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Spectral function for 4He using the Chebyshev expansion in coupled-cluster theory
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We compute spectral function for 4He by combining coupled-cluster theory with an expansion of integral
transforms into Chebyshev polynomials. Our method allows us to estimate the uncertainty of spectral recon-
struction. The properties of the Chebyshev polynomials make the procedure numerically stable and considerably
lower in memory usage than the typically employed Lanczos algorithm. We benchmark our predictions with
other calculations in the literature and with electron-scattering data in the quasi-elastic peak. The spectral
function formalism allows one to extend ab initio lepton-nucleus cross sections into the relativistic regime.
This makes it a promising tool for modeling this process at higher-energy transfers. The results we present open
the door for studies of heavier nuclei, important for the neutrino oscillation programs.
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I. INTRODUCTION

Lepton-nucleus cross sections are not only a invaluable tool
to investigate the nuclear dynamics with clean electroweak
probes [1] but have also become a hot topic in the short-
and long-baseline neutrino programs aiming at extracting neu-
trino oscillation parameters [2–4]. Recently, we initiated a
theory program that addresses low- and intermediate- energy
lepton-nucleus scattering from first principles by combining
the Lorentz-integral-transform with coupled-cluster theory
(LIT-CC) to compute many-body response functions [5] and
lepton-nucleus cross sections. In this approach, the final-state
interaction is described consistently with the initial- state
interaction by the same Hamiltonian rooted in quantum chro-
modynamics, see Refs. [6–8]. An example is the description
of the longitudinal quasi-elastic peak of 40Ca, see Ref. [8],
and this paves the way for further investigations. Despite its
success, this approach also has its limitations: the formalism
is based on the nonrelativistic theory and at the moment is
capable of predicting only inclusive cross sections. Efforts
to include the spectrum of the outgoing nucleons below and
above pion production are still lacking in ab initio calcu-
lations. Several other approximations and phenomenological
methods instead offer a way to answer such questions [9–13],
chief among them being the spectral functions formalism.
While spectral functions can be computed phenomenologi-
cally [14–16], calculations were performed recently within
the self-consistent Green’s function (SCGF) method [17,18]
using a similar Hamiltonian as in Ref. [8] for the initial state.
In the past also the LIT method combined with hyperspherical
harmonics was used to obtain the proton spectral function of
4He [19].

The main advantage of the spectral function formalism lies
in the possibility of detaching the high-energy physics from

the ground-state properties of the nucleus under the assump-
tion that the final-state interactions can be neglected. This
not only allows one to make predictions for the quasi-elastic
peak using the relativistic kinematics and currents, but this
approach can also be used at higher energies, e.g., above the
pion production threshold. Hence, developing efficient ab ini-
tio methods to compute spectral functions deserves attention,
which goes beyond the mere fact that their calculation in a
many-body system is per se an interesting and challenging
task. In this work, we present an approach to the compu-
tation of spectral functions which opens up the possibility
of using ab initio many-body methods in the high-energy
regime.

The reconstruction of nuclear response functions requires
information about the excited states of the system, but usually
these are not easily accessible. To circumvent this issue, the
problem has been often reformulated by computing integral
transforms of the response function, with Lorentz and Laplace
kernels being popular choices [20–24]. The computation of
the integral transform requires one to (only) solve a bound-
state problem. The inversion of the transform, needed to
obtain the response function, has to be performed numerically.
While accurate results have been obtained for a variety of
electroweak observables [5,8,24–26], the inversion introduces
an additional numerical error and is most stable when the re-
sponse function exhibits only one or two broad peaks [27,28].
This scenario was recently explored using machine-learning
techniques [29]. Spectral functions often have a more com-
plicated structure and this makes the inversion of the integral
transform difficult. Therefore, we propose here to use a differ-
ent approach that is based on the Chebyshev expansion of the
integral kernel (ChEK) introduced in Refs. [30,31]. Although
it relies on the idea of the integral transform, it does not

2469-9985/2022/106(3)/034310(12) 034310-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4698-9339
https://orcid.org/0000-0002-9189-9458
https://orcid.org/0000-0001-8733-2849
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.106.034310&domain=pdf&date_stamp=2022-09-19
https://doi.org/10.1103/PhysRevC.106.034310


SOBCZYK, BACCA, HAGEN, AND PAPENBROCK PHYSICAL REVIEW C 106, 034310 (2022)

require its inversion. Moreover, for a given desired resolution
of the spectral reconstruction it allows one to estimate an
uncertainty.

The information about the (discrete) spectrum of excited
states in a many-body system can be retrieved in various ways.
The nuclear theory community is familiar with the Lanczos
orthogonalization procedure [32], which for example is used
in the LIT-CC method. An alternative approach, developed
in the field of condensed-matter physics, is the kernel poly-
nomial method (KPM) [33]. As for the KPM, the approach
of this paper is also based on an expansion in Chebyshev
polynomials.

This paper is organized as follows. In Sec. II, we review
how the lepton-nucleus interaction in the quasi-elastic peak
can be expressed in terms of spectral functions using the
impulse approximation. In Sec. III, we present the theoreti-
cal framework for our calculations of spectral functions. We
validate our method in 4He, paying special attention to the
center-of-mass problem in Sec. IV, and finally we conclude in
Sec. V.

