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Neutrinoless double-β decay from an effective field theory for heavy nuclei
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We study neutrinoless double-β decay in an effective field theory (EFT) for heavy nuclei, which are treated
as a spherical core coupled to additional neutrons and/or protons. Since the low-energy constants of the EFT
cannot be fitted to data for this unobserved decay, we follow an alternative strategy to constrain these through a
correlation with double Gamow-Teller transitions. This correlation was recently found to hold for shell-model
calculations, energy-density functionals, and other nuclear structure models. We therefore first calculate the
nuclear matrix elements for double Gamow-Teller transitions in the EFT for heavy nuclei. The combination of the
EFT uncertainty with the correlation uncertainty enables predictions of nuclear matrix elements for neutrinoless
double-β decay for a broad range of isotopes with quantified uncertainties. Generally the EFT predicts smaller
nuclear matrix elements compared to other approaches, but our EFT results are consistent with recent ab initio
calculations.
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I. INTRODUCTION

Neutrinoless double-β (0νββ) decay is one of the most
promising processes to discover lepton number violation and
thus physics beyond the Standard Model (BSM) [1,2]. In
this possible decay mode of an atomic nucleus, two neutrons
decay into two protons while two electrons are emitted, effec-
tively creating two leptons. 0νββ decay is possible because
neutrinos are neutral massive particles, therefore candidates
for being their own antiparticles (Majorana particles). In gen-
eral, the decay can be triggered by BSM extensions that do not
conserve lepton number, leading to a 0νββ rate proportional
to some BSM parameter encoding such violation. On the other
hand, the 0νββ rate is also proportional to the nuclear matrix
element (NME) that captures the many-body aspects of the
nuclear decay. Since the BSM mechanism responsible for
0νββ decay is unknown, reliable NMEs are needed to obtain
information about BSM physics once 0νββ is detected. In
the meantime, NMEs are used to constrain BSM scenarios
based on the most stringent experimental limits [3–6]. In the
standard scenario where the decay is driven by the known light
neutrinos, NMEs are also key to explore the physics reach
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of next-generation 0νββ experiments [7–12] in terms of a
combination of neutrino masses and mixing parameters.

However, the 0νββ NMEs relevant for 0νββ searches are
not well known [13]. While NMEs can be predicted with good
precision in lighter or moderately correlated nuclei [14–20],
ββ emitters are in general medium-mass or heavy systems
with complex nuclear structure. Because of this, state-of-the-
art calculations of 0νββ NMEs disagree up to a factor 3
and, in addition, all calculations may be subject to additional
uncertainties [13]. One of the main limitations of current
predictions of 0νββ NMEs is the difficulty of addressing
theoretical uncertainties in a reliable and systematic manner.
Except in lighter systems [14–16,20] and very recent calcu-
lations using ab initio methods [17–19], most NMEs have
been obtained using nuclear models that rely to some extent
on phenomenological adjustments [13]. In turn these prevent
the estimation of associated theoretical errors. At present, the
best NME uncertainty estimation within a model is to compare
the different results obtained when varying the parameters and
truncations of that model.

Effective field theories (EFTs) provide an alternative to
calculate nuclear properties [21]. By capturing the relevant
degrees of freedom and encoding the symmetries of the prob-
lem, EFTs provide a systematic order-by-order expansion in a
small parameter. While in practice all EFT calculations trun-
cate this expansion at a given order, the systematic character
of the EFT allows one to quantify the theoretical uncertainty
of the results. Previous work has shown that an EFT for
heavy nuclei [22–27] can describe well different properties,
including electromagnetic [28–30] and weak [31] transitions.
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This work is based on the same EFT used to explore beta (β)
and two-neutrino ββ decays in Ref. [31], which considered a
broad range of nuclei and showed that the measured decays
agree well with the EFT predictions within uncertainties. In
particular for two-neutrino ββ decay, six of the seven mea-
sured decays fall within the EFT uncertainties (see Fig. 5 in
Ref. [31]) and also the Gamow-Teller NMEs generally agree
with the EFT predictions. Furthermore, the EFT successfully
predicted the double electron capture half-life of 124Xe [32]
before its recent discovery [33]. We take these results as a
confirmation of the validity of the EFT for the nuclei studied
in this work.

In this paper, we extend the EFT for heavy nuclei to predict
0νββ NMEs. In order to evaluate NMEs for any process in
an EFT, the couplings associated with the relevant operator,
usually called low-energy constants (LECs), need to be fitted
to data. However, since 0νββ decay has not been observed,
such a strategy cannot be applied in this case. An alternative
would be to fit the LECs to a theoretical matching calculation,
which is also complicated in this case due to the heavy nuclei
involved. Instead, here we use the correlation recently found
between double Gamow-Teller (DGT) transitions and 0νββ

decay [34]. This correlation is supported by approaches as
diverse as the nuclear shell model (NSM) [35,36], energy
density functional (EDF) calculations [37], and the interacting
boson model (IBM) [38]. Interestingly, these models disagree
in the prediction of specific NMEs, but agree on the linear
relation between DGT and 0νββ NMEs. As the EFT can de-
scribe DGT NMEs, with LECs constrained by data from two
single GT transitions, the correlation between DGT and 0νββ

allows the EFT for heavy nuclei to access 0νββ. This way, we
can obtain EFT results for 0νββ NMEs with corresponding
theoretical uncertainties.

This work is organized as follows. In Sec. II we intro-
duce the basics of the EFT for heavy nuclei, followed by a
discussion of the GT transition operator and the uncertain-
ties associated with it. In Sec. III the method to determine
the NMEs for 0νββ decay is presented, which includes the
calculation of DGT transitions within the framework of the
EFT and their correlation with 0νββ decays. The resulting
predictions of the EFT for 0νββ NMEs are compared to
results from NSM, EDF, IBM, the quasiparticle random-phase
approximation (QRPA), as well as ab initio calculations. Fi-
nally, we conclude with a summary in Sec. IV.

