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Finite particle-number description of symmetric nuclear matter with spin excitations of
high-momentum pairs induced by the tensor force

Niu Wan ,1,* Takayuki Myo,2,3,† Hiroki Takemoto,4 Hiroshi Toki ,3 Chang Xu,5,‡ Hisashi Horiuchi,3 Masahiro Isaka,6

Mengjiao Lyu,7,8 and Qing Zhao 9

1School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
2General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka, Osaka 535-8585, Japan

3Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
4Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-1094, Japan

5School of Physics, Nanjing University, Nanjing 210093, China
6Science Research Center, Hosei University, 2-17-1 Fujimi, Chiyoda-ku, Tokyo 102-8160, Japan

7College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
8Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China

9School of Science, Huzhou University, Huzhou 313000, Zhejiang, China

(Received 14 June 2022; accepted 31 August 2022; published 15 September 2022)

We study symmetric nuclear matter using bare nucleon-nucleon (NN) interactions with the finite particle-
number approach within finite cubic boxes. Due to the NN correlations originating from the bare NN interaction,
two nucleons can be excited to the high-momentum region, leading to the increase of the kinetic energy in
nuclear matter. We further consider the spin excitations in the nucleon pairs, where the spins of the two nucleons
are changed, and this excitation is important for the tensor correlation. The unitary correlation operator method
(UCOM) is used to treat the short-range correlation. The tail correction coming from the neighboring boxes
is also included. We demonstrate the contributions of various excitations of nucleon pairs as well as the tail
correction to the total energy at normal density. We also discuss the effects of UCOM and correlated nucleon
pairs on the density dependence of the total energy. We calculate the equations of state of symmetric nuclear
matter using two kinds of the Argonne potentials and the results agree with those from other many-body theories.
The density dependences of the Hamiltonian components are also shown.
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I. INTRODUCTION

The equation of state (EoS) of nuclear matter is of great
importance for both nuclear physics and astrophysics [1–7].
The properties of nuclear matter have close correlations to
the structure of finite nuclei and the dynamics and evolution
of neutron stars. Due to the great efforts of the community,
different models have been proposed to study the properties
of finite nuclei; however, it is difficult using terrestrial nu-
clei to extrapolate the information for neutron stars under
extreme conditions such as very large density. One possible
way to understand the astrophysical phenomena is to study
the nuclear matter within many-body approaches based on
bare nucleon-nucleon (NN) interactions. The fundamental
NN interaction has a strong repulsive force at short-range
distances and a strong tensor force at intermediate- and
long-range distances [8–10]. They can respectively induce
short-range correlation and tensor correlation, which produce
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high-momentum components in both finite nuclei and nuclear
matter [11–18].

Several popular approaches have been proposed to treat
the complicated NN correlations originating from the NN
interaction. One is the utilization of correlation functions
multiplied to the trial wave function, such as the Jastrow
factor introduced in the Green’s function Monte Carlo
(GFMC) [19–21] approach, both the central-type and tensor-
type correlation functions employed in tensor-optimized
antisymmetrized molecular dynamics (TOAMD) [22–25],
and the power-series-type correlation functions used in the
tensor-optimized Fermi sphere (TOFS) method [26–28]. The
results calculated by GFMC and TOAMD are consistent
with each other and the obtained energies of finite nuclei are
reproduced very well, indicating the efficient descriptions of
both the short-range correlation and the tensor correlation
in finite nuclei. The TOFS method is developed to study the
nuclear matter within a Fermi sphere approximation. The
obtained EoS of symmetric nuclear matter agrees with those
of other benchmark calculations. Another popular approach
to treat the NN correlations is the renormalization of the NN
interaction by using a unitary transformation, such as the
unitary correlation operator method (UCOM) [29–32]
and the similarity renormalization group (SRG)
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transformation [33–37]. By introducing a unitary correlation
operator multiplied to the trial wave function, the Hamiltonian
of the system within UCOM can be transformed with the
NN correlations effectively treated. Then the eigenvalue
can be obtained by solving the Schrödinger equation with
the transformed Hamiltonian and the trial wave function. It
was shown that UCOM can effectively treat the short-range
correlation in finite nuclei [29–32]. Moreover, within the
Hartree-Fock (HF) approximation for a Fermi sphere,
UCOM has also been employed to successfully treat the
short-range correlation in neutron matter [38,39]. Similarly
to UCOM, the unitary operators are also introduced in
SRG but as a continuous unitary transformation with a
flow parameter. The SRG is designed to soften the NN
interactions and decouple the low- and high-momentum
scales in the system Hamiltonian. By calculating two-body
densities in coordinate and momentum space, the evolution
of the short-range correlation is investigated within the
SRG transformations [36]. On the other hand, since the
NN correlations can excite the momenta of nucleon pairs
into the high-momentum (HM) region, resulting in HM
components in finite nuclei and nuclear matter, two-particle
two-hole (2p2h) excitations for nucleon pairs were recently
developed to directly describe the NN correlations [40–44].
The two correlated nucleons produce large transfer
momenta in opposite directions, leading to a large relative
momentum [44]. The 2p2h excitations of such nucleon pairs
with high momentum, which are called HM pairs hereafter,
have been successfully employed in the tensor-optimized
shell model (TOSM) [31,45,46] and in high-momentum
AMD (HMAMD) [40–43] to study the properties of finite
nuclei. By optimizing the 2p2h configurations without
truncation of the particle states, the tensor correlation in finite
nuclei can be effectively described and the total energies of
the nuclei can be well reproduced.