II. ELECTRON-NUCLEUS SCATTERING

Let us consider the process

e(k) + A(p0) → e′(k′) + f (p f ), (1)

where an incoming electron with four-momentum k = (Ek, k)
is scattered off a nucleus A, producing an outgoing electron
with four-momentum k′ = (E ′

k, k′) and a final (in general
multiparticle) state f . The four-momentum transfer is q ≡
(ω, q) = k − k′. In the Born approximation, the electron in-
teracts via the exchange of a single γ .

The inclusive cross section of this process can be written
in terms of leptonic and hadronic tensors as

dσ

dωd cos θ
=

(
α

q2

)2 |k|
|k′|LμνW μν, (2)

with the angle of the outgoing lepton being θ , α ≈
1/137, is the fine-structure constant. The lepton tensor
is

Lμν = 2[kμk′
ν + k′

μkν − gμν (kk′)]. (3)

The nuclear structure information is encoded in the hadron
tensor,

W μν =
∑

f

δ4(p0 + q − p f )〈0|(Jμ)†|	 f 〉〈	 f |Jν |0〉, (4)

where the current Jμ corresponds to the electromagnetic
process.

In the following, we focus on the quasi-elastic mechanism,
for which the interaction takes place on a single nucleon, kick-
ing off a nucleon from the remaining (A − 1) nucleus in the
final state. The electromagnetic current is a sum of one-body
contributions, which in the second-quantization form is given
by

Jμ =
∑
α,β

〈β| jμ|α〉a†
βaα. (5)

Here, the initial and final nucleon states are labeled by α and
β, respectively. Within the spectral function formalism, we
use the fully relativistic current in the matrix element treating
the initial and final nucleons as free states

〈p + q| jμ|p〉 = ū(p + q)V μu(p). (6)

The current jμ has a vector structure and u denotes a Dirac
spinor. Constructing the most general form of V μ using the
available four-vectors, we have

V μ = F1γ
μ + F2

2m
iσμνqν . (7)

We use F n,p
1 , F n,p

2 parametrized as in Ref. [34].

The impulse approximation

At relatively large momentum transfer q, one can assume
that the struck nucleon is decoupled from the nuclear (A − 1)
system, i.e., that the final-state interaction can be neglected.
Within this impulse approximation, the final nuclear state
factorizes as

|	 f 〉 −→ a†
p′ |	A−1〉, (8)

where a plane-wave state ap′ with momentum p′ and energy
Ep′ is added on top of the final (A − 1) system.1 Using the cur-
rent of Eq. (5), the one-body matrix element can be factorized
as

〈	 f |Jμ|0〉 →
∑
α,β

〈β| jμ|α〉〈	A−1|ap′a†
βaα|0〉

=
∑
α,β

〈β| jμ|α〉〈	A−1|δβp′aα − a†
βap′aα|0〉

≈
∑

α

〈p′| jμ|α〉〈	A−1|aα|0〉

=
∫

d3p

(2π )3 〈p′| jμ|p〉
∑

α

〈p|α〉〈	A−1|aα|0〉, (9)

where the approximation in the third line assumes that the
struck nucleon at the interaction vertex is exactly the one
which is ejected from the nucleus [35] and in the last line
we insert a complete set of states

∫
d3 p/(2π )3|p〉〈p|. 〈p|α〉

are single-particle wave functions in momentum space. The
process is shown schematically in Fig. 1.

The recoil energy Ekin
f of the (A − 1) system is negligible

for heavy nuclei, and the excitation is given by the energy
conservation

EA−1
f = ω + E0 − Ep′ − Ekin

f (10)

with the initial-state energy E0.

1For simplicity we suppress spin and isospin indices.
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FIG. 1. Impulse approximation: the electroweak interaction
takes place on a single nucleon which afterwards does not interact
with the spectator |	A−1〉 system.

Substituting Eq. (9) in Eq. (4), the incoherent contribution
to the hadron tensor becomes

W μν (q) =
∫

d3pd3p̃

(2π )6

∑
α,α′

∑∫
	A−1

〈p|( jμ)†|p′〉〈p′| jν | p̃〉

× 〈p|α〉†〈p̃|α′〉〈0|a†
α|	A−1〉〈	A−1|aα′ |0〉

× δ
(
ω − Ep′ − EA−1

f − Ekin
f + E0

)
. (11)

From the momentum conservation at the single nucleon vertex
p = p̃ = p′ − q. Furthermore, the spin state of aα and a′

α co-
incide due to charge conservation and the assumption that the
nuclear ground state has spin zero. Finally, the last step of the
factorization separates the energy conservation at the vertex
from the excitation of the residual system by introducing the
energy E needed to remove a nucleon with momentum p from
the ground state as

δ
(
ω + E0 − Ep′ − EA−1

f − Ekin
f

)

=
∫

dEδ
(
ω + E − Ep′ − Ekin

f

)
δ
(
E + EA−1

f − E0
)
. (12)

Using this equation and introducing explicitly the isospin
dependence, the hadron tensor is

W μν (q) =
∫

d3p

(2π )3 dE
[
Sn(p, E )wμν

n (p, q)

