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Two-dimensional extrapolation procedure for an ab initio study of nuclear size parameters and the
properties of the halo nucleus 6He
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A new two-dimensional procedure for extrapolation of the values of matter, neutron, and proton radii obtained
in no-core shell model (NCSM) calculations to infinite size of its basis is proposed. A relationship between
the radii is used as an additional test. Together with the JISP16 potential, which is frequently used in NCSM
calculations of the radii, the Daejeon16 potential is applied for these purposes. Halo nucleus 6He is the object of
studies. The small spread of radii values and reasonable agreement between the obtained results and experimental
data as well as the results of other advanced ab initio calculations demonstrate the high efficiency of the
developed approach and, therefore, good prospects for its application. The performed investigations and analysis
of the results of other studies indicate that the halo of 6He has a large size: 0.7–0.8 fm.
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I. INTRODUCTION

Matter and charge radii are one of the most significant
observables characterizing atomic nuclei. Due to a variety of
experimental techniques, the charge radii of stable and long-
lived nuclei have been well studied. A slightly less favorable,
but also quite satisfactory situation is the case for matter radii.
For nuclei far from the stability band, the study of these quan-
tities causes serious difficulties, which are gradually overcome
with the development of methods for obtaining ever more in-
tense beams of short-lived ions. The data obtained during such
measurements are of great physical importance, since they
provide information about the inhomogeneity of the distribu-
tion of protons and neutrons, the presence of “skin” or “halo”
in nuclei. However, such experiments are still technically dif-
ficult and their results obtained for the same isotope often
differ markedly from experiment to experiment. Therefore,
the problem of theoretical description the size parameters (in-
cluding neutron radii not available for direct measurements)
of nuclei of the discussed type seems to be very topical.

At the same time, it should be stressed that simplified
approaches, such as the shell model with an inert core and,
even more so, schemes that consider the core without taking
into account its nucleon structure, encounter difficulties in
describing long-range nucleon correlations, exchange effects,
etc. and, therefore, give results of limited reliability. So, the
use of ab initio approaches is one of few possible ways to
solve this task.

An ab initio study of the size parameters of the lightest
nucleon-stable neutron-rich 6He nucleus is the subject of this
paper. Naturally, the total binding energy of this system is
also computed. The choice of this isotope is due to the fact
that it is a good testing ground for the studies discussed.

Indeed, first, its size characteristics have been fairly well
studied experimentally. Second, the relatively small number
of its constituent nucleons makes it possible to test a wide
variety of high-precision theoretical methods on it. Third, this
“canonical” example of the lightest halo nucleus turns out to
be difficult to describe even within the framework of many ab
initio schemes due to its large size and the great difference in
neutron and charge radii (halo size rn − rc), unique for nuclei
with A � 10. The main motivation behind this choice is that
the 6He nucleus is a very physically interesting (so-called
Borromean) three-body (α + 2n) system characterized by a
large distribution radius of weakly bound neutrons.

The list of works devoted to the same subject is quite large.
The most important of these are presented in Refs. [1–14]
which are based on wide diversity of ab initio schemes.
Various Monte Carlo approaches [1,2,6,12], the hyperspher-
ical harmonics method [5], no-core configuration interaction
(NCCI) calculations [10,11], the coupled-cluster method [14],
etc. are used in these works. Various versions of the no-core
shell model (NCSM) play the most prominent role among
these schemes. The NCSM and similar in structure NCCI
calculations of matter and charge radii together with the bind-
ing energy ones are performed using realistic NN [7] and
NN + 3N [3,9,12] interactions. The bases of the usual NCCI
and NCSM are exploited, as well as symmetry-adapted SU(3)-
based NCSM [8]. NCSM with (α + 2n) continuum (NCSMC)
[13] also used to solve the above-mentioned problem.