According to the successful description of NN correlations
in finite nuclei, some efficient approaches can also be used to
study the properties of nuclear matter, such as the GFMC [20].
There are several other popular many-body theories em-
ployed for nuclear matter, such as Brueckner-Hartree-Fock
(BHF) [47–49], Brueckner-Bethe-Goldstone (BBG) [48–50],
self-consistent Green’s function (SCGF) [51–53], Fermi hy-
pernetted chain/single-operator chain (FHNC/SOC) [54–56],
auxiliary-field diffusion Monte Carlo (AFDMC) [57–60], and
coupled cluster (CC) theory [61–63]. With these famous the-
ories, Baldo et al. performed benchmark calculations with the
family of widely used Argonne version (AVX) NN potentials
for both symmetric nuclear matter and neutron matter [49].
Recently, Piarulli et al. also performed benchmark calcula-
tions for pure neutron matter with both the family of the
AVX potentials and four chiral effective field theory poten-
tials [60]. Very similar behaviors for the density dependence
of the total energy per particle in symmetric nuclear matter
and neutron matter are obtained. In detail, the energies at low
densities are consistent with each other, while there are energy
differences at high densities. Particularly, the saturation prop-
erty of symmetric nuclear matter shows a very close relation
with the tensor force [49]. Besides the bare two-body NN
force, the three-body force is also pointed out to be im-

portant for the exact saturation point of symmetric nuclear
matter [59]. Moreover, the discrepancies among the above
approaches at high densities are much larger for symmetric
nuclear matter than those for neutron matter. This is mainly
because of their different treatments of the stronger tensor
correlation in symmetric nuclear matter. The intermediate-
and long-range properties of the tensor force from the NN
interaction can induce many-body correlations, which are also
important for nuclear matter studies.

In our recent works [64,65], the properties of nuclear
matter are studied from bare NN interactions by employing
UCOM to treat the short-range correlation and introducing
the 2p2h excitations of the HM pairs to describe the tensor
correlation and spin-orbit coupling. This newly developed
method is named UCOM+HM. By using the AV4′ potential
which includes the strong short-range repulsion, the EoSs
of both symmetric nuclear matter and neutron matter are
systematically calculated [64]. The obtained results are in
good agreement with those of other popular theories, indicat-
ing the efficient treatment of the short-range correlation by
UCOM. By employing AV6′ and AV8′ potentials including
the tensor force, the effects of the short-range correlation,
the tensor correlation, and the spin-orbit couplings on the
EoS of neutron matter are investigated [65]. In this paper,
we will concentrate on the properties of symmetric nuclear
matter by including the tensor correlation. The tensor force is
known to be much stronger for proton-neutron (pn) pairs than
those for proton-proton (pp) and neutron-neutron (nn) pairs,
hence the tensor correlations in symmetric nuclear matter are
much more complicated than that in neutron matter. Usually,
the momentum excitation mode for the correlated nucleons
is employed to describe the NN correlations in finite nuclei
and nuclear matter. Here we will discuss more excitation
modes for the HM pairs. Especially, since the tensor force is
closely related to the two spins of the correlated nucleons, we
will introduce the spin excitation mode to describe the strong
tensor correlation in symmetric nuclear matter. This paper is
organized as follows. In Sec. II A, the formalism of UCOM is
presented. In Sec. II B, different 2p2h excitation modes of the
HM pairs, especially the spin excitation mode, are introduced.
The total wave function of symmetric nuclear matter including
the tail correction is also given. The calculated results are
presented and discussed in Sec. III. A summary is given in
Sec. IV.

II. FRAMEWORK

A. Unitary correlation operator method (UCOM)

The unitary correlation operator method (UCOM) is intro-
duced to treat the short-range correlation in symmetric nuclear
matter. Within the UCOM, the correlated wave function � can
be obtained by � = Cr�, where � is the trial wave function
and Cr is the unitary correlation operator. The latter is defined
as [29,30]

Cr = exp

(
− i

∑
i< j

gi j

)
=

A∑
i< j

cr,i j, (1)
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TABLE I. Values of the parameters α, β, and γ in the function
R+(r) of UCOM for symmetric nuclear matter.