II. EFFECTIVE FIELD THEORY FOR GAMOW-TELLER
β DECAY

The EFT used here for DGT transitions and to estimate
the NME for 0νββ decay follows previous work on β de-
cays [31]. In this framework, the low-energy properties of
even-even, odd-odd, and odd-mass nuclei are described in
terms of collective excitations coupled to a neutron, neutron
hole, proton, or proton hole [29,30]. The effective operators
associated with the observables of interest are systematically
constructed in terms of the creation and annihilation operators
of the collective mode and the fermions. A power-counting
scheme suppresses terms in an effective operator contain-
ing a larger number of collective creation and annihilation

operators. Thus, the building blocks from which the effective
operators are constructed are (i) the bosonic creation and
annihilation operators of the collective mode, d†

μ and dμ, rep-
resenting quadrupole excitations of the even-even reference
state |0〉, and (ii) the fermionic creation and annihilation op-
erators n†

μ and nμ (p†
μ and pμ), which create a neutron or a

neutron hole (proton or proton hole) depending on the nucleus
under investigation (the annihilation operators annihilate a
fermion or fermion hole). These operators fulfill the usual
commutator and anticommutator relations:

[dμ, d†
ν ] = δμν, {nμ, n†

ν} = δμν, {pμ, p†
ν} = δμν. (1)

While the creation operators transform as the components of
a spherical tensor under rotations [39], the annihilation opera-
tors do not. To simplify the construction of spherical-tensor
operators, spherical annihilation operators are defined with
components

ãμ = (−1) ja+μa−μ, (2)

where a can be d , n, or p. For the fermion annihilation tensors,
ja is the total angular momentum of the effective orbital which
the fermion or fermion hole occupies. The angular momentum
of quadrupole phonons is jd = 2.

Low-lying states in the nuclei of interest are described
as excitations of the even-even reference state by successive
application of creation operators. For example, the low-lying
spectrum of even-even spherical nuclei is described as one-
and two-phonon excitations of the reference state

|2M1〉 = d†
M |0〉, |JM2〉 =

√
1

2
(d† ⊗ d†)(J )

M |0〉. (3)

The labels J , M, and N in |JMN 〉 specify the total angular
momentum of the state, its total-angular-momentum projec-
tion, and the number of phonons. The ground state of an
odd-mass nucleus adjacent to the reference state is described
as a fermion excitation coupled to the core, e.g.,

| jfM0〉 = f †
M |0〉, (4)

where f = p, n, depending on the unpaired nucleon or nucleon
hole of the nucleus under consideration. For example, 93Y can
be described by coupling a proton to a 92Sr core or by coupling
a proton hole to a 94Zr core. The total angular momentum of
the odd-mass ground state is thus equal to the total angular
momentum jf of the effective orbital of the unpaired nucleon
or nucleon hole.

In this framework, states in an odd-odd nucleus can be
described by coupling a proton (or proton hole) and a neutron
(or neutron hole) creation operator to the even-even reference
state

|JM0; jp, jn〉 = (n† ⊗ p†)(J )
M |0〉. (5)

For example, 74As can be described as coupling a neutron and
proton hole to 74Ge or as coupling a neutron hole and proton
to 74Se.

A. Effective Gamow-Teller operator

The effective GT operator can be constructed as the most
general spherical tensor of rank one resulting from coupling
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bosonic and fermionic creation and annihilation operators. At
lowest order in the number of boson operators it takes the form
[31]

ÔGT = Cβ ( p̃ ⊗ ñ)(1)

+
∑

�

Cβ�[(d† + d̃ ) ⊗ ( p̃ ⊗ ñ)(�)](1)

+
∑
L�

CβL�[(d† ⊗ d† + d̃ ⊗ d̃ )(L) ⊗ ( p̃ ⊗ ñ)(�)](1)

+ H.c., (6)

where Cβ , Cβ�, and CβL� are LECs that must be determined by
matching to data or other theoretical input. The first, second,
and third terms in Eq. (6) couple states of the odd-odd and
even-even nuclei with phonon-number differences of 0, 1, and
2, respectively. Thus, they are involved in the description of
β decays from the intermediate odd-odd nucleus, as well as
charge-exchange reactions between the same systems. Data
on these transitions provide the necessary input to determine
the LECs of the effective GT operator in the EFT. Note that
if Cβ contributes to the transition, which is always the case in
this work, this is the leading order (LO) contribution, and the
other Cβ� and CβL� parts constitute higher-order corrections.

The f t value of GT decay is given by

( f t )i f = κ

g2
A

2Ji + 1

|MGT(Ji → Jf )|2 , (7)

where f is a phase-space factor, κ = 6147 s the β decay
constant, gA = 1.27 the axial-vector coupling, Ji (Jf ) the total
angular momentum of the initial (final) state, and MGT the
NME of the GT operator between the initial and final nucleus.
Moreover, the relation between the GT strength S±(i → f )
measured in charge-exchange reactions and the GT NME is
given by S±(i → f ) = |MGT|2. For details in the EFT see
Ref. [31].

The power-counting scheme suggests that contributions
from the different terms in Eq. (6) scale according to the ratio
of the typical energy to the breakdown scale � of the EFT
[29–31]. In particular, the NMEs of an operator containing n
quadrupole operators scale as

〈dn〉 ∼
(

�

ω

)n/2

, (8)

where ω is the energy scale of the collective mode. For the
different terms in the GT operator, this leads to

Cβ〈d0〉 ∼ Cβ�〈d1〉 or
Cβ�

Cβ

∼ 0.58 ± 0.38 (9)

and

Cβ〈d0〉 ∼ CβL�〈d2〉 or
CβL�

Cβ

∼ 0.33 ± 0.22, (10)

assuming a breakdown scale at the three phonon level, � =
3ω, due to neglected physics such as pairing effects, which
would need to be taken into account at this energy scale [29].
� = 3ω fixes the ratio of the LECs. The above uncertainties
associated to these ratios are 68% degree of belief and have

been estimated based on the expectation for the LECs to be
natural using prior distributions of the form

pr(C|c) = 1√
2πc

e− 1
2 ( C−1

sc )2

, (11)

pr(c) = 1√
2πσc

e− 1
2 ( ln c

σ )2

, (12)

with σ = ln(3/2) and s = 0.65. For a LEC, the interval 1 −
s � C � 1 + s of the prior distribution yields 68% degree
of belief. For electromagnetic transitions it was shown in
Ref. [29] that the cumulative distribution of next-to-leading-
order (NLO) LECs is well approximated by the above priors.
For the effective GT operator, a similar strategy was success-
fully applied to β and two-neutrino ββ/ECEC decays [31,32],
showing good agreement with experiment within uncertain-
ties.