It should be emphasized that the problem of high-precision
ab initio computation of the size parameters of nuclei is quali-
tatively different from the problem of calculation their binding
energy. The main reason for this is that the sizes of nuclei are
largely determined by long-range nucleon correlations. The
consequence of that is, first, that it is hard task to achieve
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convergence of the results of calculating the radii of nuclei
on a basis that is available to modern computers. This, in turn,
forces one to use procedures for extrapolating the results to
large dimensions of a basis. Approaches of such a kind in
the calculations of 6He nucleus are presented in Refs. [15,16].
Also, there is a second problem along this way. In contrast
to the regular tendency for the binding energy to change
monotonically with increasing basis size, the convergence of
nuclear radii is not monotonic. Because of this, approaches
that include extrapolation procedures to an infinite basis need
to be more sophisticated.

The results obtained in the above works describe the exper-
imental data with varying degrees of success (see the analysis
below). However, the approaches developed in these works
are often insufficient to answer the question of whether the
source of the discrepancy between the theoretical results and
experiment is the model of internucleon interaction or the in-
accuracy of the calculation method itself. This is true even for
the canonical 6He nucleus example. Therefore, new ab initio
calculations of the radii of the six-nucleon nuclei are needed
and developing new methods for extrapolation of computed
data obtained with an achievable basis cutoff parameter to
infinity seem to be a vital issue.

In this paper we start from one of the most reliable and
justified ab initio approaches, the M-scheme of the no-core
shell model. Two different versions of the NN interaction
together with Coulomb proton-proton interaction have been
incorporated in the model Hamiltonian. The first of these
two—the JISP16-potential—has been built from nucleon scat-
tering data using the J-matrix inverse scattering method [17].
It has already been used to calculate the size parameters of the
6He nucleus in Refs. [6–8,10], so in this paper it is exploited,
in particular, to test other new elements of our approach.

An important part of the current investigation is that the
Daejeon16 potential [18] is also applied for the NCSM com-
putations of the 6He nuclear radius as a model of the NN
interaction. It is built using the N3LO limitation of chiral
effective field theory [19] softened via a similarity renor-
malization group (SRG) transformation [20]. Both JISP16
and Daejeon16 versions of internucleon are “global,” i.e.,
designed to calculate all kinds of characteristics of nuclei
with mass A � 16. They were tested in the framework of
large-scale computations of the total binding energies, nu-
cleon and cluster binding energies, excitation energies, radii,
moments of nuclear states, and the reduced probabilities of
electromagnetic transitions. These tests demonstrated that
such characteristics are, in general, reproduced well. In some
cases, the quality of describing these characteristics using the
Daejeon16 interaction is somewhat better than that for the
JISP16 one.

The NCSM calculations were performed by using the BIG-
STICK code [21]. In our computations of the 6He system the
oscillator bases are limited by the values of the cutoff param-
eter of the number of excitation quanta Nmax � 14.

As mentioned above, new extrapolation methods are
needed. The central point of this work is a new two-
dimensional procedure for extrapolating the calculated values
of radii to an infinite basis. The object of extrapolation is the
shape of the surface of values of one of the radii over the plane

(Nmax, h̄ω) and both of these coordinates are contained in the
extrapolation formula. The proposed procedure was verified
in the framework of calculating the size parameters of the 4He
nucleus, for which the convergence of these parameters was
achieved in direct NCSM calculations.

In this way the matter, neutron, and proton radii as well
as the size of the neutron halo of 6He isotopes are obtained.
A comparative analysis of the obtained results, experimental
data, and results of other theoretical works is given.

Let us start the description of the experimental situation
and the developed approach with the terminology. As in
most modern works, point-nucleon rms radii—parameters that
characterize the distributions of all nucleons (nuclear matter)
rm ≡ (r̄2

m)1/2, as well as neutrons rn and protons rp, are consid-
ered. The last parameter is obtained from the measured charge
radius rc using the expression presented in Ref. [22]:

r2
p = r2

c − R2
p − (N/Z )R2

n − 3h̄2c2
/

4(Mpc2) − r2
so. (1)