+ Sp(p, E )wμν
p (p, q)

]
δ
(
ω + E − Ep+q − Ekin

f

)
,

(13)

with wμν
n,p(p, q) = 〈p + q| jμ|p〉†〈p + q| jν |p〉 depending on

the isospin of |p〉, where we have introduced the hole spectral
function

Sn,p(p, E ) =
∑
α,α′

∑∫
	A−1

|〈0|a†
α|	A−1〉〈	A−1|aα′ |0〉

× 〈p|α〉†〈p|α′〉δ(E + EA−1
f − E0

)
. (14)

The spectral function gives the probability distribution of re-
moving a nucleon with momentum p from the target nucleus,
leaving the residual (A − 1) system with an energy E0 − E .
For closed-shell nuclei, such as the 4He considered in this
work, the spectral functions of spin-up and spin-down nucle-

ons coincide. We normalize spectral functions as
∫

d3 p

(2π )3 dESn(p)(p, E ) = N (Z ). (15)

In the relativistic regimes, the factors m/Ep and m/Ep+q

should be included to account for the implicit covariant nor-
malization of the four-spinors of the nucleons in the matrix
elements of the current jμ. Hence the hadron tensor finally
becomes

W μν (q) =
∫

d3p

(2π )3 dE
m

Ep

m

Ep+q

× [
Sn(p, E )wμν

n (p, q) + Sp(p, E )wμν
p (p, q)

]
× δ

(
ω + E − Ep+q − Ekin

f

)
, (16)

where one can see that it can be calculated starting from the
spectral function for (n) neutrons and (p) protons.

We performed the factorization of the relativistic currents
and the nuclear ground state governed by nonrelativistic dy-
namics. This way we can address the processes occurring at
high energy-momentum transfers. This procedure introduces,
however, some model dependence since we do not treat the
wave function and the currents on an equal footing. In a con-
sistent description we can either have the picture of a simple
current interacting with a complicated nucleus, or an alterna-
tive picture (and a continuum of approaches between these
two extremes) where the nucleus is simple (e.g., a product
state), and the current is complicated and consists of one- and
two-body terms. Very recently, authors of Ref. [36] presented
a detailed discussion of this subject. In particular they ana-
lyze how the high-momentum behavior of the wave functions
depends on the resolution of employed nuclear Hamiltonian.
Their results can be applied to the momentum distribution of
the spectral functions. We leave the analysis of this effect,
as well the role of two-body currents within the factorization
scheme, for the future studies.

III. FORMALISM

A. Green’s function and spectral function

The spectral functions Eq. (14) are defined through the
imaginary part of a propagator in a many-body system.
Presently, we consider only the hole propagation of a state
with quantum numbers α to a state with quantum numbers β:

Gh(α, β, E ) = 〈0|a†
β

1

E − (E0 − Ĥ ) − iε
aα|0〉,

ImGh(α, β, E ) = − π
∑∫

	A−1

〈0|a†
β |	A−1〉

× 〈	A−1|aα|0〉δ{E − (E0 − E	 )}. (17)

The spectral functions can be retrieved from the imaginary
part of Green’s function summing over all appropriate quan-
tum numbers:

S(p, E ) = − 1

π

∑
α,β

〈p|α〉〈p|β〉†ImGh(α, β, E ). (18)
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The reconstruction of ImGh(α, β, E ) from Eq. (17) requires
a summation over all excited states |	A−1〉, which contains
not only bound states but also continuum states. Within ab
initio methods the calculated spectrum is typically discretized
because of the truncation of the many-body space. Contin-
uum effects can be included via complex-scaling techniques
[37,38] or in the Berggren basis. The latter idea has been
recently applied to obtain the microscopical optical potential
from the coupled-cluster theory [39,40]. These techniques are
usually combined with the Lanczos algorithm to construct
tridiagonal forms of large matrices and thereby give access
to the extreme eigenvalues of the problem. Here, however, we
will use another approach described in the next section.

B. Chebyshev expansion of integral transform

Within the ChEK method we rephrase our problem: in-
stead of reconstructing the response we want to estimate
observables which are expressed as the energy integrals of the
response. The method can be used in a general situation

 =
∫

dω f (ω)R(ω), (19)

where f (ω) is any bound function defining the observable and
R(ω) is a response function—which in our case corresponds
to ImGh(α, β, ω). Our strategy to approximate the quantity in
Eq. (19) consists in applying the integral transform R̃(E ):

̃ =
∫

dE f (E )R̃(E ), (20)

in such a way that we control the approximation error | −
̃|. Let us also notice that the reconstruction of  does not
require the inversion of integral transform. In our case R̃(E ) is
given by

ImG̃h(α, β, E ) =
∫

dωImGh(α, β, ω)K (ω, E )

= −π
∑∫

	A−1

〈0|a†
β |K (E	, E − E0)|aα|0〉

= −π〈0|a†
β |K (Ĥ , E − E0)|aα|0〉. (21)

The kernel K (ω, E ) can be realized by various functions.
Here, we will apply the Gaussian kernel

K (ω, E ; λ) = 1√
2πλ

exp

(
− (ω − E )2

2λ2

)
. (22)

Following Ref. [30], we characterize the kernel as � accurate
with � resolution:

sup
ω0∈[−1,1]

∑∫ ω0+�

ω0−�

K (ω0, E )dE � 1 − �. (23)

With these definitions we can provide the uncertainty bound
for | − ̃|, which depend on the properties of the function f
and the kernel K .