α β γ

1E 1.36 0.98 0.33
3E 1.24 0.94 0.39
1O 1.50 1.26 0.87
3O 0.69 1.39 0.28

where gi j is a pair-type Hermite generator and cr,i j is the
operator for one pair in the A-body system. The specific form
of the generator g can be denoted as

g = 1
2 {prs(r) + s(r)pr}, (2)

where the operator pr is the relative momentum parallel to the
relative coordinate of the correlated nucleons. The function
s(r) is the variation of the wave function for the relative
motion at the distance r. In the calculations of UCOM, the
function s(r) is usually replaced by R+(r), which satisfies the
following relations [29,30]:

dR+(r)

dr
= s[R+(r)]

s(r)
, (3)

c†
r rcr = R+(r). (4)

The function R+(r) represents the transformed distance from
the original one r. It can decrease the amplitude of the wave
function for the relative motion at short-range distances, as a
result of the short-range correlation. The forms of R+(r) for
the even channel with positive parity and the odd channel with
negative parity are given as [29,30]

Reven
+ (r) = r + α

(
r

β

)γ

exp

[
− exp

(
r

β

)]
, (5)

Rodd
+ (r) = r + α

(
1 − exp

[
− r

γ

])
exp

[
− exp

(
r

β

)]
,

(6)

where the parameters α, β, and γ are variationally determined
and their values for different channels in symmetric nuclear
matter are listed in Table I, and are the same as in our previous
work [64].

With the determined function R+(r), the generator gi j

and the operator cr,i j as well as the operator Cr can be
obtained. Then by using the transformation � = Cr�, the
original Schrödinger equation H� = E� can be derived as
H̃� = E�, where H̃ is the transformed Hamiltonian and can
be denoted as [29,30]

H̃ = C†
r HCr = C†

r TCr + C†
r VCr = T̃ + Ṽ , (7)

T̃ =
A∑

i=1

ti +
A∑

i< j

ui j, (8)

Ṽ =
A∑

i< j

ṽi j . (9)

In the transformed potential Ṽ , the radial part in ṽi j (r) is
obtained by vi j (R+(r)), which is transformed from the orig-
inal v(r) at the relative distance r. The transformed kinetic
energy operator T̃ contains two parts, the one-body part ti
and the correlated two-body part ui j . The latter comes from
the short-range correlation between the correlated nucleons,
which is closely related to both the momentum and angular
momentum of the relative motion [29,30]:

u(r) = w(r) + 1

2

[
p2

r

1

2μr (r)
+ 1

2μr (r)
p2

r

]

+ L2

2μ�(r)r2
, (10)

where the forms of the functions w(r), μr (r), and μ�(r) are
respectively given using the nucleon mass m as

w(r) = h̄2

m

(
7

4

R′′2
+ (r)

R′4+(r)
− 1

2

R′′′
+ (r)

R′3+(r)

)
, (11)

1

2μr (r)
= 1

m

(
1

R′2+(r)
− 1

)
, (12)

1

2μ�(r)
= 1

m

(
r2

R2+(r)
− 1

)
. (13)

B. 2p2h excitation modes and total wave function

Symmetric nuclear matter is described by the finite
particle-number approach, where a periodic boundary con-
dition is employed for the single-nucleon wave function as
φ(r) = φ(r + Lx̂). Under this description, the infinite nuclear
matter can be divided into identical cubic boxes with finite
size L. The 0p0h state of the cubic box is defined by the Slater
determinant as [64,65]

|0p0h〉 = 1√
A!

det

{
A∏

i=1

φαi (ri )

}
, (14)

φα (r) = 1√
L3

eikα ·rχσ
α χτ

α , (15)

〈φα|φα′ 〉 = δαα′ , (16)

where A is the mass number in the cubic box. The single-
nucleon wave function φα (r) is described by a plane wave
and the functions χσ

α and χτ
α are the spin and isospin com-

ponents, respectively. The index α represents the quantum
number for the momentum, spin, and isospin. Within the
periodic boundary condition, the momenta of nucleons are
discretized by the gap k = 2π

L and all the momenta are
located at the grid points of the lattice in the momen-
tum space. By using an integer vector n = (nx, ny, nz ), the
momentum of each nucleon can be obtained by k = 2π

L n.
Constrained by the Fermi momentum kF , there exist magic
numbers of the total grid points in the momentum lattice,
such as Ng = 1, 7, 19, 27, 33, 57, . . . . As a result of the
spin and isospin symmetries in symmetric nuclear matter,
the particle numbers in the cubic box can be A = 4Ng =
4, 28, 76, 108, 132, 228, . . . .

The HM component in symmetric nuclear matter is de-
scribed by introducing 2p2h excitations of nucleon pairs,
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FIG. 1. Sketch of momentum and spin/isospin exchange modes
for 2p2h excitations.

which can be written as [64,65]

|2p2h〉 = |mn; i−1 j−1〉 = a†
ma†

naia j |0p0h〉, (17)

where the indices i and j (i, j = 1, . . . , A) represent hole
states from lower magnitude of momenta, and the indices m
and n (m, n > A) are particle states in the 2p2h configurations.
The total momentum between the two holes and the two
particles is conserved under the following condition:

ki + k j = km + kn, (18)

km = ki + q, (19)

kn = k j − q, (20)

where the magnitudes of the above momenta satisfy

|km| > kF , |kn| > kF , (21)

|ki| < kF , |k j | < kF . (22)

The quantity q is the transfer momentum between the two cor-
related nucleons, which links the two holes and two particles
in the 2p2h configuration. The transfer momentum q = 2π

L nq

is also discretized with the integer momentum mode nq =
(nqx, nqy, nqz ). If the transfer momentum q is large enough, the
HM components in symmetric nuclear matter can be naturally
induced by the 2p2h excitations. The maximum mode nmax

q of
the transfer momentum determines the total number of 2p2h
configurations, which affects the basis space of the present
calculations.