Here R2
p and R2

n are the proton and neutron mean-square
charge radii, 3h̄2c2/4(Mpc2) is a relativistic Darwin-Foldy
correction, and r2

so is a spin-orbit nuclear charge-density
correction. The following values are usually chosen: R2

n =
−0.1161 fm2, 3h̄2c2/4(Mpc2) = 0.033 fm2, r2

so = 0.08 fm2.
The last estimate is valid for 6He only. For Rp, the Particle
Data Group [23] value is 0.877(7) fm. It is this quantity that
is used when processing the measurement results to obtain
point-proton nuclear radii. However, this value has also been
precisely determined from the spectroscopy of muonic hy-
drogen [24]. It turned out to be 0.84184(67) fm. Therefore,
by using these two values for Rp, two different experimen-
tal values of rp can be obtained. The matter radius rm is
deduced directly from differential cross sections of elastic
proton scattering at high momentum transfer using Glauber
multiple-scattering theory. Radius rn is unavailable for mea-
surements and therefore is calculated by using the expression

Ar2
m = Zr2

p + Nr2
n . (2)

As in other papers when studying the properties of systems
with a neutron halo or skin, a measure of their thickness—the
difference of point-nucleon sizes rh = rn − rp is used by us.

II. OUTLINE OF METHODOLOGY OF THE RESEARCH

A. Formalism of calculating nuclear radii

In NCSM computations we use the universal approach,
which makes it possible to calculate all three size parameters.
After calculating the binding energy and wave function, we
proceed to calculate matter, neutron, and proton radii for point
nucleons. The basic expressions of the formalism intended to
describe these quantities are the following: In the shell model,
the squared radius of a corresponding system is defined as

r2
m(n,p) = (1/NA(N,Z ) )

∑

i

(�rm(n,p),i − �rc.m.)
2,
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TABLE I. The total binding energies (MeV), matter, neutron, and point-proton radii of 6He nucleus (fm) obtained in direct calculations
with the use of Daejeon16 NN-interaction.

Eb Matter Neutron Proton
h̄ω/Nmax 10 12 14 10 12 14 10 12 14 10 12 14

6.0 23.677 25.454 26.752 2.721 2.661 2.612 2.948 2.889 2.842 2.201 2.132 2.076
7.0 25.941 27.274 28.141 2.548 2.508 2.482 2.760 2.724 2.701 2.058 2.007 1.971
7.5 26.757 27.871 28.550 2.485 2.457 2.443 2.693 2.669 2.659 2.006 1.966 1.939
8.0 27.398 28.309 28.830 2.436 2.419 2.416 2.640 2.628 2.630 1.964 1.934 1.917
9.0 28.258 28.839 29.134 2.368 2.372 2.386 2.567 2.578 2.599 1.907 1.894 1.892
10.0 28.725 29.086 29.258 2.329 2.348 2.372 2.525 2.552 2.583 1.874 1.874 1.880
11.0 28.957 29.194 29.302 2.306 2.334 2.362 2.501 2.537 2.572 1.856 1.864 1.873
12.5 29.093 29.239 29.313 2.284 2.318 2.348 2.476 2.518 2.555 1.841 1.853 1.866
15.0 29.093 29.210 29.279 2.252 2.288 2.318 2.438 2.482 2.519 1.822 1.838 1.851
17.5 28.988 29.127 29.214 2.215 2.252 2.284 2.394 2.440 2.478 1.804 1.824 1.834

where �rc.m. = (1/NA)
∑

i �rm,i Mean square radius takes the
form

r̄2
m(n,p) = − 4

NANA(N,Z )
〈�A|

∑

i< j

�rm(n,p,i)�rm, j |�A〉

+ 〈�A|r2
c.m.|�A〉 + NA − 2

NANA(N,Z )
〈�A|

∑

i

r2
m(n,p),i|�A〉.