Next we expand Eq. (21) into Chebyshev polynomials and
truncate the number of terms N . This truncation will introduce
an additional error, as will be explained later. The truncated

kernel

K (ω, E ) =
N∑

k=0

ck (E )Tk (ω) (24)

is expressed in terms of Tk (ω) = cos[k arccos(ω)], which
follow a recursive relation,

T0(x) = 1, T−1(x) = T1(x) = x,

Tk+1(x) = 2xTk (x) − Tk−1(x). (25)

Let us assume that the Hamiltonian norm is known and that
we are able to rescale our problem [Emin, Emax] → [−1, 1].
This allows us to use Chebyshev polynomials (which are
defined on the interval [−1, 1]). The Hamiltonian spectrum
can be obtained, e.g., via the Lanczos algorithm. The rescaling
is given then by

a = (Emax − Emin)/2, b = (Emax + Emin)/2,

H := (H − b)/a. (26)

Combining Eqs. (21) and (24) we obtain

ImG̃h(α, β, E ) = −π

N∑
k=0

ck (E )〈0|a†
βTk (Ĥ )aα|0〉

≡ −π

N∑
k=0

ck (E )μk . (27)

For simplicity we abuse the notation and understand that
ImG̃h(α, β, E ) has an implicit N dependence. Furthermore,
the moments μk have an implicit dependence on α and β. The
moments of the expansion μk can be retrieved from a many-
body calculation, using the recursive relation from Eq. (25):

〈	̃0| ≡ 〈0|a†
β |, |	0〉 ≡ aα|0〉,

〈	̃k| ≡ 〈	̃k−1|Ĥ |	k〉 = Ĥ |	k−1〉,
μ0 = 〈	̃0|	0〉, μ1 = 〈	̃0|	1〉 ≡ 〈	̃1|	0〉,

μk+1 = 2〈	̃0|	k+1〉 − μk−1 ≡ 2〈	̃k+1|	0〉 − μk−1.

(28)

In the (k + 1)st step only the |	k〉 (or 〈	̃k|) state has to be
known from the previous iteration. Similarly to the Lanczos
procedure, we iterate the action of Hamiltonian Ĥ . Here,
however, no orthogonality restoration is needed at each step,
which makes the procedure faster and requires less memory.
The coefficients ck from Eq. (27) depend on the chosen kernel
and their form can be found in Ref. [31].

In the present case, we will define the function f (ω) in
Eq. (19) as a histogram bin centered at η and a half width �

f (ω) ≡ h�(η, ω) =
{

0 |η − ω| > �

1 otherwise. (29)

We are then interested in approximating the histogram,

ImGh(α, β; η,�) =
∫

h�(η, E )ImGh(α, β, E )dE , (30)
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using its integral transform [given in Eq. (27)] with a finite
number of Chebyshev moments N ,

ImG̃h(α, β; η,�) = −π

N∑
k=0

μk

∫
h�(η, E )ck (E )dE . (31)

As shown in Ref. [31], we get

ImG̃h(� − �) − � − 2γ (� − �) � ImGh(�)

� ImG̃h(� + �) + � + 2γ (� + �), (32)

where we used a shorter notation ImGh(α, β; η,�) ≡
ImGh(�). The truncation error γ depends on the number of
moments N and the properties of the kernel

γ =
∞∑

k=N

ck (E )Tk (ω). (33)

The analytical expression for the bounds on γ can be found in
Eqs. (B5) and (B22) of Ref. [31] for the Lorentzian and Gaus-
sian kernels, respectively. As has been advocated in Ref. [31],
the Gaussian integral transform has better convergence prop-
erties and will therefore be used in the present calculations.

Equation (32) is the master equation which will ultimately
allow us to reconstruct the spectral functions defined in
Eq. (18) as a histogram. It gives the error bound for ImGh(�)
depending on the characteristics of the kernel, � and �, and
the number of Chebyshev moments N [which enter both γ and
ImG̃h(� ± �)].

It is important to notice some properties of the integral
transform ImG̃h(� ± �) [see Eq. (31)]. The characteristics of
the kernel is encoded in coefficients ck . In this way, the Cheby-
shev moments μk have to be calculated only once for any
kernel to be used. This is an important feature, because their
computation is much more expensive than the postprocessing
stage (i.e., constructing histograms). Moreover, the integral
of Eq. (31) can be performed analytically for the Gaussian
kernel, which speeds up the calculation and does not introduce
any additional numerical errors.