B. Uncertainty estimate for decays to ground state

Within the EFT, the sources for uncertainty in the NME
are (i) omitted terms in the effective GT operator, Eq. (6),
which involve two or more boson operators (for them to
couple odd-odd and even-even ground states), and are ex-
pected to scale as (ω/�)Cβ ; (ii) omitted NLO corrections to
odd-odd states due to terms in the Hamiltonian mixing states
with phonon-number differences of one, expected to scale as√

ω/�|JM; jp, jn〉. These would then be able to couple with
corrections to the GT operator that scale only with one or more
boson operators. (For information on the Hamiltonian of the
EFT, which shows good agreement with experiment within
the estimated uncertainties, see Refs. [29,30].) Overall, we
therefore expect the omitted correction to the NME of the GT
decay to even-even ground states due to both sources to scale
as

�MGT(1+ → 0+
gs)

EFT∼ ω

�
MGT(1+ → 0+

gs). (13)

III. DOUBLE-GAMOW-TELLER TRANSITIONS AND
NEUTRINOLESS DOUBLE-β DECAYS

A. Double-Gamow-Teller transitions

The goal of this work is to predict NMEs governing the
0νββ decay of medium-mass to heavy nuclei within the
EFT presented in the previous section. The 0νββ decay
mode is more challenging to study compared to two-neutrino
ββ/ECEC decays, as the lack of experimental data prevents
the determination of the LECs in the 0νββ decay operator.
Thus an alternative method to access 0νββ NMEs is required.
Recently, it was shown that DGT NMEs correlate with 0νββ

NMEs [34]; for details see also Refs. [40,41]. Using this
correlation, we can thus estimate 0νββ NMEs from EFT
calculations of DGT NMEs, where the LECs can be obtained
from experimental data on GT transitions.

In the EFT, the DGT operator can be written as the cou-
pling of two GT operators, Eq. (6), to total angular momentum
zero. The lowest order contribution coupling the ground state
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of the initial and final nuclei is given by

ÔDGT = (ÔGT ⊗ ÔGT)(0)

= Cβ1Cβ2 (( p̃ ⊗ ñ)(1) ⊗ ( p̃ ⊗ ñ)(1))(0) + H.c.

+ · · · , (14)

where the LECs (Cβ1 and Cβ2 ) are extracted from the log( f t )
value of β decays of the intermediate odd-odd nucleus or
the zero-angle cross sections of the corresponding charge-
exchange reactions. The dots in Eq. (14) denote higher-order
terms, which we do not consider but enter the EFT uncertainty
estimates.

For the ground state of the initial nucleus, we assume that
this can be written at LO within the EFT as a multifermion
excitation of the reference state, i.e.,

|0+
gs〉 = 1

2 (n† ⊗ n†)(0)(p† ⊗ p†)(0)|0〉, (15)

where the total angular momenta and parities of the effective
orbitals, in which the neutrons and protons lie, are inferred
from the low-lying states of the odd-mass nuclei adjacent to
the intermediate nucleus in the DGT transition. At LO the ini-
tial ground state is built by like fermions coupled to spin zero.
We have checked that the inclusion of couplings to higher J
does not significantly change our results, as it only enlarges
the uncertainties to some extent where coupling to higher J
is allowed at LO. The dominance of J = 0 pairs parallels the
dominance of s bosons in the IBM [42,43].

Thus, the NME of the DGT operator Eq. (14) between
even-even ground states results in

〈0+
gs, f ||ÔDGT||0+

gs,i〉 =
√

4

3(2 jn + 1)(2 jp + 1)
Cβ1Cβ2 , (16)

taking Eq. (15) as a good approximation for the ground state
of the initial nucleus. The LECs of the effective DGT oper-
ator, Cβ1 and Cβ2 , are fitted to GT data, which only include
the lowest lying 1+

1 in the intermediate nucleus. However in
the DGT transition, the virtual single GT transition from the
intermediate nucleus to the initial or final nucleus could also
include higher-lying 1+

n+1 states of the intermediate nucleus.
The effective DGT operator would then require NLO and
higher order terms with two and more additional quadrupole
operators to account for these excited 1+

n+1 intermediate states.
According to the power counting, Eq. (8), the LECs of the GT
transition to the excited 1+

n+1 intermediate states scale as

Cβ,1+
n+1

∼ 〈d0〉
〈dn〉Cβ,1+

1
∼

( ω

�

)n/2
Cβ,1+

1
. (17)

Thus, the relative uncertainty in the NME of Eq. (16) can
be naively and conservatively estimated by summing over all
neglected contributions with the same phase

�〈0+
gs, f ||ÔDGT||0+

gs,i〉 ∼
∑
n=1

( ω

�

)n
= 1

2
. (18)

Note that a similar scaling correction would arise when
including NLO and higher order corrections from the

final

initial intermediate

2−

0+

0+

3/2−

1/2−

1/2−

1/2−

adjacent

Z

N

76Se34
77Se34

75As33
76As33

77As33

76Ge32
75Ge32

gs

gs

gsexc

AXZ

JP

gs

FIG. 1. Illustration of the initial (blue), intermediate (white), and
final (red) nucleus for the 0νββ decay and DGT transition of 76Ge.
The relevant adjacent nuclei are shown in green. For each nucleus
the upper right corner shows the spin and parity of the ground (gs)
or excited (exc) state used to derive orbital combinations jn, jp of the
DGT transition.

Hamiltonian, as discussed for GT transitions above. We adopt
this relative uncertainty, Eq. (18), for the DGT NME, Eq. (16),
with one orbital combination jn, jp. In the case when several
jn, jp are possible (see below), we average the individual
DGT NMEs and adopt their combined uncertainty range.
As an example for a DGT NME including several orbital
combinations, the normalized DGT NME of 96Zr is shown
in Fig. 2. Finally, we emphasize that the EFT NMEs match
the LECs directly to data, which thus encodes information on
the quenching of gA through correlations or two-body-current
contributions in more complex calculations [44].