(3)

Here NA(N,Z ) denotes the number of nucleons, A (or neutrons
N or protons Z), in the system,

〈�A|r2
c.m.|�A〉 = 3(h̄c)2

2mc2h̄ωNA
, (4)

〈�A|
∑

i

�ri
2|�A〉 = 1√

2J + 1

×
∑

ka,kb

OBT D(ka, kb, λ = 0)〈ka||r2||kb〉,

(5)

and

〈�A|
∑

i< j

�ri�r j |�A〉

= 1√
2J + 1

∑

ka�kb,kc�kd ,J0

〈kakbJ0||�r1�r2||kckd J0〉T BT D

× (ka, kb, kc, kd , J0). (6)

The one-body and two-body transition densities (OBTD
and TBTD) included in these formulas are expressed in terms
of the matrix elements of the products of fermion second
quantization operators:

OBT D(ka, kb, λ = 0) = 〈�A||[a+
ka

⊗ ãkb]
λ=0||�A〉. (7)

T BT D(ka, kb, kc, kd , J0)

= 〈�A||[[a+
ka

⊗ a+
kb

]J0 ⊗ [ãkc ⊗ ãkd ]J0
]λ=0||�A〉. (8)

where ⊗ is the sign of a tensor product of rank J0 or λ.
The results of the performed NCSM calculations of the

matter, neutron, and point-proton radii of the 6He nucleus

for different values of h̄ω and Nmax in which the Daejeon16
potential was used, as well as the corresponding values of total
binding energies, are shown in Table I.

B. Extrapolation procedure

A new two-dimensional extrapolation procedure proposed
by us is based on NCSM calculations of each of these radii for
different values of h̄ω and Nmax. To understand the reasoning
behind this idea consider the surface formed by the values
of any of the investigated radii over the plane (Nmax, h̄ω).
The surfaces formed by the values of the matter, neutron,
and proton radii of the 4He nucleus, calculated within the
framework of the NCSM in a wide range of H values, can
serve as good examples. They are presented in Table II.

For large values of Nmax this surface is a horizontal plane
in a fairly wide range of values of h̄ω. As Nmax decreases, the
values of the radius increase for small h̄ω and decrease for
large h̄ω, which was noted in several previous works, in par-
ticular in Refs. [7,10], devoted, in particular, to calculations
of the radii of light nuclei, and stressed by illustrations of the
latter. The wide horizontal part of the surface narrows and,
in the range of maximal Nmax values achievable for computer
calculations, degenerates into an (approximately) horizontal
line in some domain of values Nmax. The values of the radius
on this line, it was proposed in Refs. [7,10] to consider as a
value of the corresponding size parameter. It is the so-called
“crossover prescription.” The value of h̄ω at which the value
of this parameter approximately stabilizes is called crossover
point. A detailed description of this concept can be found
in Ref. [10]. This behavior is well illustrated in Table II.
Indeed, the horizontal plane, which is wide at large values
of Nmax = 16, 18, degenerates into a narrow horizontal strip
at Nmax = 10–14 and h̄ω = 15.0–17.5 MeV for any for each
of the radii. The same property of size parameters is even
more pronounced for the 6He nucleus (see Table I). Note, for
the sake of completeness, that despite the complete conver-
gence of the results, they do not reproduce the experimental
value of the point-proton radius rexpt

p = 1.455(1). This, obvi-
ously, is not related to the quality of the computer calculation,
but is determined by the properties of the potential Daejeon16.

034305-3



D. M. RODKIN AND YU. M. TCHUVIL’SKY PHYSICAL REVIEW C 106, 034305 (2022)

TABLE II. The matter, neutron, and point-proton radii of 4He nucleus (fm) obtained from direct calculations with the use of the Daejeon16
NN-interaction.