The momentum excitations of two correlated nucleons are
usually considered to describe the HM components in finite
nuclei and nuclear matter. According to the NN interaction,
there are spin and isospin exchange terms in the central force.
Therefore, the spin and isospin of the two correlated nu-
cleons can be exchanged along with the above momentum
excitations. As shown in Fig. 1, by taking a pn pair as an
example, we show the momentum excitation and spin/isospin
exchange modes for the 2p2h configurations. The blue up and
down arrows represent the spin directions of the nucleons. As
shown in Fig. 1(a), only the momenta of the two correlated
nucleons are excited into the HM region. Their spins and
isospins are identical. In Figs. 1(b) and 1(c), along with the
momentum excitation, their spins/isospins are exchanged as
well. In Fig. 1(d), their spins and isospins are exchanged at
the same time.

Besides the above momentum excitation, spin exchange,
isospin exchange, and spin-isospin exchange modes for 2p2h
configurations, we further consider spin excitation mode,
which is important for treating the effect of the tensor force.

FIG. 2. Sketch of spin excitations for pn pairs with opposite
directions of spin.

In Fig. 2, we give a sketch of the spin excitation mode for
a pn pair with opposite spin directions. Hence the total spin
of the nucleon pair before excitation is Sz = 0. However, after
the momentum excitation, there is a possibility that the spin of
the neutron can be excited from down to up. Hence the total
spin of the HM pair is Sz = 1, as shown in Fig. 2(a). Similarly,
as shown in Fig. 2(b), the spin of the proton can be excited
from up to down and the total spin is Sz = −1. In Figs. 2(c)
and 2(d), the isospins of the two correlated nucleons are ex-
changed along with their momentum and spin excitations. The
total spins are Sz = 1 and Sz = −1, respectively. For these
excitations, the variation of the total spin after excitations is
Sz = 1.

Shown in Fig. 3 is a sketch of the spin excitation mode
for a pn pair with parallel spin direction. Hence the total spin
of the nucleon pair before excitation is Sz = 1. If only one
spin of the nucleon pair is excited along with the momentum
excitation, as shown in Figs. 3(a) and 3(c), the total spin of
the nucleon pair is Sz = 0 and the variation of the total spin is
Sz = 1. Further, there is a possibility that the two spin of the
nucleon pair can both be excited at the same time, as shown
in Figs. 3(b) and 3(d). Hence the total spin is Sz = −1 and
the variation of the total spin is Sz = 2. Besides, as shown
in Figs. 3(c) and 3(d), the isospins of the nucleon pair are
exchanged at the same time. Due to the isospin component,
the excitation modes for pn pairs are more complex than those
for pp and nn pairs. In Fig. 4, based on the different excita-
tion modes and nucleon-pair channels, we classify the HM
pairs for the two-particle state (m, n) in 2p2h configurations
into eight modes. The four channels 1E , 3O, 1O, and 3E for
different types of nucleon pairs with spin/isospin exchange

FIG. 3. Sketch of spin excitations for pn pairs with parallel di-
rections of spin.
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FIG. 4. Different excitation modes and channels for the two-
particle state (m, n) in 2p2h configurations.

modes correspond to the mode indices 1–4. The channels with
spin excitation mode are the mode indices 5–8. Considering
the tensor force closely related to the spins of the correlated
nucleons, the spin excitation mode is expected to effectively
describe the strong tensor correlation in symmetric nuclear
matter.

In addition, the isospin excitation mode for the 2p2h con-
figurations was also considered. However, we found that the
isospin excitations had no contributions to the total energy
in the present calculations. Besides, if the isospin excitation
mode is included, the proton and neutron numbers will be
changed, leading to different total nucleon numbers of the
nuclear matter. In the future, we can further check the effects
of the isospin excitation mode with the full Argonne NN
interaction which includes the isotensor (charge-breaking)
components.

Moreover, since the tensor force is the interaction acting
in intermediate- and long-distance regions, it is necessary
for symmetric nuclear matter to consider the tail correction
originating from the neighboring boxes. The tail correction
is usually estimated by extending the integrals for the two-
body matrix elements from the box size L to infinity [57].
As pointed out in Ref. [58], the tail correction also can be
included by tabulating both the two-body potential and the
Jastrow factor within additional neighboring boxes. The for-
mer one is similar to the integral extension for the two-body
matrix elements, while the latter one includes the correla-
tions coming from the neighboring boxes. Hence, besides the
2p2h configurations for the two correlated nucleons in the
same box, there also exist correlations between two nucleons
in different boxes. As a result of the tail correction from
neighboring boxes, the two correlated nucleons in different
boxes also can form a HM pair with a 1p1h excitation in
both boxes. In order to further describe the tensor correlation,
it is necessary for symmetric nuclear matter to include the
tail correction. Thus the momentum relations for the 2p2h
configurations in Eqs. (19) and (20) can be rewritten as

kma = kia + q, (23)

knb = k jb − q. (24)

FIG. 5. Total number of 2p2h configurations, N2p2h, varied with
the maximum transfer mode nmax

q for symmetric nuclear matter with
different excitation modes and involved boxes.