To calculate the DGT NME, Eq. (16), first the total angular
momenta and parities of the neutron and proton in the odd-
odd intermediate nucleus must be determined. For the initial
nucleus to undergo a DGT transition, it is required that they
are able to couple to a 1+ state. As an example, Fig. 1 shows
possible jn and jp combinations for the case of the DGT
transition from 76Ge to 76Se. If a proton (neutron) is added
to or removed from the odd-odd intermediate nucleus, one
obtains an odd-mass nucleus with an odd neutron (proton).
The total angular momenta and parities of the effective or-
bitals in which these neutrons and protons lie can thus be
inferred from the spectra of the adjacent odd-mass nuclei
77Se, 75Ge, 77As, and 75As. As shown in Fig. 1, the low-
lying spectra of these adjacent nuclei suggest more than one
orbital combination. While the ground states of 75Ge and 77As
suggest jn = 1

2
−

and jp = 3
2

−
, the excited 1

2
−

state in 75As

also suggests jp = 1
2

−
. In this case, when an excited state is

used to determine jP
n/p, only states with lifetimes t1/2 � 0.1 ns

are considered to exclude collective excitations. With this
selection we want to rule out states that cannot be described
in the EFT as a single-nucleon excitation. In addition, we only
consider excited states below 700 keV to determine jP

n , jP
p of

the effective nucleon orbitals, as high-energy single-particle
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TABLE I. For DGT and 0νββ decay of the initial nucleus (column 1), we give the spin-parity (columns 2 and 7) and energy of states
(columns 3, 5, 8, and 10) of adjacent (adj.) nuclei (columns 4, 6, 9, and 11) that differ by one neutron (leading to jP

n ) or one proton ( jP
p ) from

the initial or final nuclei of the decay. Data were taken from Refs. [45–73] and for 63Ni, 63Cu, 77Se, 77As, 101Ru, 101Tc, 108Cd, 117Sn, and 117In
from the ENSDF database [74]. The allowed jP

n , jP
p combinations must couple to 1+, and we consider only states with lifetimes t1/2 � 0.1 ns

to exclude collective excitations. Additional, neglected states are discussed and listed in Appendix B.

Initial jP
n E (keV) adj. E (keV) adj. jP

p E (keV) adj. E (keV) adj.

48Ca 7/2− 0 49Ti 0 47Ca 7/2− 0 49Sc 0 47Sc
64Zn 1/2− 53.93 65Zn 0 63Ni 3/2− 0 65Cu 0 63Cu

3/2− 115.13 a155.55
5/2− 0 87.15

70Zn 1/2− 0 71Ge 0 69Zn 3/2− 0 71Ga 0 69Ga
5/2− 174.94 a531.30

76Ge 1/2− 0 77Se 0 75Ge 3/2− 0 77As 0 75As
5/2∓ 249.79 192.19 1/2− a503.88 198.61

5/2∓ 264.43 400.66
80Se 1/2− 190.64 81Kr 95.77 79Se 3/2− 0 81Br 0 79Br

9/2+ 49.57 a136.97 9/2+ 536.20 207.61
82Se 1/2− 41.56 83Kr 0 81Se 3/2− 0 83Br 0 81Br

9/2+ 0 a294.30 9/2+ 1092.10 536.20
100Mo 7/2+ a842.76 101Ru 235.51 99Mo 9/2+ 0 101Tc 0 99Tc

5/2+ 0 97.79 7/2+ 9.32 140.51
3/2+ 127.23 351.22 5/2+ 15.60 181.09

104Ru 5/2+ 0 105Pd a2.81 103Ru 7/2+ 0 105Rh 39.75 103Rh
106Cd 5/2+ 0 107Cd 0 105Pd 7/2+ 93.13 107Ag 25.47 105Ag

7/2+ 204.98 a785.00 9/2+ 125.59 53.14
108Cd 5/2+ 0 109Cd 0 107Pd 7/2+ 88.03 109Ag 93.13 107Ag
110Pd 5/2+ 245.39 111Cd 0 109Pd 7/2+ 59.82 111Ag 88.03 109Ag

7/2+ 416.72 a645.96 9/2+ 130.28 132.76
112Sn 7/2+ 77.39 113Sn 416.72 111Cd 9/2+ 0 113In 0 111In
114Cd 7/2+ 612.81 115Sn a458.63 113Cd 9/2+ 0 115In 0 113In
124Xe 7/2+ 295.89 125Xe 489.81 123Te 5/2+ 0 125I 0 123I

3/2+ 111.79 159.02 7/2+ 113.54 a138.20
9/2+ 935.70 641.25

128Te 3/2+ 39.58 129Xe 0 127Te 5/2+ 27.79 129I 0 127I
1/2+ 0 a61.16 3/2+ 278.38 202.86

130Te 3/2+ 0 131Xe 0 129Te 5/2+ 149.72 131I 27.79 129I
1/2+ 80.19 a180.36 3/2+ a492.66 278.38

136Xe 3/2+ 0 137Ba 0 135Xe 5/2+ a455.49 137Cs 249.77 135Cs
150Nd 5/2+ 167.75 151Sm a332.94 149Nd 3/2+ 255.69 151Pm 188.63 149Pm

9/2+ 91.53 270.86 5/2+ 0 114.31
7/2+ a85.12 0

5/2− 0 0 7/2− a175.08 270.17
9/2− a175.38 220.71 11/2− a343.80 240.21
11/2− 261.13 a192.00

aNo data on half-life available or only upper limit above 0.1 ns.

states in the adjacent nuclei are unlikely to contribute to the
1+ ground state of the intermediate odd-odd nucleus in the
DGT transition.

In Table I the total angular momenta and parity of all
considered states are listed, as well as their energy in the
spectrum of the adjacent odd-mass nucleus. As can be seen,
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FIG. 2. Double-Gamow-Teller NMEs in the EFT for different
combinations of neutron and proton orbitals jn, jp, normalized by
the product of the LECs Cβ1Cβ2 . The squares and bars give the
central value and EFT truncation uncertainty, respectively. As an
example, the normalized 96Zr DGT NME on the right covers all
orbital combinations 1

2 � jn, jp � 9
2 .

for some nuclei there is more than one combination possible
to couple to a 1+ state for the odd-odd intermediate nucleus,
e.g., as shown in Fig. 1 for the DGT transition from 76Ge.

For 96Zr, no states in the spectra of the odd-mass nuclei
were able to satisfy the conditions stated above. For 116Cd,
only one orbital combination satisfies the conditions, but one
of the orbitals lies very close to 700 keV (see Table IV). In
this case, we chose to neglect this orbital combination. As dis-
cussed below, this leads to a larger uncertainty. In both cases,
we thus assume neutron and proton total angular momenta
ranging from 1

2 to 9
2 to predict their DGT NMEs, since these

are the most frequent, as can be seen in Table I.
Figure 2 shows the normalized DGT NMEs for differ-

ent combinations of neutron and proton orbitals and their
corresponding uncertainties. Since there is more than one
combination of neutron and proton orbitals possible, this in-
troduces another source of uncertainty to the DGT NME.
In Fig. 2 only one bar is plotted for orbital combinations
where the total angular momenta of the neutron and proton
orbitals are unequal. In case both combinations for jn 	= jp are
allowed, we count this twice for the average of the normalized
DGT NME over all orbital combinations. As discussed above
and shown in Fig. 2, all possible combinations of 1

2 � jn, jp �
9
2 are included in the prediction of 96Zr and 116Cd. The uncer-
tainty is taken to be the combined uncertainty range of the
included normalized DGT NMEs.