Matter Neutron Proton
h̄ω/Nmax 10 12 14 16 18 10 12 14 16 18 10 12 14 16 18

10.0 1.5304 1.5181 1.5135 1.5118 1.5112 1.5278 1.5154 1.5107 1.5091 1.5085 1.5330 1.5208 1.5162 1.5145 1.5139
12.5 1.5133 1.5116 1.5111 1.5109 1.5109 1.5106 1.5089 1.5084 1.5082 1.5082 1.5160 1.5143 1.5138 1.5136 1.5136
15.0 1.5113 1.5108 1.5109 1.5109 1.5109 1.5086 1.5081 1.5082 1.5081 1.5081 1.5140 1.5135 1.5136 1.5136 1.5136
17.5 1.5105 1.5107 1.5108 1.5108 1.5109 1.5078 1.5080 1.5081 1.5081 1.5081 1.5132 1.5134 1.5135 1.5135 1.5136
20.0 1.5097 1.5104 1.5107 1.5108 1.5108 1.5070 1.5077 1.5079 1.5081 1.5081 1.5124 1.5131 1.5134 1.5135 1.5135
22.5 1.5086 1.5098 1.5104 1.5106 1.5107 1.5059 1.5071 1.5077 1.5079 1.5080 1.5112 1.5125 1.5131 1.5133 1.5134
25.0 1.5068 1.5088 1.5098 1.5103 1.5106 1.5042 1.5061 1.5071 1.5076 1.5079 1.5095 1.5115 1.5125 1.5130 1.5133

The geometric image of the surface as a whole in this
case is a tape twisted around this line as an axis. So, the
idea is to determine trends in surface properties with in-
creasing Nmax using an extrapolation procedure basing on
two-dimensional data with limited values of this parameter.
We called this procedure twisted tape extrapolation (TTE).
Within the framework of the TTE procedure, the following
formula is proposed:

r2
m(n,p)(Nmax, h̄ω) = r2

∞,m(n,p) + Pk (h̄ω) exp(−α
√
Nmax),

(9)
where Pk (x)—a polynomial of degree k whose coeffi-
cients are fitting parameters, r2

∞,m(n,p) is the extrapolation
result—is the squared radius for infinite oscillator basis
and r2

m(n,p)(Nmax, h̄ω) are theoretically obtained results for
squared radii.

It is of value to highlight the main features of the discussed
procedure:

1. First of all, the procedure is phenomenological one. To
simultaneously involve the values of radii computed
in the bases with different Nmax and h̄ω, we had to
abandon the idea of extrapolating the binding energy
of the nucleus and its size parameters using logically
related formulas, which is implemented in most modern
works. Bearing in mind the successful description of the
radii of the 6He nucleus obtained in this work, as well
as the prospects for the description of other observables
of various nuclei (γ -transition probabilities, etc.), we
consider this justified.

2. At the same time the proposed procedure is based to a
certain extent on the currently popular parametrization
of nuclear radii given by the expression (see, for exam-
ple, Ref. [16])

r2
m(n,p)(L,�) = r2

∞,m(n,p)(�)

− a(�)[k∞(�)L]3 exp [−k∞(�)L],

(10)

where a(�) and k∞(�) are adjustable parameters hav-
ing dimensions fm2 and fm−1, respectively, �—the
ultraviolet linear momentum cutoff parameter, and L—
a size parameter that characterizes the distance at which
the basis used correctly reproduces the wave function of
a nucleus. The last value is proportional to

√
2N + 3/2

when N 	 1. Index N is not well defined for a multipar-
ticle problem, however, for a sufficiently light nucleus,
it is assumed to be proportional to Nmax. Under condi-
tions of such uncertainty, the term 3/2 can be neglected,
and the value

√Nmax with the corresponding adjustable
parameter may be introduced into the exponent.

3. If one does not try to describe the radii and the binding
energy of the nucleus in logically connected schemes,
the introduction of the momentum cutoff parameter �

loses its meaning. With the fixed form of internucleon
interaction, the real linear momentum cutoff parameter
is determined by the size of the basis, i.e., by Nmax

(thus, in practice, the power of the computer used) and
the chosen value of h̄ω.

4. Finally, the pre-exponential factor of the formula (10)
could, in principle, be introduced into the formula (9).
However, this introduction together with the polyno-
mial Pk (x) would complicate the approach too much.
Therefore, it is not included in our extrapolation for-
mula.