The total momentum of the associated 2p2h configuration is
still conserved by the relation kma + knb = kia + k jb, where a
and b are the indices of involved boxes. For each associated
2p2h configuration, the particle m and the hole i are in the box
a, and the other particle n and the other hole j are in the box
b. Hence the two correlated nucleons are in the same box with
a = b and in different boxes with a �= b. The spin/isospin ex-
change modes and the spin excitation modes discussed above
also exist for the associated 2p2h configurations. As a re-
sult, all the cubic boxes for symmetric nuclear matter contain
0p0h, 1p1h, and 2p2h configurations. We have checked that
in each single box, the 1p1h configurations have no couplings
with 0p0h and 2p2h configurations. This is natural because
the 1p1h excitations are induced by the interaction from the
neighboring boxes rather than the present box. However, the
associated 2p2h excitations with two 1p1h configurations in
different boxes can make contributions to the total energy
of symmetric nuclear matter, which will be discussed in the
following section. This indicates the necessary inclusion of
the tail correction for describing the tensor correlation in
symmetric nuclear matter.

By including the 2p2h configurations, the total wave func-
tion of symmetric nuclear matter can be written as

� = C0|0p0h〉 +
N2p2h∑
p=1

Cp|2p2h, p, b〉, (25)

where N2p2h is the total number of 2p2h configurations and
{Cp} are the configuration amplitudes, which can be variation-
ally determined. The index p represents each configuration,
with p = 0 corresponding to the 0p0h state. The index b
(1 � b � Nb) represents the involved box and Nb is the total
box number, which can be variationally determined as well.

In Fig. 5, by taking the mass numbers A = 28 and A =
132 as examples, we plot the total number of the 2p2h con-
figurations, N2p2h, varied with the maximum transfer mode
nmax

q for different excitation modes and different numbers
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FIG. 6. Convergence of the total energy per particle for symmetric nuclear matter with the maximum transfer mode nmax
q and the number

of involved boxes Nb under AV6′ (left) and AV8′ (right) potentials.

of involved boxes. It is clearly shown in Fig. 5 that the
total configuration number N2p2h is generally exponentially
increased with the maximum transfer mode nmax

q . Besides, for
the central box with Nb = 1, compared with the total con-
figuration number without spin excitation mode (red square
lines), the inclusion of the spin excitation mode (blue circle
lines) can increase the number by several times for the same
transfer momentum mode. When the tail correction is consid-
ered with more boxes in the calculations, such as for Nb =
8, the total configuration number will be further increased
by several orders of magnitude and come up to 108. Hence
the basis space in present calculations will be very huge.
Besides, as shown by using GFMC [20], AFDMC [58,59],
CC [62], and UCOM+HM in our previous works [64,65],
the cubic box with mass number A = 132 can best simulate
the properties of the HF infinite nuclear matter. However,
our previous work has shown that, by using UCOM to treat
the short-range correlation, the relative errors of both the
kinetic and potential energies are reduced, especially for
the potential energies [64,65]. Hence, the energies with dif-
ferent magic mass numbers agree with each other without
much accuracy loss. Considering the available computing
capability, we will take the mass number A = 28 to study
the properties of symmetric nuclear matter in the following
calculations.

By using the basis states giving in Eq. (25), we can calcu-
late the matrix elements of the transformed Hamiltonian H̃ .
Physically, the UCOM transformation can induce two-body
correlations. Then by introducing 2p2h configurations into
the total wave function, there are up to 4p4h correlations
involved in the present UCOM+HM approach. Within the
power method [66–68], we can solve the eigenvalue problem
for the Hamiltonian matrix with N2p2h + 1 dimensions. Then
the configuration amplitudes {Cp} and the total number of
boxes Nb involved in Eq. (25) can be variationally determined
by minimizing the total energy of symmetric nuclear matter.
With the obtained values, we can further calculate the EoSs
of symmetric nuclear matter with different interactions and
the contributions of each Hamiltonian component to the total
energy.

III. RESULTS AND DISCUSSION

In Fig. 6, we plot the energy convergence of symmetric
nuclear matter with the maximum transfer mode nmax

q and the
number of involved boxes, Nb, under AV6′ and AV8′ poten-
tials, respectively. The results are calculated at the normal
density ρ = 0.17 fm−3 with mass number A = 28. It can be
directly seen from Fig. 6 that for both AV6′ and AV8′ poten-
tials the total energy converges with the maximum transfer
mode nmax

q increasing. This is reasonable because the exci-
tation probability will decrease with the increasing transfer
momentum. Further, the total energy will also converge with
the increasing box number Nb. This indicates that the tail
correction from the neighboring boxes will be saturated due
to the finite range of the NN interactions.