For all considered DGT transitions, the spin and parity of
the ground states of the intermediate nuclei involved are given
in Appendix A, along with checks of the EFT for spherical
cores through the E4+/E2+ ratio. Given the allowed orbital
combinations discussed above, the LECs Cβ1 and Cβ2 are fit
to experimental GT decays or GT strengths from charge-
exchange reactions for the intermediate nuclei [74–92], except

FIG. 3. Correlation between DGT and 0νββ NMEs, the latter di-
vided by A1/6. The fit to NSM results (blue circles) gives a correlation
coefficient rNSM = 0.90. NMEs from EDF (black crosses), IBM (red
stars), and QRPA calculations (orange diamonds) are also shown.
Data were taken from Refs. [34,40,41]. The gray dotted, solid, and
dashed lines correspond to the top, central, and bottom fits to NSM
results; see text for details.

for 124Xe where data systematics on neighboring nuclei are
used following Ref. [32]. In some cases only one log( f t )
value or GT strength of the investigated transition was avail-
able to obtain the LEC, which is then used for both Cβ1 and
Cβ2 . The resulting Cβ1 and Cβ2 and the EFT DGT NMEs are
listed in Table II. For cases with more than one possible orbital
combination, the results are obtained with the same procedure
as described above for 96Zr.

We have neglected some orbital combinations fulfilling the
conditions of a DGT transition, but not listed in Table I. We
do not consider orbitals if there are no experimental data on
the lifetimes of the corresponding excited states in adjacent
odd-mass nuclei, because this prevents us from identifying the
states as dominantly single-particle excitations. For example,
in 81Kr the 5

2
−

state at 456.74 keV could couple to the 3
2

−

state in 79,81Br, and its energy is comparable to the one of the
9
2

+
states in 79,81Br. However, the lifetime of the 5

2
−

state in
81Kr is not known. In addition, we disregard orbitals when the
NSM suggests that the corresponding states are not dominant
or not of single-particle character. The reasons for omitting
possible orbital combinations are discussed in more detail in
Appendix B (see Table IV there).

B. Correlation between MDGT and M0νββ

The DGT NMEs show a very good correlation with 0νββ

decay NMEs [34,40,41], which is clearly visible in Fig. 3 for
NSM, EDF, and IBM results, while the QRPA results do not
follow this correlation. In the form introduced in Ref. [34],
the correlation between MDGT and M0νββ is slightly different
in light and heavy nuclei, because a mass-dependent factor is
introduced. The reason for the mass dependence is twofold.
First, the standard definition of the 0νββ decay NME in-
cludes a factor R = 1.2A1/3 fm introduced to make this NME
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TABLE II. Nuclear matrix elements for 0νββ decays. The EFT DGT NMEs (column 4) are obtained with the LECs Cβ1 and Cβ2 (columns
2 and 3) fitted to experimental log( f t ) values or GT strengths from charge-exchange reactions for the intermediate nuclei [74–92], except for
124Xe where data systematics on neighboring nuclei are used following Ref. [32]. In some cases only one log( f t ) value or GT strength of the
investigated transition was available to obtain the LEC (e.g., for 76Ge). The EFT 0νββ NMEs (columns 5 and 6) are based on the correlation
in Eq. (20) including the uncertainties from the correlation in Fig. 3, the EFT truncation uncertainties in Eq. (18), and considering all possible
orbital combinations in Table I. The NSM quenching factors qmax = 0.65, qmin = 0.42 are used, except for 48Ca where qmax = 0.8, qmin = 0.7
are used. For comparison, we also give the range of NME results from NSM (column 7) [35,98–100], EDF (column 8) [101,102], QRPA
(column 9) [103–107], IBM (column 10) [38,108] and ab initio calculations (column 11) (multireference [17] and valence-space [18] IMSRG
as well as coupled-cluster theory [19]).

Decay Cβ1 Cβ2 MDGT
EFT M0νββ

EFT min(M0νββ )/max(M0νββ )

qmax qmin NSM EDF QRPA IBM ab initio

48Ca −→ 48Ti 0.603 0.125 0.011(5) 0.44(+44
−26) 0.46(+45

−27) 0.30/1.12 2.37/2.71 0.54/0.66 2.09 0.25/0.75
64Zn −→ 64Ni 0.138 0.202 0.009(+8

−5) 0.47(+51
−29) 0.58(+66

−37)
70Zn −→ 70Ge 0.269 0.176 0.015(+14

−10) 0.54(+59
−34) 0.73(+83

−48) 4.60
76Ge −→ 76Se 0.265 0.025(+36

−18) 0.63(+86
−42) 0.95(+146

−67 ) 2.30/3.37 3.12/5.57 5.14/6.34 2.05/2.23
80Se −→ 80Kr 0.285 0.112 0.008(+11

−7 ) 0.49(+56
−31) 0.60(+75

−40 )
82Se −→ 82Kr 0.336 0.030(+39

−23) 0.69(+92
−47) 1.06(+160

−79 ) 2.18/3.19 4.22/5.30 2.86/5.02 4.19/5.21 1.19/1.29
96Zr −→ 96Mo 0.232 0.013(+33

−10) 0.55(+84
−36) 0.73(+141

−50 ) 5.65/6.37 2.72/3.39 2.60/3.92
100Mo −→ 100Ru 0.390 0.313 0.021(+22

−13) 0.63(+73
−40) 0.91(+114

−60 ) 5.08/6.48 2.44/3.90 3.84/5.08
104Ru −→ 104Pd 0.427 0.328 0.023(12) 0.65(+62

−39) 0.97(+87
−59) 4.96

106Cd −→ 106Pd 0.214 0.007(+5
−4) 0.50(+51

−30) 0.59(+61
−36)