It should be noted that the interpolation procedure to de-
termine the ranges of possible values of the radii rp and
rm using two-dimensional (Nmax, h̄ω) input data was pre-
sented in Ref. [10]. Namely, the radii as functions of h̄ω at
fixed Nmax values from the domain of approximate stabil-
ity are computed by cubic one-dimensional interpolation of
the calculated data points at different h̄ω. A more compli-
cated two-dimensional-basing extrapolation procedure which
includes the chi-squared fit to the number of points at which
the values of the point-proton radius were calculated for var-
ious Nmax and h̄ω is presented in Ref. [25]. The object of the
study was the 6Li nucleus. Some part of the calculations was
carried out with the JISP16 potential. The weight of each point
was determined by the difference in the values of the radius in
neighboring Nmax points.

The main novelty of our procedure is that the interdepen-
dence of r2

∞ and h̄ω is directly included in the extrapolation
formula (9). Another difference of our extrapolation pro-
cedure is a choice of the range of h̄ω values which is
fundamentally different from the one that is preferred in
Ref. [25]. It seems to us preferable to search in the vicinity
to crossover point as it is done in work [10]. At the same time,
in our work, we used the same method for determining the
weight of each point, as proposed in Ref. [25]. For implement-

034305-4



TWO-DIMENSIONAL EXTRAPOLATION PROCEDURE FOR … PHYSICAL REVIEW C 106, 034305 (2022)

TABLE III. Approximate positions of the crossover points
(MeV) and the values of: the total binding energy (MeV), the matter,
neutron, and point-proton radii of 6He nucleus (fm) at this point at
Nmax = 14 for the JISP16 interaction.

Mater Neutron Proton

h̄ωco 10 10 12.5
Etot 26.41 26.41 27.86
r∞ 2.334 2.550 1.797

ing the extrapolation procedure we have chosen chi-square
fit method realized in TMinuit minimization package which
is included in open-source ROOT CERN data analysis frame-
work.

III. RESULTS AND DISCUSSION

In this paper we present the results of the first test of
TTE which is a rather general and, in our opinion, promis-
ing approach for studying observables that reflect long-range
internuclear correlations in various nuclei. Therefore, here we
limit ourselves to the simplest, taking into account the main
property of the surface, namely, the “twisting,” linearized
version of the h̄ω dependence of the surface shape, in which
h̄ω dependence is given by a first-order polynomial P1(h̄ω) =
A + Bh̄ω, and a relatively narrow mesh of calculated data.
We have included in it only three values of Nmax in which
the crossover conditions take place: 10, 12, and 14. It is
clear from our results and known from Refs. [7,10] that, as
Nmax decreases, the values of the radii increase for small h̄ω

significantly faster than decrease for large h̄ω. To take that
into account we have used nonuniform mesh with the points
at h̄ω = 6, 7.5, 8, 9, 10, 11, 12.5, 15, and 17.5 MeV—for the
Daejeon16 potential, and h̄ω = 7.5, 8, 9, 10, 11, 12.5, 15, and
17.5 MeV—for the JISP16 potential. This is partly justified by
the results obtained. The prospects for TTE lie, obviously, in
the field of using polynomials of a higher degree h̄ω, a denser
and wider mesh. This will require a large amount of computer
time.

Let us begin discussion from the results of NCSM compu-
tations in which the JISP16 potential has been used since, as
indicated above, this version of interaction has already been
used to calculate the radii of light nuclei in previous works.
These results are the following: Positions of the crossover
points, values of the total binding energy and the radii in these
points are presented in Table III. It can be seen that these
positions for the matter (as well as neutron) and point-proton
radii differ noticeably. In view of this fact, the measure of
violation of the relation (2) is important to estimate the re-
liability of these results. This measure is chosen to be � =
1 − [(Zr2

p + Nr2
n )/Ar2

m]1/2. We call it the violation factor. In
the case discussed it is equal to 0.67%.

Total binding energies Etot of 6He nucleus in these points
are strongly underestimated compare with the experimental
one. From a formalistic point of view, the system appears to be
unbound with respect to the emission of two neutrons. When
computing total binding energy, the optimal value of h̄ω is

2.3

2.35

2.4

 (
fm

)
mr

�

(a)

2.5

2.6

2.7

 (
fm

)
nr

�

(b)

J0 J1 J2 J31.7

1.8

1.9

 (
fm

)
pr

�

(c)

FIG. 1. (a) Matter, (b) neutron, and (c) point-proton radii of 6He
nucleus for different h̄ω extrapolation domains in case of the use of
the JISP16 potential.