In each panel of Fig. 6, we also give the results calcu-
lated with 0p0h (black dashed lines) and 0p0h+UCOM (blue
dashed lines) wave functions at the normal density. With 0p0h
wave function for symmetric nuclear matter, the total energy
per particle at the normal density is about 35.2 MeV with
AV6′ potential and 32.4 MeV with AV8′ potential. By using
UCOM to treat the short-range correlation, there exists a large
energy fall from the 0p0h wave function to the 0p0h+UCOM
wave function, as shown from the black dashed line to the
blue dashed line in each panel of Fig. 6. This is the result of
the effective treatment of the short-range correlation, and the
corresponding total energy per particle is decreased to −0.4
MeV with AV6′ potential and 1.1 MeV with AV8′ potential.
Then we introduce the nucleon pair excitations from both the
central box and the neighboring boxes to describe the tensor
correlation in symmetric nuclear matter. The final converged
energy per particle is around −13.8 MeV with AV6′ potential
and −13.3 MeV with AV8′ potential. The obtained value is
very close to the calculation with AFDMC, as shown by the
magenta dashed line in the left panel. Besides, in each panel
of Fig. 6, the black square lines represent the results only in
the central box without considering the spin excitation mode
of HM pairs. The converged energy is about −3.6 MeV with
AV6′ potential and −2.6 MeV with AV8′ potential. For the
results shown as the red-circle lines, the spin excitation mode
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FIG. 7. Contributions of different excitation modes to the total energy per particle at the normal density ρ = 0.17 fm−3 in symmetric
nuclear matter with AV6′ potential by taking the box numbers Nb = 1 (left) and Nb = 8 (right) as examples.

is included in the total wave function but still only in the
central box. The corresponding converged energy is decreased
to −9.3 MeV with AV6′ potential and -8.7 MeV with AV8′
potential. Hence the spin excitation mode can make significant
contributions to the total energy of symmetric nuclear matter.
Since the short-range correlation has been treated by UCOM,
the contributions of the spin excitation mode mainly come
from the effective description of the tensor correlation. This
indicates the particular importance of the spin excitation mode
for the tensor correlation in symmetric nuclear matter. For the
results with box number Nb from 2 to 8, the spin excitation
mode is also included in all the calculations and the total
energy with AV6′ potential is finally converged around the
result calculated with the AFDMC method. By comparing
the results with Nb = 1 and with Nb = 8, we can find that
the converged energy gains from the tail correction are about
4.2 MeV. Hence, besides the spin excitations, the tail cor-
rection from the neighboring boxes also has remarkable
contributions to the total energy and to the tensor correlation
in symmetric nuclear matter.

By taking the box numbers Nb = 1 and Nb = 8 as ex-
amples, we study the effects of different excitation modes
for the HM pairs. The contributions of each mode to the
total energy per particle at the normal density ρ = 0.17 fm−3

with AV6′ potential are shown in Fig. 7. The energies with
excitation mode “0” correspond to the 0p0h+UCOM calcu-
lations. The other excitation modes along the horizontal axis
are pure momentum excitation without spin-isospin exchange,
spin exchange, isospin exchange, spin-isospin exchange, spin
excitation with Sz = 1, and spin excitation with Sz = 2.
It can be seen from Fig. 7 that, by successively adding the
excitation modes into the total wave function, the total en-
ergy per particle will be decreased, indicating the individual
contributions from these excitation modes. Besides, with the
maximum transfer momentum mode nmax

q increasing, the con-
tributions will converge. This is also because of the decreasing
possibility of the 2p2h excitations with larger transfer momen-
tum. Moreover, it is obvious in Fig. 7 that there are relatively
large energy gains for the spin excitation modes with Sz = 1
and Sz = 2, which originate from the effective description of
the tensor correlation by the spin excitation mode. In addition,
for the mode with Sz = 2, both the spins of the correlated
nucleons should be excited to the opposite direction. Thus
the excitation possibility could be much smaller than that of
the mode with Sz = 1. However, the former has approxi-
mately the same contribution to the total energy per particle,
indicating the significance of the spin excitation mode with

FIG. 8. Contributions of different excitation modes to the total energy per particle at the normal density ρ = 0.17 fm−3 in symmetric
nuclear matter with AV6′ potential by taking the box numbers Nb = 1 (left) and Nb = 8 (right) as examples.
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FIG. 9. Comparison of the density dependence of the total energy per particle in symmetric nuclear matter calculated with different wave
functions under AV6′ (left) and AV8′ (right) potentials.

