].

As in Refs. [17,67–69,91], I take the Ali-Bodmer
type two-range Gaussian nuclear potential U (|x − x′|) =
Vre−μ2

r |x−x′|2 − Vae−μ2
a|x−x′|2 , with Vr and Va being the strength

FIG. 3. (a) The energy levels of 40Ca calculated with the super-
fluid cluster model with the condensation rate 6%. The zero-mode
states are indicated by zm and others are BdG states. (b) The ex-
perimental low-lying energy levels of 40Ca [86,87,93]. The member
states of the experimental K = 0+ and K = 0− bands with the α

cluster structure are indicated by the thick solid lines.

parameters of the short-range repulsive potential due to the
Pauli principle and the long-range attractive potential, respec-
tively [92]. The chemical potential is fixed by the specification
of the superfluid particle number N0. I assume the con-
densation rate to be 6%, N0 = 0.06N . The ground state is
identified as the vacuum |	0〉|0〉ex. The range parameters μa

and μr are fixed to the values 0.475 and 0.7 fm−1, respec-
tively, determined in Ref. [92] to reproduce α + α scattering.
The two potential parameters, �, which controls the size of
the system, and Vr , which prevents collapse of the condensate,
are determined to be � = 2.97 MeV/h̄ and Vr = 591 MeV.
These reproduce the experimental root mean square (rms)
radius 3.43 fm of the ground state, |	0〉|0〉ex and the energy
level of the 0+

2 state identified as the first excited zero-mode
state |	1〉|0〉ex.

In Fig. 3, the calculated energy levels are compared with
the experimental data. The calculation locates the K = 0+
band states in correspondence to the experimental band build
on the mysterious 0+

2 state. The moment of inertia of the
calculated band is smaller than the experimental one and the
6+ state appears at 12.75 MeV. However, it is to be noted that
the α cluster band emerges at very low excitation energy from
the spherical vacuum. The 0+

2 state is a state of the Nambu-
Goldstone zero mode, a soft mode collective state. This soft
mode nature explains naturally why the mysterious collective
0+ state emerges at such a low excitation energy, although it
is mysteriously low for a 4p-4h state in the shell model to
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FIG. 4. (a) The calculated eigenfunction (order parameter) ξ (r)
(dashed line) and its adjoint eigenfunction η(r) (solid line) for the
ground state of 40Ca. (b) The calculated superfluid density distribu-
tion ρs in the SCM (dashed line) and the matter density distribution
ρ in the OCM of Ref. [88] (solid line) for the ground state.

emerge from the spherical vacuum ground state of 40Ca. If the
system is infinitely large, it would appear at zero excitation
energy. The finite low excitation energy is the consequence
of the finite size of the nucleus and the Pauli principle. The
excited states 2+ and 4+ of the K = 0+ band are the BdG
states built on the NG mode state.

The calculated 0+
3 state, which is a BdG mode state, cor-

responds to the experimental 0+
3 state at 5.21 MeV above the

α threshold energy, which is considered to be an 8p-8h state
in the deformed model [72] and a 4p-4h dominant state in
the 32S core shell model calculations [73]. The calculated 0+

4
state, which is a second member state of the NG zero mode,
corresponds to the experimental 0+

4 state at 7.30 MeV, which
is interpreted to be a 4p-4h and 8p-8h dominant state in the
shell model calculation [73] and a 2p-2h dominant state in the
deformed model [72]. As for the negative state, a collective
3− state appears in accordance with experiment although the
calculated energy is slightly high. The 1− state also appears
to be in good correspondence with the experimental energy
level, which is considered to be a band head state of the
parity doublet K = 0− band. It is to be noted that, although no
geometrical configuration of the ten α clusters are assumed,
the important α cluster states are obtained in good accordance
with experiment by the SCM calculation based on the picture
of Fig. 2.

In Fig. 4(a) the calculated eigenfunction ξ (r) (the order pa-
rameter) and its adjoint eigenfunction η(r) are displayed. The
number fluctuation of the superfluid α clusters in the ground
state, η, is large near the surface region and decreases toward
the inner and outer regions. In Fig. 4(b) ρs(r) = |ξ (r)|2/N0

represents the calculated superfluid density distribution of the
α clusters and ρ(r) is the nuclear matter density distribution
calculated in the OCM cluster model of Refs. [88]. ρs is
largest in the center of the nucleus and gradually decreases
toward the surface region. The nonsuperfluid normal density,
ρn ≡ ρ − ρs, is much smaller than ρ. However, it is this
small superfluid density component that causes the 0+

2 state
at such low excitation energy as an NG zero-mode state. This
may evoke that the Cooper pairs, a small fraction of nucleons
near the Fermi surface, cause the superfluidity of nuclei in the
heavy mass region. The superfluid fraction ρs in the ground

FIG. 5. Calculated BdG wave functions of 40Ca, Un�(r) (solid
lines) and Vn�(r) (dashed lines), for the 2+ (n = 0, � = 2) and 3−

(n = 0, � = 3) states.

state is considered to be a predisposition that causes the
macroscopic wave nature aspect, the condensation aspect of
the duality, of the α cluster states in the excited energy region.