C. Coupled-cluster theory

The moments of the Chebyshev expansion μk in Eq. (28)
have to be calculated in a many-body framework. In this work
we employ the spherical coupled-cluster method [41], which
can accurately describe ground- and excited-state properties
of nuclei in the neighborhood of closed (sub-)shell nuclei. The
method starts from a spherical Hartree-Fock reference state
|	HF〉 and includes correlations with an exponential ansatz

|0〉 = eT |	HF〉. (34)

Here the cluster operator T is built of 1p-1h, 2p-2h, ... excita-
tions,

T =
∑
i,a

ta
i a†

aai + 1

4

∑
i jab

t ab
i j a†

aa†
baia j + · · · , (35)

and is truncated at a certain level. In this work we trun-
cate T at the 2p-2h excitation level, which is known as the

coupled-cluster singles-and-doubles (CCSD) approximation.2

The amplitudes t are obtained by solving a large set of cou-
pled nonlinear equations, which are subsequently used in the
construction of the similarity transformed Hamiltonian and
creation and annihilation operators

H = e−T ĤeT , aα = e−T aαeT , a†
α = e−T a†

αeT . (36)

For our problem, the initial states are built as

|	0〉 = aα|	HF〉, 〈	̃0| = 〈	HF|a†
β. (37)

The calculation of Chebyshev moments follows Eq. (28),
which requires iterating

|	k〉 = H |	k−1〉, 〈	̃k| = 〈	̃k−1|H . (38)

The action of the Hamiltonian can be accumulated either on
the right state, or on the left, or distributed between them. This
allows for a numerical check of the procedure.

In our calculation we use the NNLOsat nucleon-nucleon
and three-nucleon interaction, which was adjusted to the bind-
ing energy and charge radii of light nuclei and selected oxygen
isotopes [42]. Furthermore, we approximate the three-nucleon
interaction at the normal-ordered two-body level which has
been shown to be accurate for light- and medium-mass nuclei
[43,44]. We note that this approximation breaks translational
invariance of the Hamiltonian, and impacts the computation
of intrinsic observables in light nuclei [45]. The results for
various observables are converged in a model space of 15 os-
cillator shells (Nmax = 14) using the oscillator spacing h̄ω =
16 MeV. The three-nucleon interaction had an additional en-
ergy cut on allowed configurations given by E3max = 16 MeV.

IV. RESULTS

Before the analysis of the spectral function itself, we
benchmark our result for the momentum distribution, which
is directly derived from the spectral function:

n(p) =
∫

dES(p, E ) =
∑
α,β

〈p|α〉〈p|β〉†〈0|a†
βaα|0〉. (39)

As coupled-cluster computations are performed in the lab-
oratory system, one has to extract the intrinsic spatial density
(or intrinsic momentum distribution) from the correspond-
ing laboratory distributions. Within the coupled-cluster and
in-medium similarity renormalization-group frameworks the
nuclear ground-state has been shown to factorize with a very
good precision into an intrinsic wave function and a Gaus-
sian center-of-mass [46–48] when the kinetic energy of the
center of mass is removed from the Hamiltonian. We note
that this factorization was demonstrated in the coupled-cluster
approach for a two-body Hamiltonian, while the in-medium
similarity renormalization-group approach showed that this
factorization holds when applying a three-nucleon interaction
in the normal-ordered two-body approximation in nuclei as

2In Eq. (35) index a, b iterates over particle states, while i, j over
hole states.
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FIG. 2. Comparison of laboratory and intrinsic momentum dis-
tribution in 4He (solid and dashed black lines). The gray band
corresponds to an uncertainty of our procedure of removing the
center-of-mass wave function. Results of SCGF [17] are shown for
the laboratory (dashed line) and intrinsic momentum (dashed-dotted
line). All the calculations were done with NNLOsat interaction and
the same model space.

light as 14C [48]. Since the effect of breaking translational
invariance was found to be small on the binding energy and
radius of 4He [42], we assume that factorization holds also for
4He in the coupled-cluster theory. Assuming that the center
of mass is a Gaussian, the extraction of intrinsic momentum
distribution involves a deconvolution via Fourier transforms,
and details are presented in the Appendix. Because of numeri-
cal reasons—varying the cutoff in the Fourier transform—the
low-momentum region is affected by a few-percent uncer-
tainty.

Figure 2 shows the intrinsic and laboratory proton mo-
mentum distributions computed within CCSD. The difference
is clearly visible for low and intermediate momenta up to
k ≈ 0.7 fm−1. We compare our results with those from the
SCGF method. While the results coincide for the laboratory
momentum distribution, there are visible differences to the in-
trinsic CCSD momentum density. We mostly ascribe them to
two very different strategies of the center-of-mass removal. In
our case the method is straightforward and relatively simple,
while the procedure employed in Ref. [17] consists of two
steps. First the SCGF result is approximated via an optimized
reference state, then the center-of-mass component is re-
moved from the wave function using Monte Carlo metropolis
sampling. We note that the three-nucleon interaction is ap-
proximated slightly differently in the SCGF approach [49] and
may therefore impact the comparison with our approach for
intrinsic observables in 4He. We speculate that this difference
will lead to some discrepancies in the cross-section predic-
tions. However, the low-momentum region plays a minor role
since the hadron tensor is weighted by p2d p [see Eq. (16)].

A. Spectral function

Benchmarking of the momentum distribution n(p) allows
us to validate the momentum dependence of the spectral func-
tion S(p, E ) and compare it with a previous calculation of

FIG. 3. The convergence of Gaussian integral transform of the
proton Green’s function

∑
α,β ImG̃h(α, β, E ). We applied the Gaus-

sian kernel of width λ = 0.0625 MeV.