17.5 MeV with Etot = 28.47 MeV at this point, the system is
bound, but the binding energy of neutrons is very small.

To estimate stability of the results of extrapolation of size
parameters, the domain of h̄ω values has been varied. Namely,
the procedure has been performed throughout the above pre-
sented range from 7.5 to 17.5 MeV, which is denoted as J0,
as well as throughout the narrowed ranges 7.5–15 MeV (J1),
8–15 MeV (J2), and 9–17.5 MeV (J3). The final (optimal)
result is the one that corresponds to the smallest value of χ2.

Extrapolation results for each of these ranges in case of the
use of the JISP16 potential are presented in Fig. 1. The optimal
values are marked with an arrow. The figure demonstrates the
high stability of the obtained radii. The final results for each
of them and rms deviations of other ones from the optimal
are rm = 2.342(7) fm, rn = 2.582(3) fm, and rp = 1.799(6)
fm. The fitted parameters of the procedure (9) at this point
are presented in Table IV. The extrapolated quantities sat-

TABLE IV. Values of the fitted parameters of extrapolation for-
mula (9) for the radii of 6He nucleus computed using the JISP16
interaction.

Matter Neutron Proton

A (fm2) 14.282 15.462 31.796
B (Mev−1 fm2) −1.4072 −1.6528 −2.3639
α 0.6096 0.5853 0.9556
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TABLE V. The same as in Table III for the Daejeon16 interaction.

Matter Neutron Proton

h̄ωco 8 8 10
Etot 28.83 28.83 29.26
r∞ 2.416 2.630 1.880

isfy relation (2) much better than those estimated within the
crossover prescription, violation factor � is equal to −0.36%
for them. This property and, especially, the small values of the
standard deviation are, in our opinion, evidence of the high
efficiency of the proposed extrapolation method, even in its
minimal version.

The proposed procedure somewhat changes the value of
rn and practically does not change the values of other size
parameters obtained within the framework of stable crossover
points prescription. The results obtained in our calculations,
both estimated within the crossover prescription (see Table I)
and extrapolated, are in rather good agreement with the results
of Ref. [10], also obtained using the JISP16 interaction in
different ways, but with up to Nmax = 16 and based on the
crossover prescription. The values rp = 1.799–1.810 fm and
rm = 2.314–2.327 fm are presented in this paper.

Analogous computation results in which the Daejeon16
potential has been exploited are presented in Tables V and VI
and Fig. 2. As for the JISP16 potential, in this case one can
observe a difference in the position of the crossover points.
The violation factor is significantly better being equal to
−0.26%. For h̄ω = 8 MeV the binding energy of two neutrons
is approximately equal to 0.5 MeV, and for h̄ω = 10 MeV it
is close to that measured experimentally. At h̄ω = 12.5 MeV,
the value of Etot reaches a maximum value of 29.31 MeV.

The extrapolation procedure has been performed through-
out the total range 6–17.5 MeV (D0) and the narrowed ranges
6–15 MeV (D1), 7.5–15 MeV (D2), and 7.5–12.5 MeV (D3).
The optimal values have been chosen as described above. The
obtained results are also stable. These values of the radii and
the rms deviations are rm = 2.430(6) fm, rn = 2.663(3) fm,
and rp = 1.871(16) fm. In this case the violation factor � is
very small, namely, equal to 0.09%.

The experimental data necessary for comparative analysis
are presented in Table VII. The neutron radius given together
with the matter radius was calculated by the authors of the
experiments using their own values of rm, the values of point-
proton radius from Refs. [22,26,31,32], and relation (2). The
experimental value of point-proton radius of the nucleus itself
depends on the proton radius Rp - see Ref. [23] and Ref. [24].
With reference to the table, it can be seen that the point-proton
radius of 6He nucleus is extracted with a high degree of accu-

TABLE VI. The same as in Table IV for the Daejeon16 interaction.