108Cd −→ 108Pd 0.378 0.276 0.017(9) 0.60(+58
−36) 0.83(+77

−51)
110Pd −→ 110Cd 0.557 0.289 0.024(+17

−13) 0.66(+68
−41) 0.98(+102

−62 ) 5.69/6.52 3.63/4.06
112Sn −→ 112Cd 0.496 0.295 0.019(9) 0.62(+59

−37) 0.88(+80
−53 )

114Cd −→ 114Sn 0.222 0.359 0.010(5) 0.54(+53
−32) 0.68(+64

−41)
116Cd −→ 116Sn 0.359 0.288 0.025(+64

−19) 0.69(+125
−46 ) 1.03(+237

−75 ) 4.72/5.43 3.77/4.34 2.82/2.98
124Xe −→ 124Te 0.138 0.195 0.005(+5

−3) 0.49(+52
−30) 0.55(+62

−34)
128Te −→ 128Xe 0.184 0.057 0.003(+3

−2) 0.48(+50
−29) 0.52(+56

−32) 4.11 4.56/5.08 4.40/4.54
130Te −→ 130Xe 0.155 0.007(+7

−5) 0.52(+56
−32) 0.62(+70

−39 ) 1.79/3.16 4.89/5.13 1.37/4.37 3.96/4.15
136Xe −→ 136Ba 0.223 0.012(6) 0.57(+56

−34) 0.73(+69
−44) 1.63/2.39 4.20/4.24 1.11/2.91 3.25/3.40

150Nd −→ 150Sm 0.208 0.084 0.003(+3
−2) 0.48(+52

−29) 0.52(+59
−32) 1.71/5.46 2.71/3.01 2.47/3.57

dimensionless [13]. Second, the two-body NMEs of the 0νββ

operator between harmonic oscillator single-particle states
(the basis used by all many-body calculations presented in
Fig. 3) is proportional to 1/b, where b = √

h̄/(mNω) is the
oscillator length. The NSM calculations use h̄ω = 45A−1/3 −
25A−2/3 MeV [93] from a fit to charge radii, and the same
A dependence is introduced in the IBM [94]. Overall, M0νββ

NMEs thus include a scaling factor R/b ∼ A1/6. Since the
DGT NME is free from these dependences on the mass
number, the best correlation is expected between MDGT and
M0νββ/A1/6.

We have tested several A dependences when fitting linearly
the relation between the NSM DGT and 0νββ NMEs. In line
with the above expectation, the best fit is obtained for MDGT

vs M0νββ/A1/6, with the highest correlation coefficient

rNSM =
∑

i(xi − μx )(yi − μy)√
[
∑

i(xi − μx )2][
∑

i(yi − μy)2]
= 0.90. (19)

Figure 3 shows the best fit restricted to NSM data. Extending
this to include EDF and IBM results increases the correlation
coefficient to r = 0.95, confirming that the linear correlation
is common to these three many-body schemes, while MDGT

vs M0νββ or 1.2A1/3MDGT vs M0νββ give somewhat weaker
correlations.

Next we use the correlation in Fig. 3 to obtain EFT
0νββ decay NMEs from the EFT DGT NMEs discussed in
Sec. III A. Since the latter are fitted to experimental data from
GT decays or GT strengths from charge-exchange reactions,
for consistency the NSM DGT NMEs need to include the
usual phenomenological quenching factor q to reproduce GT
decay and GT strength data. Here, we consider conservative
ranges 0.7 � q � 0.8 for 48Ca [95] and 0.42 � q � 0.65 for
heavier nuclei [32,96,97]. Note that the NSM with quenching
values in these ranges also reproduces well the measured
two-neutrino ββ decays.

The EFT 0νββ decay NMEs are therefore obtained from
the EFT DGT NMEs by

M0νββ = A1/6 MDGT/q2 − n

m
, (20)

where n and m are the parameters obtained in the lin-
ear fit. The bottom, central, and top (dashed, solid, and
dotted) lines in Fig. 3 correspond to n = −0.180, m =
0.447, n = −0.106, m = 0.536, and n = −0.056, m = 0.699,
respectively, where the values are obtained as follows. For the
central line, m and n give the best fit to the NSM results. For
the slope m of the top (bottom) line the same function is fitted
to the ten NSM points above (below) the central line with the
largest ratio of distance to the central line (which effectively
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FIG. 4. Nuclear matrix elements for 0νββ decay predicted in the
EFT for a broad range of nuclei. The hatched (filled) blue bars show
predictions obtained with a quenching factor qmin = 0.42 (qmax =
0.65), except for 48Ca where qmin = 0.7 (qmax = 0.8) is used; see text
for details.

weights larger NMEs somewhat more) over M0νββ/A1/6. The
top (bottom) intercepts n are determined by applying the pre-
viously obtained slopes to the same ten extreme NSM results,
and choosing the n value for which all NSM points lie below
(above) the top (bottom) line. By construction, every NSM
result lies within the top-bottom band given by the gray area
in Fig. 3. While the NSM results cover nuclei from A = 44
to A = 136, the same correlation fitNSM also encompasses
the EDF and IBM results, extending the combined range
to 44 � A � 238 and thus for all nuclei considered in this
work.

C. 0νββ decay nuclear matrix elements

Table II presents the EFT NMEs for all 0νββ decay candi-
dates considered in this work, and the predicted NME ranges
are shown in Fig. 4. For each value of the NSM quenching
factor in the correlation, the central EFT 0νββ NMEs use the
central fit in Fig. 3 together with the average EFT DGT NMEs
when several orbital combinations are possible. Thus for a
fixed q the EFT M0νββ NME range takes into account dif-
ferent uncertainties: (i) the EFT truncation uncertainty of the
DGT operator, Eq. (18), (ii) the possible orbital combinations
entering in the DGT NME, Eq. (16), and (iii) the uncertainty
of the NSM correlation given by the width of the gray band in
Fig. 3. Therefore, in order to obtain the full NME uncertainty
for a given q, we apply the DGT NMEs with EFT truncation
and orbital uncertainty, see Fig. 2, to the top and bottom fit
lines in Fig. 3.

For nuclei with only one possible orbital combination,
48Ca, 104Ru, 108,114Cd, 112Sn, and 136Xe, the main source of
uncertainty is associated with the width of the correlation. In
these cases, the EFT truncation uncertainty has a rather small
effect, as neglecting the error in the correlation reduces the
corresponding uncertainty ranges to only about 15% of the
ones given in Table II. For these nuclei, the uncertainty due to

the NSM quenching values is also relatively small; see Fig. 4.
Likewise, for nuclei where several orbital combinations are
possible but lead to a rather narrow range in or small EFT
MDGT values, 64Zn, 106Cd, 124Xe, 128,130Te, and 150Nd, the
orbital combinations, EFT truncation, and quenching uncer-
tainties are also smaller compared to the dominant correlation
width.