Ref. [17]. However, the spectral function energy dependence
requires a more careful analysis. The energy distribution,
driven by ImG(α, β, E ) is obtained via the integral transform
expanded into Chebyshev polynomials. These are calculated
according to recursive relations of Eq. (28) iterating the action
of the Hamiltonian on the initial pivot state

|	n〉 = Ĥn|	0〉 = Ĥnaα|0〉. (40)

Two remarks are in order. The initial state |	0〉 is composed
of (A − 1) nucleons and, to be consistent, the Hamiltonian
applied in the iteration should be changed accordingly. Oth-
erwise the energy conservation of Eq. (17), E0 − E	 , would
be shifted since E	 is the excitation of the (A − 1) system.
Additionally, |	0〉 might contain spurious center-of-mass ex-
citations which should be detected and removed. The first
point was already discussed in Refs. [39,50] and a method
to account for this inconsistency was proposed. It consists in
performing the calculation of the ground state and excitation
energies both for A nucleons (E0 and ω = E0 − Eψ , accord-
ingly) and (A − 1) (E∗

0 and ω∗ = E∗
0 − E∗

ψ , accordingly), so
that we can calculate

E0 − E∗
	 = E0 − E∗

0 + ω∗. (41)

We have checked that the difference between this value and
E0 − E	 is around 1.5 MeV. For the purposes of the spectral
function—which is a valid approximation for the momentum
transfer of several hundreds of MeV and energy transfers of
tens of MeV—this difference is not drastic. It will be also
partially taken into account since we consider spectral func-
tion in form of a histogram, whose binning will be larger than
1.5 MeV.

The disentanglement of the center of mass from the physi-
cal excitations in ImG(α, β, E ) is complicated. However, the
spectral function of 4He has a simple structure. It is dominated
by a single peak whose position corresponds to the energy
difference between the ground states of 4He and 3H (in the
case of the proton spectral function) or 4He and 3He (in the
case of the neutron spectral function). In Fig. 3, we show
the Gaussian integral transform of the imaginary part of the
Green’s function of protons,

∑
α,β ImG̃h(α, β, E ), summed

over all single-particle states. The dominant peak at around
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22.5 MeV is converged already for Nmax = 14. It is shifted by
2.5 MeV with respect to the experimental value. This differ-
ence stems from the fact that we use the Hamiltonian of A = 4
for the system of A − 1 = 3 nucleons, as mentioned above.
The smaller excitations visible at higher energies play a minor
role. We also observe some very small contribution of states
with negative strengths, which can be treated as unphysical
excitations. We remove them from the final spectral function.

The analysis for 4He shows that our treatment, although
introducing some approximations, still gives reasonable spec-
tral functions within a few percent of uncertainty. We were
able to remove the center-of-mass contamination from the
momentum-dependent part of the spectral function and per-
formed various checks to make sure that the center-of-mass
excitation does not strongly affect the energy distribution.
For heavier nuclei the situation is known to be better, since
center-of-mass effects scale as 1/A.

To obtain the final spectral function within the ChEK
method we need to know the scaling factors, see Eq. (26),
which we estimate through the Lanczos algorithm, Emin = 0
and Emax = 200 MeV. The crucial part of the method is the
choice of the binning when building a histogram on top of the
discretized continuum states. There are at least two conditions
that we want to fulfill:

(1) The first condition is imposed by the computational
cost. We would like to keep the regularization width λ

of the Gaussian kernel small (in the limit of λ → 0
we would recover the eigenvalues of Hamiltonian).
Knowing λ, we define the �-accurate kernel with �

resolution [see Eq. (23)]. With this choice we can set
� (binning width) to be large enough to minimize the
reconstruction error in each bin. If we keep � and
truncation error γ under control, then this error, given
by Eq. (23) of the paper, will be mainly driven by

|ImG̃h(� + �) − ImG̃h(� − �)|. (42)

For the continuum spectrum, we can assume that the
state density is uniformly distributed. In this case this
error would be proportional to �/�.

In practice, especially when we apply the method
to heavier systems, we are limited by the number of
Chebyshev moments that we are able to calculate. In
this situation, we would be forced to choose larger λ,
and consequently �, in order to keep the reconstruc-
tion error low.

(2) Second, the number of discretized states in each bin
has to be sufficiently large to mimic the continuum.
The size of Hamiltonian in the space of 1h and 1p2h
excitations for 4He in our model space is of the order
of 3000 (summed over isospin) and the spectrum is
confined between (20,200) MeV. If we assume that
the density of the spectrum is constant, then we can
roughly estimate 3000/180 ≈ 20 states per 1 MeV.
Therefore, we would choose bins of at least few-MeV
width.

The density of states grows with the model space,
with the order of expansion of the many-body method
(e.g., adding triples to CCSD) and with the size of

nucleus. In fact, for medium-mass nuclei we expect
it to be high enough, so that the main challenge of
the method would be to probe the spectrum with small
enough λ.