Sz = 2 for the tensor correlation. Besides, when the involved
box number increases from Nb = 1 to Nb = 8, there is a rise
in the contribution from each excitation mode. This is due
to the tail correction from the neighboring boxes. Besides,
the contributions from the pure momentum excitation and
spin excitation modes are generally larger than those of the
spin exchange, isospin exchange, and spin-isospin exchange
modes. In order to study the tensor correlations for different
NN pairs, we plot in Fig. 8 the contributions of the different
HM pairs to the total energy in symmetric nuclear matter. The
energies with excitation mode “0” are still calculated with
the 0p0h+UCOM wave function. The indices 1–4 correspond
to the four channels 1E , 3O, 1O, and 3E from the exchange
modes, while 5–8 are the four channels within spin excitation
modes, as shown in Fig. 4. The former two channels 1E
and 3O are for pp/nn pairs, while the latter two 1O and 3E
are for pn pairs. It is clearly shown in Fig. 8 that the pn
pairs have significant contributions to the total energy while
the contributions from the pp/nn pairs are very minor. This
is mainly because of the stronger tensor correlation for pn
pairs than for pp/nn pairs. Besides, the energy gains from the
pn pairs with spin excitations 7 and 8 are obviously larger
than those from exchange modes 3 and 4. This also indicates
the significance of the spin excitation modes for the tensor
correlation in symmetric nuclear matter.

In Fig. 9 we show the comparison of the total en-
ergy per particle calculated with 0p0h, 0p0h+UCOM, and
(0p0h+)UCOM+HM wave functions under AV6′ and AV8′
potentials, respectively. It can be seen that for each potential
the energies with the 0p0h wave function are all positive and
much stiffer. This is because of the very strong short-range
repulsion from the central force. After the short-range corre-
lation is treated by UCOM, there are very large energy falls at
all densities with 0p0h+UCOM wave function. When the HM
pairs are introduced, the total energies are further decreased,
indicating the effective description of the tensor correlation in
symmetric nuclear matter.

Shown in Fig. 10 are the EoSs of symmetric nuclear
matter for AV6′ and AV8′ potentials calculated with present

UCOM+HM as well as several other many-body theories.
The results of other approaches are taken from previous
benchmark calculations [49]. From the left panel for AV6′
potential we can see that the obtained results in the present
work are consistent with those of other theories. In detail, the
energies among different approaches agree with each other at
low densities, while there exist differences at high densities.
It should be noted that the present results are calculated with
the mass number A = 28 instead of A = 132 where the latter
can give the best simulation for the properties of the HF infi-
nite nuclear matter. As systematically studied in our previous
work [64], there is a common feature that the mass number
A = 28 will give a little lower total energy than A = 132 at
high densities, which is also obtained in the two panels of
Fig. 10. From the right panel for AV8′ potential we can see
that though there are agreements among different theories in
the low density region, the energy difference increases as the
nuclear matter density increases. Besides, it is well known
that there is no saturation point for symmetric nuclear matter
with AV4′ potential up to very high density [49]. However,
for AV6′ and AV8′ potentials including the tensor force, there
exist saturation behaviors around the density ρ = 0.4 fm−3. In
order to show the saturation property more clearly, the numer-
ical results for AV6′ and AV8′ potentials are listed in Table II.
This manifests the very close relationship between the tensor
correlation and the saturation properties of symmetric nuclear
matter. Besides the tensor force, the three-body force is also
pointed out to have impacts on the saturation properties. In
the future, we can further include the three-body force in the
calculations.

By decomposing the Hamiltonian into different compo-
nents, we obtain their separate contributions to the total
energy of symmetric nuclear matter. The results with AV6′
and AV8′ potentials are shown in the two panels of Fig. 11,
respectively. T is the total kinetic energy, T1 is the summa-
tion of the one-body kinetic energy ti given in Eq. (8), and
TUCOM = T − T1 is the two-body kinetic energy originating
from the short-range correlation in UCOM. VC, VTNS, and
VLS are the central, tensor, and spin-orbit coupling parts of
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FIG. 10. Equations of state of symmetric nuclear matter calculated under AV6′ (left) and AV8′ (right) potentials.

potential energy, respectively. The quantity Eb = E (Nb =
8) − E (Nb = 1) represents the contribution of the tail correc-
tion from the neighboring boxes. It can be seen from Fig. 11
that the total kinetic energy T and the central potential energy
VC make main contributions to the total energy, while the
contributions of the tensor and spin-orbit coupling parts are
relatively small. However, since the former two contributions
have opposite signs and cancel, the total energy is very close
to the tensor part. Besides, the two-body kinetic energy TUCOM

is comparable to the one-body one T1, indicating the signif-
icance of the short-range correlation. As a result, the total
kinetic energy T increases with the density ρ much faster
than the one-body kinetic energy T1, which generally goes as
ρ2/3. In addition, the contribution of the tail correction shown
by the brown lines is even larger than that of the spin-orbit
coupling part. Hence it is necessary to include the associated
2p2h configurations to further describe the tail correction and
tensor correlation originating from the neighboring boxes.