In Fig. 5 the BdG wave functions Un�(r) and Vn�(r) of
Eq. (21) for the 2+ and 3− states are displayed. The peak of
Un�(r) for � �= 0 is located in the surface region because of
the repulsive force between the α clusters and moves outward
with increasing � due to the centrifugal force. The magnitude
of Vn�(r) is negligible for the 2+ and 3− states, implying no
Bogoliubov mixing in these states due to the small conden-
sation rate. As for the zero-mode wave function, I introduce
the eigenstate of Q̂, denoted by |q〉, as Q̂|q〉 = q|q〉. To solve
Eq. (26), I move to the q-diagonal representation, in which the
state is represented by the wave function 	ν (q) = 〈q|	ν〉, and
the operators Q̂ and P̂ are represented by q and 1

i
∂
∂q , respec-

tively, consistent with the commutation relation, [Q̂, P̂] = i. In
Fig. 6 the zero-mode wave functions 	ν (q) for the first three
states obtained by solving Eq. (26) are displayed. Figure 6(a)
corresponds to the ground state with ν = 0 and Fig. 6(b)
corresponds to the second state with ν = 1, the mysterious
0+ state at 3.35 MeV. Figure 6(c) corresponds to the third
member state with ν = 2, 0+

4 at 7.30 MeV. One sees that the
excitation of the NG mode is caused by the nodal excitation
of 	ν (q) with respect to q in the NG subspace. It is important
to note that this nodal excitation is anharmonic, as seen in
ĤQP

u in Eq. (24), which brings the excitation energy of the
ν = 1 state lower and closer to the vacuum, and the ν = 2
state closer to the ν = 1 state in Fig. 3. The importance of the
zero-mode in the BEC systems of α clusters is discussed in
detail in Ref. [69].

V. DISCUSSION

I study the condensation rate dependence of the calcu-
lated energy levels. In Fig. 7 the energy levels calculated for
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FIG. 6. The zero-mode wave functions 	ν (q) for the 0+ states of 40Ca calculated with the condensation rate 6%, N0 = 0.06N , (a) ν = 0,
(b) ν = 1, and (c) ν = 2. The solid lines and the dashed lines represent the real part and the imaginary part of the wave functions 	ν (q).

different condensation rates, 5%, 6%, 7%, and 8%, are dis-
played. The confining potential parameter � and the repulsive
potential Vr are slightly adjusted in order to prevent the
system from collapsing and the excitation energy of first ex-
cited 0+ state corresponds to the experimental energy: � =
3.14 MeV/h̄ and Vr = 696 MeV for 5%, � = 2.99 MeV/h̄
and Vr = 555 MeV for 7%, and � = 3.04 MeV/h̄ and Vr =
535 MeV for 8%. As the condensation decreases, the repulsive
potential becomes larger gradually to keep the system stable,
preventing collapse, while the values of � change little since
they are related to the size of the ground state. As seen in
Fig. 7, the structure of the energy spectrum changes generally
little. In detail, the excitation energies of the 0+

2 , 2+, 4+, 3−,
and 1− states scarcely change for the different condensation
rates. However, for the 0+ states, the excitation energy of
the zero-mode ν = 2 state decreases as the condensation rate
increases gradually: In the case of 5% the excitation energy of
the ν = 2 zero-mode state, 10.49 MeV, is higher than the BdG
0+ state. In the case of 6% the ν = 2 zero-mode state comes
down to 7.51 MeV. For 8% the ν = 2 zero-mode 0+ state
becomes lower than the BdG 0+ state. In the range of 6%–8%
the calculated 0+ states correspond to the experimental energy
spectrum.

FIG. 7. The condensation rate dependence of the energy levels of
40Ca calculated by the superfluid cluster model with the condensation
rates (a) 5%, (b) 6%, (c) 7%, and (d) 8%. The three zero-mode states
with ν = 0, 1, and 2 are indicated by zm and others are BdG states.