Having in mind these above-mentioned conditions, we set
the bin width to 3 MeV, because this is larger than the 2.5 MeV
shift discussed earlier [see Eq. (41) and the discussion below].
We then use the Gaussian width λ = 0.0625 MeV and � =
0.25 MeV. According to the results of Ref. [31] the number
of required moments would exceed N = 10 000 to keep the
truncation error below 1%. However, we numerically find that
results are converged already with N = 6000 moments. With
this choice of parameters we obtain a histogram for which
the well-separated bound state is contained in one bin (of
negligible error). The continuum spectrum binning is affected
by an error of the order of �/� ≈ 15%, which however does
not impact the cross section due to its small contribution, see
Fig. 3.

B. Electron-nucleus scattering

We now turn our attention to the electron scattering off
4He. While we note that ab initio calculations of the 4He
electron-scattering cross section were already presented in
Ref. [55] using a different Hamiltonian and including rela-
tivistic effects, here we want to focus on presenting our results
and comparing them to an earlier calculation [17] that made
use of the same Hamiltonian.

In Fig. 4, we show our results for the cross section in
various kinematics, for the spectral function before and af-
ter removal of the center-of-mass contamination. The final
results, “CCSD intrinsic,” has been obtained by using the
intrinsic momentum distribution. They predict more strength
at the quasi-elastic peak with respect to the “CCSD labo-
ratory” result. This trend is consistent with the findings of
Ref. [17]. The uncertainty of n(p) at low momenta as well
as the negligible reconstruction errors coming from the ChEK
method do not affect the cross-section results. It is also inter-
esting to notice that the impulse-approximation indeed works
better with increasing momentum transfer |q|. For the values
|q| ≈ 300–400 MeV the spectral function overestimates the
data and predicts a shifted quasi-elastic peak.

A direct comparison of our results with Ref. [17] shows an
overall good agreement. While the results before the center-
of-mass removal are almost identical, the predicted cross
section using the intrinsic spectral function is slightly dif-
ferent, as can be seen in Fig. 5. We have chosen this low
momentum transfer kinematics, because the nuclear effects
might play a more important role and differences between
the CCSD and SCGF should be more pronounced. There are
several sources of discrepancies. First, in the conservation of
energy of Eq. (13) we take into account the kinetic energy of
the recoiled nucleus, which for 4He amounts to 7–9 MeV for
the Fermi momentum. Second, we use a different approach to
remove the center of mass. Third, the spectral functions are
obtained using two different many-body methods and approx-
imations therein.
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FIG. 4. Electron scattering on 4He for different kinematics which correspond to the momentum transfers |q| ≈ 270–670 MeV. We show
results obtained with CCSD before removing the center-of-mass contamination (dashed line) and afterwards, as explained in the main text
(dashed-dotted line). Experimental data were taken from Refs. [51–54].

V. CONCLUSION AND OUTLOOK

We have presented an ab initio calculation of the spec-
tral functions for 4He based on the coupled cluster theory
combined with the ChEK method for the reconstruction of
the spectral properties of a many-body system. Within this
approach, and for a given resolution, we were able to assess

FIG. 5. Comparison of CCSD results with SCFG [17] on 4He
after removing the center-of-mass contamination.

the uncertainty of our calculation. For 4He we obtained an
almost negligible error, however, we expect it to be larger
when we move to medium-mass nuclei. This work paves the
way for further explorations of the ChEK method in nuclear
physics. On the one hand, one can study other nuclear re-
sponses, especially where the standard inversion procedures
are unable to give stable results. On the other hand, the method
provides error bounds, because it does not require any ansatz
about the properties of the response (e.g., the threshold energy
needed in the LIT inversion). This way we can achieve a
stringent control over the uncertainty bound of an observable
of interest.

We compared our predictions for the electron-nucleus scat-
tering in the quasi-elastic regime with available data and found
agreement. We were able to scan a large range of momentum
transfers, and observed that the impulse approximation im-
proves with growing momentum. Our results point to possible
directions of further investigation. In view of the planned
DUNE and T2HK experiments, which will benefit from
reliable cross-section models, another important step is the
calculation of spectral function for 16O and 40Ar. Both of these
nuclei is within the reach of the coupled-cluster approach.
Furthermore, for low and intermediate momentum transfers
the impulse-approximation picture becomes less reliable
and the full inclusion of final-state interactions is therefore
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desirable. This transition region requires more theoretical
studies as well as experimental data. Recent developments
within coupled-cluster theory allow us to lead a consistent
analysis based on the same many-body method, nuclear
dynamics and truncations, employing both LIT-CC and
spectral functions. Lastly, our approach does not presently
account for two-body currents. Their role will also be a topic
of our future work.
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APPENDIX: REMOVAL OF THE CENTER OF MASS

We follow Ref. [56] and consider an A-body system
with coordinates r1, . . . , rA and corresponding momenta
p1, . . . , pA in the laboratory system. The center of mass and
relative coordinates are

R = 1

A
(r1 + · · · + rA),

ξ1 = r2 − r1,

ξ2 = r3 − r1 + r2

2
,

...

ξn = rn+1 − r1 + r2 + · · · + rn

n
,

...

ξA−1 = rA − r1 + r2 + · · · + rA−1

A − 1
, (A1)

and the corresponding canonical momenta are

P = p1 + · · · + pA,

π1 = p2 − r1

2
,

π2 = 2

3
p3 − p1 + p2

3
,

...