In contrast, in nuclei where several orbital combinations
are possible and which exhibit a large uncertainty in the EFT
MDGT predictions, 76Ge, 82Se, 96Zr, and 116Cd, this source
of uncertainty is dominant over the correlation and also over
the quenching uncertainty. Figure 4 illustrates that these are
the nuclei with largest overall EFT M0νββ uncertainty. The
overall uncertainty is also quite significant for the cases 70Zn,
80Se, 100Mo, and 110Pd, where the uncertainties due to the
NSM correlation and the possible orbital combinations are
comparable.

Figure 5 compares the EFT 0νββ NMEs with results
from different model calculations using the NSM [35,98–
100], EDF [101,102], QRPA [103–107], and IBM [38,108].
The EFT NMEs are in general smaller than the results
from phenomenological calculations. Although we make very
conservative nuclear structure assumptions, we find a range
0.18 � M0νββ

EFT � 3.40, while phenomenological NMEs can be
as large as M0νββ = 6.5. However, the EFT uncertainty band
overlaps or is very close to the smaller predictions from the
NSM and the QRPA in the case of 48Ca, as well as for the
nuclei currently used in the most advanced 0νββ experiments:
76Ge, 82Se, 130Te, and 136Xe. Moreover, for 116Cd the EFT
uncertainty band is consistent with the IBM result. Overall,
the absolute EFT uncertainty is larger than the individual
uncertainties of the other phenomenological models which
often just encompass different results obtained with the same
method but using different parameters. Nonetheless, in many
nuclei the EFT uncertainty is smaller than the QRPA range
that covers results obtained with the spherical and deformed
QRPA.

We note that, although we use the same correlation found
in NSM, EDF, and IBM calculations, unlike the EFT none
of these approaches uses data on β decay or GT transitions
as input for the matrix element calculations. In fact, shell-
model Hamiltonians are typically fine-tuned using excitation
energies [109], energy-density functionals are determined by
a fit to nuclear masses, radii and other structure information
[110,111], and energies, radii, and electromagnetic transitions
are used to fit the IBM parameters [112], where the transition
operator is mapped from fermions to bosons but without using
any GT data either [94]. Therefore, in principle the EFT can
naturally lead to different neutrinoless double-β decay NMEs
even using the same correlation with DGT transitions com-
mon to other methods.

Finally, Fig. 5 also shows NMEs obtained with the
ab initio multireference (MR) and valence-space (VS) in-
medium similarity renormalization group (IMSRG) [17,18] as
well as coupled-cluster (CC) theory [19]. These NMEs only
cover 48Ca, 76Ge, and 82Se and also prefer smaller values
compared to phenomenological models. Ab initio calculations
are much more sophisticated than the EFT, but still the result-
ing NMEs with uncertainties completely lie within our EFT
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FIG. 5. Comparison of the EFT NMEs for 0νββ decay (same blue bars as in Fig. 4) to results from different models, NSM (blue circles),
IBM (red triangles), EDF (black crosses), and QRPA (orange diamonds), as well as recent ab initio calculations using the MR-IMSRG (cyan
bar), VS-IMSRG (pink bars), and CC theory (purple bar). For references and details see also Table II. The lines between the same symbols
illustrate the range of predictions within the same model.

predictions, which further supports the validity of our ap-
proach. Our predictions are especially interesting for heavier
nuclei beyond the reach of ab initio frameworks, for which the
only NMEs available lack quantified uncertainties.

IV. SUMMARY

We have studied 0νββ decay within an EFT that treats
nuclei as an even-even spherical collective core coupled to
additional neutrons and/or protons. All microscopic details of
a decay are encoded into the LECs of the effective operators.
The lack of experimental data on 0νββ decay prevents fitting
the LECs for this decay and, thereby, the direct prediction of
0νββ NMEs in the EFT.

In this work, we therefore followed an alternative strategy
and obtained the 0νββ NMEs using a correlation between
NMEs of DGT transitions and 0νββ decays. Although we
have used the correlation based on NSM results, the same
correlation is also supported by EDF and IBM calculations.
To this end, we first calculated the NMEs for DGT transitions
in the EFT and determined the LECs using experimental f t
values and GT strengths from charge-exchange reactions as
input. The resulting DGT NMEs include uncertainty estimates
both from beyond LO in the EFT and from different possible
orbital combinations for the added neutrons and protons. We
then used the correlation between DGT and 0νββ NMEs to
predict 0νββ NMEs in the EFT with quantified uncertainties
for nuclei from 48Ca to 150Nd.

The EFT 0νββ NMEs lie in a range 0.18 � M0νββ
EFT � 3.40,

where the uncertainty bands for each nucleus are due to

the correlation as well as the above mentioned uncertainties
in the DGT NMEs. We emphasize that these ranges have
been obtained for very conservative assumptions on the nu-
clear structure. Due to the smaller EFT DGT NME results,
the EFT 0νββ NMEs are in general smaller than the pre-
dictions by the NSM, EDF, QRPA, and IBM calculations,
but the EFT NME range overlaps or is close to the NSM
and QRPA results for 48Ca, 76Ge, 82Se, 130Te, and 136Xe.
This includes the most advanced experiments. The smaller
EFT 0νββ NMEs suggest that it is important to benchmark
other calculations against GT transitions. Interestingly, our
EFT results are also consistent within uncertainties with re-
cent ab initio calculations for 48Ca, 76Ge, and 82Ge, which
can provide future opportunities for matching the EFT for
heavy nuclei to many-body calculations based on nuclear
forces.
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TABLE III. Initial and final nuclei (columns 1 and 5) involved in
DGT transitions with their ratio between the excitation energies of
the first 4+ and 2+ states (columns 2 and 6, respectively). The fourth
column gives the ground-state spin and parity JP

gs of the intermediate
odd-odd nuclei (column 3). All initial and final nuclei are even-even
nuclei with 0+ ground-state spin and parity. Data are from Ref. [74].