Next I consider the crystallinity and the condensation as-
pects of the duality of the α cluster structure by comparing
the energy levels calculated by using the OCM with the
α + 36Ar cluster model in Ref. [88] and those by using the
SCM. In Fig. 8, both models reproduce the very low-lying
mysterious 0+ state in agreement with experiment. While
the OCM describes the mysterious 0+ state as a deformed
state with the α + 36Ar geometrical configuration, which is
in line with the 4p-4h dominant state in the deformed shell
model picture of Gerace and Green [71], the SCM describes
it as a Nambu-Goldstone zero-mode state, a soft mode. In the
crystallinity picture, the mysteriously low excitation energy is
brought about by the energy gain due to deformation caused
by the geometrical α clustering. This mechanism is common
to the deformed shell model by Gerace and Green in Ref. [71],
in which the deformation is not due to crystallinity but due
to the deformation of the mean field of the shell model. It
is to be noted that the observed significant α spectroscopic
factor of the mysterious 0+ state, S2

α = 0.26, is explained
by taking into account the deformation due to α clustering
[88]. In the OCM the predisposition of α clustering is im-
plemented in the ground state vacuum. In fact, the calculated
ground state has the α spectroscopic factors S2

α = 0.086 for

FIG. 8. (a) The energy levels calculated with the α cluster model
with the α + 36Ar geometrical configuration in the OCM [88] are
compared with (b) the experimental energy levels [93] and (c) the
field theoretical superfluid cluster model calculation with 6% con-
densation rate assuming no geometrical configuration.
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the (I ⊗ L) = (0 ⊗ 0) channel with the [36Ar(I) ⊗ αL]J=0

configuration, where L is the orbital angular momentum of the
relative motion between 36Ar and α clusters in 40Ca. On the
other hand, in the SCM the emergence of the mysterious low
excitation energy 0+ state is a manifestation of the emergence
of a soft mode due to spontaneous symmetry breaking of the
global phase of the ground state, condensation aspect of the
duality.

The moment of inertia of the K = 0+ band calculated in
the OCM is in agreement with the experimental value, while
that of the SCM is slightly smaller than that in the OCM cal-
culation. The SCM locates the 2+ and 4+ states at excitation
energies higher than the experiment. However, while OCM
describes the band as a rotational band of the geometrical
α + 36Ar cluster structure, the SCM gives the band as the BdG
states. Although the two models, two views, are completely
different, they both basically describe the α cluster structure
aspects of the K = 0+ band of 40Ca.

As for the other excited 0+ states with the α cluster struc-
ture above Ex = 5 MeV, the OCM calculation locates only one
0+ state between 5 and 8 MeV, which has the configuration
[36Ar(2+) ⊗ αL=2]J=0. More 0+ states will be obtained in
the extended α + α + 36Ar cluster model, since the existence
of a 0+ state with 8p-8h character has been suggested in the
deformed model and shell model calculations in Refs. [72,73]
and in the 8Be transfer reaction experiment in Ref. [94]. The
SCM locates the two α cluster 0+ states in the relevant energy
region; one is a zero-mode state and the other is a BdG state.

As for the negative parity states, the OCM locates the 1−
state of the K = 0− band with the α + 36Ar structure, which
is the parity-doublet partner of the K = 0+ band. As seen in
Fig. 8, its calculated excitation is slightly higher than the ob-
served state. On the other hand, the SCM locates the 1− state
as a BdG state, whose excitation energy is in good agreement
with the experiment. As for the 3− state, the OCM locates a
low-lying 3− state, which is a superposition of many channels
with the [36Ar(I) ⊗ αL]J=3 configuration with the compo-
nents, 0.047, 0.055, 0.037, 0.063, 0.047, 0.036. 0.034, and
0.071 for the channels (I ⊗ L) = (0 ⊗ 3), (2 ⊗ 1), (2 ⊗ 3),
(2 ⊗ 5), (4 ⊗ 1), (4 ⊗ 3), (4 ⊗ 5), and (4 ⊗ 7), respectively.
On the other hand, the SCM calculation locates the first 3−
as a BdG state at an excitation energy slightly higher than the
experiment. The two results seem to be consistent that this 3−
state has a vibrational character.

Considering that the SCM describes the α clustering as-
pects in view of wave nature, the α cluster structure in
40Ca is found to be understood from both the viewpoints of
crystallinity and condensation associated with superfluidity,
a property of supersolidity. It is found in the SCM that the
emergence of the 0+ state at very low excitation energy,
which is mysterious from the viewpoint of multiparticle mul-
tihole excitation in the shell model, is the consequence of
the first excited 0+ being a collective state with a soft mode
nature caused by the NG zero mode due to the spontaneous
symmetry breaking of the vacuum ground state due to the
condensation aspect, superfluidity, of the duality of α cluster-
ing. This mechanism is quite general when SSB of the global
phase of the vacuum occurs. In the previous paper [17] the
mysterious 0+ state in 12C, the Hoyle state, was understood

as a soft mode state of the zero mode due to SSB due to the
condensation aspect of the duality of α cluster structure of the
vacuum ground state.