IV. SUMMARY

We calculate the equation of state (EoS) of symmetric nu-
clear matter by using the bare AV6′ and AV8′ nucleon-nucleon
(NN) interactions. Symmetric nuclear matter is described
within the finite-particle-number approach by using a peri-

odic boundary condition for the single-nucleon wave function.
Hence the infinite nuclear matter is divided into identical
cubic boxes.

The unitary correlation operator method (UCOM) is used
to treat the short-range correlation, and the excitations of
correlated nucleon pairs with high momentum (HM pairs)
are employed to describe the tensor correlation in symmetric
nuclear matter. Different excitation modes are analyzed for the
HM pair excitations, including momentum excitation with-
out spin-isospin exchange, spin exchange, isospin exchange,
spin-isospin exchange, and spin excitation. The spins of the
HM pairs are changeable by the spin excitation, and the
variations of the spin of the correlated pairs can be Sz = 1
and Sz = 2. Besides, in order to include the tail correction
originating from the neighboring boxes, the associated 2p2h
configurations with two 1p1h excitations from different boxes
are also considered in the total wave function of symmetric
nuclear matter.

By calculating the total energy per particle of symmetric
nuclear matter at the normal density ρ = 0.17 fm−3, we first
confirm the energy convergence with the maximum transfer
momentum mode and the number of involved boxes. The
contributions of the short-range correlation and the HM pairs
as well as the tail correction to the total energy are obtained.
Then we calculate the contributions of different excitation

TABLE II. Values of the Hamiltonian components as well as the total energy per particle for symmetric nuclear matter at some densities
with AV6′ and AV8′ potentials. The units of the energies are MeV/A.

ρ AV6′ AV8′

(fm−3) E T VC VTNS E T VC VTNS VLS

0.05 −4.92 13.99 −12.96 −5.95 −4.63 13.97 −12.52 −5.80 −0.28
0.10 −9.20 23.34 −22.92 −9.62 −8.78 23.37 −22.13 −9.20 −0.82
0.17 −13.33 34.83 −35.13 −13.03 −12.81 34.92 −33.82 −12.22 −1.69
0.20 −14.62 39.49 −39.96 −14.15 −14.05 39.61 −38.42 −13.18 −2.06
0.30 −17.51 54.54 −54.98 −17.07 −16.76 54.73 −52.64 −15.61 −3.24
0.40 −18.70 69.16 −68.66 −19.20 −17.78 69.39 −65.50 −17.33 −4.34
0.50 −18.62 83.49 −81.26 −20.85 −17.47 83.76 −77.26 −18.63 −5.34
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FIG. 11. Energies of the Hamiltonian components for symmetric nuclear matter calculated under AV6′ (left) and AV8′ (right) potentials.
T is the total kinetic energy, T1 is the summation of the one-body kinetic energy ti, and TUCOM = T − T1 is the two-body kinetic energy
originating from the short-range correlation in UCOM. VC, VTNS, and VLS are the central, tensor, and spin-orbit coupling parts of potential
energy, respectively. The quantity Eb = E (Nb = 8) − E (Nb = 1) represents the contribution of the tail correction from the neighboring boxes.

modes to the total energy. The pure momentum excitation and
spin excitation modes are found to have larger contributions
than those of other excitation modes. In particular, the spin
excitation mode is found to be very important for describing
the tensor correlation in symmetric nuclear matter. The effects
of the individual HM pairs on the total energy are also studied.
Due to the strong tensor correlation for pn pairs, the contri-
butions from pn pairs are found to be more significant than
those from pp and nn pairs. Moreover, the pn pairs from spin
excitation modes have larger contributions than those from
exchange modes.

With 0p0h, 0p0h+UCOM, and 0p0h+UCOM+HM wave
functions, we also compare the density dependence of the total
energy per particle in symmetric nuclear matter for AV6′ and
AV8′ potentials. The energies with the 0p0h wave function are
very stiff throughout the densities. However, the energies with
0p0h+UCOM wave function are decreased a lot due to the
treatment of the short-range correlation by UCOM. When the
HM pairs are used, the energies in symmetric nuclear matter
will be further decreased because of the description of the
tensor correlation.

The EoS of symmetric nuclear matter calculated under the
AV6′ potential in the present work is consistent with those of
other many-body theories. In detail, the energies at low densi-
ties agree with each other, while there are differences among
different approaches at high densities. For the AV8′ potential,

the energies per particle with different approaches agree with
each other in the low density region, while the difference
increases as the nuclear matter density increases. Moreover,
the saturation properties of symmetric nuclear matter are con-
firmed to show close relation to the tensor correlation.

The contributions of each Hamiltonian component to the
total energy of symmetric nuclear matter are obtained as well.
The total kinetic energy and the central potential energy make
the main contributions, but with opposite signs and canceled.
As a result, the total energy is very close to the tensor potential
energy. The correlated two-body kinetic energy is found to
be comparable to the one-body kinetic energy, indicating the
significance of the short-range correlation. The contribution
of the tail correction to the total energy is remarkable and
larger than the spin-orbit coupling potential energy. This in-
dicates the necessity of the tail correction to further describe
the tensor correlation originating from the neighboring boxes.
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