πn = n

n + 1
pn+1 − p1 + p2 + · · · + pn

n + 1
,

...

πA−1 = A − 1

A
pA − p1 + p2 + · · · + pA−1

A
. (A2)

Two comments are in order. First, the transformation between
laboratory and center-of-mass coordinates has a unit Jacobian.
Second, we see that ξn is the position of particle (n + 1)
with respect to the center of mass of the previous n particles,
while πn is the momentum of particle (n + 1) relative to the
average momentum of the (n + 1)-particle system. We note
that ri − R and pi − P/A are intrinsic positions and momenta,
respectively, for any i = 1, . . . , A. A particular convenient
choice is i = A, because

rA − R = A − 1

A
ξA−1, (A3)

pA − P
A

= πA−1 (A4)

can be expressed in terms of a single relative position and
momentum, respectively.

Let us now assume that the ground state |	〉 = |〉|ψ〉
factorizes into a center-of-mass state |〉 and an intrinsic state
|ψ〉. The laboratory density in position space is

ρ(x) = A
∫

d3r1 · · · d3rAδ(x − rA)|	(r1, . . . , rA)|2

= A
∫

d3r1 · · · d3rA−1|	(r1, . . . , rA−1, x)|2. (A5)

Based on Eq. (A3), the intrinsic one-body density is

σ (x) = A
∫

d3ξ1 · · · d3ξA−1δ

(
x − A − 1

A
ξA−1

)

× |ψ (ξ1, . . . , ξA−1)|2

= A
( A

A − 1

)3 ∫
d3ξ1 · · · d3ξA−2

×
∣∣∣ψ(

ξ1, . . . , ξA−2,
A

A − 1
x
)∣∣∣2

. (A6)

To establish the relation between the intrinsic and laboratory
densities we use δ(x − rA) = δ(x − R − ξA−1(A − 1)/A) and
rewrite Eq. (A5) as

ρ(x) = A
∫

d3ξ1 · · · d3ξA−1d3Rδ

(
x − R − A − 1

A
ξA−1

)

×|(R)|2|ψ (ξ1, . . . , ξA−1)|2

=
∫

d3R|(R)|2σ (x − R). (A7)

034310-9



SOBCZYK, BACCA, HAGEN, AND PAPENBROCK PHYSICAL REVIEW C 106, 034310 (2022)

Thus, the laboratory density is a convolution of the center-of-
mass density and the intrinsic density. In coupled-cluster and
IMSRG calculations, the center-of-mass wave function is a
Gaussian (to a very good approximation) [46–48,57,58], i.e.,

|(R)|2 = π−3/2b−3e− R2

b2 , (A8)

and its Fourier transform is

(2π )−3/2e− b2

4 P2
. (A9)

Thus, the intrinsic density can be obtained by dividing the
Fourier transforms of the laboratory and center-of-mass wave
functions and performing the inverse Fourier transform of that
quotient.

Let us now turn to momentum space. The laboratory mo-
mentum density is

ρ(p) = A
∫

d3p1 · · · d3pAδ(p − pA)|	(p1, . . . , pA)|2

= A
∫

d3p1 · · · d3pA−1|	(p1, . . . , pA−1, p)|2.
(A10)

Based on Eq. (A4), the intrinsic one-body momentum density
is

σ (p) = A
∫

d3π1 · · · d3πA−1δ(p − ξA−1)

×|ψ (π1, . . . ,πA−1)|2

= A
∫

d3π1 · · · d3πA−2|ψ (π1, . . . ,πA−2, p)|2.
(A11)

To establish the relation between the intrinsic and laboratory
momentum densities we use δ(p − pA) = δ(p − πA−1 − P/A)

and rewrite Eq. (A10) as

ρ(p) = A
∫

d3π1 · · · d3πA−1d3Pδ

(
p − πA−1 − P

A

)

×|(P)|2|ψ (π1, . . . ,πA−1)|2

=
∫

d3P|(P)|2σ
(

p − P
A

)
. (A12)

The substitution K = P/A then yields

ρ(p) = A3
∫

d3K|(AK)|2σ (p − K). (A13)

Thus, the laboratory density is a convolution of the center-
of-mass density (at A times its argument) and the intrinsic
density. Again, the center-of-mass wave function is to a good
approximation a Gaussian in momentum space, and the de-
convolution can be performed. We have

A3|(AP)|2 = π−3/2b3A3e−b2A2P2
, (A14)

and its Fourier transform is

(2π )−3/2e− 1
4

R2

A2b2 . (A15)

In the Gaussians, we employed the oscillator length

b =
√

h̄

Mω̃
. (A16)

Here, M = Am is the total mass in terms of the nucleon mass
m, while ω̃ is the frequency of the Gaussian; this parameter
is independent of the oscillator basis, and we have h̄ω̃ ≈ 24
MeV for a light nucleus such as 4He and h̄ω̃ ≈ 16–20 MeV for
16O [46,47]. Thus b ≈ 0.7A−1/2 fm, and the Gaussian (A14)
approximates a δ function for A � 1. We therefore expect that
the difference between the laboratory and intrinsic density in
momentum space becomes exponentially small for A1/2 � 1.
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