What is the evidence for the supersolidity? The direct
evidence of supersolidity is the observation of a Nambu-
Goldstone mode [14–16] due to SSB of the global phase, as
was confirmed very recently for an optical lattice supersolid
[11–13]. Since the superfluid density ρs is the order parameter
of the SSB of the global phase [17], the existence of ρs �= 0
in the GCM α cluster wave function of the ground state
due to the duality accompanies a Nambu-Goldstone mode
state, which is a very low-lying collective state and is dif-
ficult to explain in the shell model. This logic is same as
the emergence of rotational band states in deformed nuclei.
Quadrupole deformation with the order parameter δ �= 0 is
caused by a quadrupole boson condensation in the ground
state due to SSB of rotational invariance [27]. The appearance
of the intruder collective states at a very low excitation energy
near the α threshold such as the mysterious 0+

2 states in 40Ca
and in 16O, analogous to the intruder 0+

2 state in 12C, which
has been understood by the empirical threshold rule of the
Ikeda diagram [47,55], is considered to be understood from
the viewpoint of the Nambu-Goldstone mode due to SSB of
the global phase of the α cluster structure.

It is to be noted that the present reasonable success of the
SCM, which assumes no geometrical α cluster configuration,
does not mean ruling out the geometrical α cluster model.
It should be emphasized that the SCM only describes the
condensation, superfluid, aspect of the duality of the α cluster
structure, being complementary to the geometrical α cluster
picture. In the α cluster structure the geometrical structure is
essential. The SCM does not replace the geometrical α cluster
model. For example, the rotation motion, the large moment
of inertia, is caused by the spontaneous symmetry breaking
of the rotational invariance due to the geometrical α cluster
configuration, which is absent in the present SCM under a
spherical trapping potential. The reduction of the moment of
inertia in the SCM calculations is inherent to superfluidity,
which is well known in the superfluid heavy nuclei [27]. A
cluster model with a geometrical configuration which involves
the order parameter to characterize the condensation of α

clusters is a future work to be studied.
Finally I mention the importance of the Pauli principle

for the duality of geometrical crystallinity and condensation
of α cluster structure. The geometrical crystallinity of the α

clusters has been known to be caused by the Pauli principle
[41,95]. In Figs. 1(c), 1(f), 1(i), and 1(l) of each nucleus the
coherent wave of the α cluster structure is the consequence
of the geometrical crystallinity. Thus the Pauli principle has
the dual role of causing the geometrical clustering and con-
densation. In this sense the origin of the superfluidity of α

cluster structure is different from that of the BCS superfluidity
in heavy nuclei and cold atoms.

VI. SUMMARY

It was shown that the spatially localized Brink α cluster
model in the generator coordinate method has the apparently
incompatible duality of crystallinity and condensation of α
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clusters, a property of a supersolid. In order to see whether
the α cluster structure, which in recent decades has been un-
derstood based on the crystallinity picture with a geometrical
configuration of clusters, is also understood from the other
aspect of the duality, condensation, a field theoretical cluster
model is used in which the order parameter of condensation
is introduced. The α cluster structure of 40Ca with a myste-
rious 0+ state at very low excitation energy was investigated
by the SCM with ten α clusters. Since the SCM rigorously
treats spontaneous symmetry breaking of the global phase, a
Nambu-Goldstone collective mode, zero mode, due to con-
densation inevitable appears. It is shown that the mysterious
0+ state, which is considered to be a bandhead state of the
K = 0+ band with the α + 36Ar cluster structure in the crys-
tallinity picture, is understood as an NG zero-mode state. The
1− state, which is considered in the crystallinity picture to
be a bandhead state of the K = 0− band, which is a parity-
doublet partner of the K = 0+ band, is obtained as a BdG
state in correspondence to the experimental data. The two
α cluster 0+ states at around 6 MeV are also obtained in
accordance with the experimental data. Thus it is found that
the low-lying α cluster states, which have been considered to
be understood in the geometrical cluster picture, can be also
understood from the other aspect of the duality, condensation.
The mysterious 0+ state of 40Ca is a collective mode, a soft

mode, of the NG mode caused by SSB of the ground state
vacuum. This explains naturally why the mysterious low-lying
0+ state appears below or near the α threshold energy of
40Ca. This mechanism is logically the same as the emer-
gence of the NG mode rotational band states in deformed
nuclei, which is caused by a quadrupole boson condensation
due to SSB of rotational invariance [27]. The appearance of
such intruder collective states near the α threshold, which
has been understood by the empirical threshold rule of the
Ikeda diagram [47,55], is understood to be due to the NG
mode state due to condensation of the α cluster structure.
The dual property of crystallinity and condensation, a prop-
erty of a supersolid, of α cluster structure may be a general
feature of the α cluster structure. Since the Pauli principle is
responsible for clustering [41,95], one can say that superso-
lidity of α cluster structure is the consequence of the Pauli
principle.
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