Initial E4+/E2+ Intermediate JP
gs Final E4+/E2+

48Ca 1.18 48Sc 6+ 48Ti 2.33
64Zn 2.33 64Cu 1+ 64Ni 1.94
70Zn 2.02 70Ga 1+ 70Ge 2.07
76Ge 2.50 76As 2− 76Se 2.38
80Se 2.55 80Br 1+ 80Kr 2.33
82Se 2.65 82Br 5− 82Kr 2.34
96Zr 1.57 96Nb 6+ 96Mo 2.09
100Mo 2.12 100Tc 1+ 100Ru 2.27
104Ru 2.48 104Rh 1+ 104Pd 2.38
106Cd 2.36 106Ag 1+ 106Pd 2.40
108Cd 2.38 108Ag 1+ 108Pd 2.42
110Pd 2.46 110Ag 1+ 110Cd 2.34
112Sn 1.79 112In 1+ 112Cd 2.29
114Cd 2.30 114In 1+ 114Sn 1.68
116Cd 2.37 116In 1+ 116Sn 1.85
124Xe 2.48 124I 2− 124Te 2.07
128Te 2.01 128I 1+ 128Xe 2.33
130Te 1.95 130I 5+ 130Xe 2.25
136Xe 1.29 136Cs 5+ 136Ba 2.28
150Nd 2.93 150Pm (1−) 150Sm 2.32

performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under
Contract No. DE-AC52-07NA27344.

APPENDIX A: E4+/E2+ RATIO AND JP
gs OF INITIAL,

INTERMEDIATE, AND FINAL NUCLEI

Table III lists the spin and parity of the ground state of
intermediate nuclei involved in the DGT transitions studied in
this work. For the initial and final even-even nuclei it gives
the ratio of the excitation energies of the first 4+ to 2+ states,
E4+/E2+ . The EFT is expected to work well for nuclei with a

E4+/E2+ ratio between 1.5 and 2.5, a condition fulfilled for all
final nuclei. However, for the initial 48Ca, 80,82Se, 136Xe, and
150Nd the ratio is somewhat beyond these limits. Nevertheless
these systems, except for 150Nd, are doubly magic (48Ca),
semimagic (136Xe), or close to a semimagic isotope (84Se
in the case of 80,82Se). Therefore we expect them to be well
described by the EFT with a spherical core.

For transitions with an intermediate nucleus with a 1+
ground state, we fit the LECs to the available log( f t ) values
of the decay from the intermediate nucleus to the initial and
final ones. When the intermediate nucleus has a ground state
different from 1+, we fit the LECs to GT strengths extracted
from charge-exchange reactions. The only exception is the
124Xe DGT transition. The ground state of the intermediate
nucleus, 124I, is a 2− state. Hence, there is no GT decay from
the intermediate to the initial or final nucleus. Moreover, there
are no data on GT strengths available from charge-exchange
reactions, requiring another strategy to fit the LECs. Here, we
follow the calculation of the 2νECEC from 124Xe [32], which
was based on the range of experimental EC log( f t ) values
from neighboring 122–128I.

APPENDIX B: NEGLECTED ORBITAL COMBINATIONS
IN EFT CALCULATION

Table IV lists possible neutron and proton orbitals from the
adjacent odd-mass nuclei neglected in our DGT calculations.
The energy of the lowest state with spin and parity jP

n and jP
p

is also given. We exclude orbital combinations corresponding
to states with excitation energies exceeding 700 keV in 70Zn,
108,114,116Cd, 110Pd, 112Sn, 124,136Xe, and 130Te. While this
threshold is somewhat arbitrary, high-energy single-particle
states in the adjacent odd-mass nucleus are unlikely to con-
tribute to the 1+ ground state of the intermediate odd-odd
nucleus in the DGT transition.

Moreover, since the neutron 0g7/2 orbital is not part of the
NSM configuration space for 76Ge and 80,82Se, we exclude all
these 7/2+ states and also the ones that can only be coupled
to the neglected 7/2+ states. Finally, we also neglect the listed
orbitals in 110Pd and 124Xe with an energy below 700 keV
because these orbitals are not expected to be very close to the
Fermi level based on the NSM configuration space for these
nuclei.
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TABLE IV. Spin and parity of various neglected neutron and proton orbitals jP
n and jP

p , together with the energy E of the lowest state
with these quantum numbers and lifetime t1/2 � 0.1 ns in nuclei adjacent (adj.) to the intermediate ones of a DGT transition. The spins of the
adjacent odd-mass nuclei must couple to spin-parity JP = 1+. Data are from Refs. [48–54,59–66,68–74].

Initial jP
n E (keV) adj. E (keV) adj. jP

p E (keV) adj. E (keV) adj.

70Zn 9/2+ 198.35 71Ge 438.64 69Zn 9/2+ 1493.70 71Ga
76Ge 7/2+ 161.92 77Se 139.69 75Ge 9/2+ 475.48 77As 303.92 75As
80Se 7/2+ 0. 81Kr 0. 79Se 5/2+ a 789.40 81Br 381.50 79Br
82Se 7/2+ 9.41 83Kr 103.00 81Se
108Cd 1/2+ 59.60 109Cd 115.74 107Pd 3/2+ 724.38 109Ag a1258.89 107Ag
110Pd 1/2+ 0. 111Cd 113.40 109Pd 3/2+ 376.71 111Ag 724.38 109Ag

(3/2, 5/2)+ 736.00 a382.00
112Sn 1/2+ 0. 113Sn 0. 111Cd 3/2+ 1063.93 113In a1344.74 111In

(3/2, 5/2)+ a1042.00 736.00 1/2+ 1029.65 1187.62
114Cd 1/2+ 0. 115Sn 0. 113Cd 3/2+ 828.59 115In 1063.93 113In

5/2+ a1734.06 316.21 1/2+ 864.14 1029.65
116Cd 1/2+ 0. 117Sn 0. 115Cd 3/2+ 659.77 117In 828.59 115In

3/2+ 158.56 a229.10 1/2+ 749.49 864.14
124Xe 1/2+ 0. 125Xe 0. 123Te 1/2+ 243.38 125I 148.92 123I

9/2− 252.61 a384.35 3/2+ 188.42 178.02
11/2− a310.55 247.47 11/2− a1084.86 943.44

130Te 11/2− 163.93 131Xe 105.51 129Te 9/2−, 11/2−, 13/2− 1797.09 131I
9/2− 341.14 a464.66

136Xe 17/2− 2349.10 137Ba a2168.90 135Xe 19/2− a3303.60 137Cs 1632.90 135Cs

aNo data on half-life available or only upper limit above 0.1 ns.
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