Matter Neutron Proton

A 38.813 49.712 100.00
B −4.9377 −6.6133 −9.5647
α 1.0406 1.0593 1.3689
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FIG. 2. The same as in Fig. 1 in case of the use of the Daejeon16
potential.

racy and the results of different research groups are in good
agreement. It looks a little strange, but against the background
of this good agreement between these data, two different ver-
sions of the proton radius Rp introduce noticeable duality. The
data concerning the matter radius also agree well. The error
bars, however, are substantially higher in these measurements.
The datum of Ref. [27] somewhat fall out of the systematics,
which has a particularly noticeable effect on the size of the
halo.

A comparison of the radii obtained for the two versions
of the internucleon interaction with each other and with the
experimental data leads to the following conclusions: The
radii calculated using the Daejeon16 and JISP16 potentials
differ significantly and, considering rms deviations, reliably.
Daejeon16-based calculations result in larger values of the
size parameters. The most likely reason is that the Daejeon16
interaction is softer than JISP16. A very unexpected result is

TABLE VII. Experimental values of matter, neutron, and point-
proton radii of 6He nucleus (fm), obtained using the radius of proton
Rp from Ref. [23]a and Ref. [24].b

[28] [29] [27] [30]

rm 2.33(4) 2.30(7) 2.44(7) 2.29(6)
rn 2.51(6) 2.47(10) 2.66(10) 2.45(9)

[31,32] [22]a [22]b [26]
rp 1.925(12) 1.938(23) 1.953(22) 1.934(9)
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almost complete coincidence of the size of the neutron halo
rh. Indeed, this value is equal to 0.792 and 0.783 fm in the
discussed cases. In our opinion, this is not an artifact, but a
real physical result. The values of underestimation of both rm

and rp are approximating equal in JISP16 calculations. This
coincidence also holds for the results obtained via crossover
prescription; rh is equal to 0.750 and 0.733 fm in this ap-
proach.

For the Daejeon16 potential, the point-proton radius is
slightly, but reliably less than the experimental value. For
the JISP16 potential this underestimation is not small. Other
theoretical papers also give a significant underestimation of
the parameter under discussion: Ref. [9]: 1.82 fm, Ref. [5]:
1.78 fm and 1.82 fm, Ref. [12]: 1.74 fm, 1.81 fm, and 1.84
fm (depending on the choice of interaction version). In the
last example the values presented in the original paper for
the charge radius rc have been recalculated by us according
to formula (1) with Rp given by Ref. [23]. These works also
confirm the trend towards an increase in rp when using softer
interaction options. The exception is part of the data presented
in Ref. [13]. As a result of NCSM calculations in the basis
limited by Nmax = 12 using potential from Ref. [19] softened
via the SRG procedure with parameter λSRG = 1.5 fm−1 (for
h̄ω = 14 MeV basis) and 2.0 fm −1 (for h̄ω = 20 MeV basis)
values 1.79 and 1.74 fm were obtained for the point-proton
radius, respectively. At the same time in the NCSMC cal-
culations carried out for the same input data, much larger
values of the radius 1.85 and 1.87 fm were obtained, and the
trend of their change turned out to be opposite. In the most
advanced version of NCSMC, i.e., for the biggest model space
the value 1.90(2) fm which is close to the experimental one
was achieved.

The presented above values of the matter radius obtained in
our calculations for both versions of the interaction lie in the
range of values presented by different experimental groups.
One can see good agreement between the values obtained
in the calculations using JISP16 potential and the data from
Refs. [28–30], as well as the value obtained in the calculations
using the Daejeon16 potential and the datum from Ref. [27].
The trend for a size parameter value to increase when using
softer versions of the interaction remains valid for the matter
radius. This parameter was also studied in work [14]. The
matter radius obtained in the NCSM calculations with the
above presented input turned out to be equal to 2.25 and 2.15
fm for λSRG = 1.5 and 2.0 fm−1, respectively. At the same
time the NCSMC calculations performed in this work gave
results of 2.37 and 2.41 fm, respectively, i.e., they sharply
increase the values of the matter radius compared with NCSM
calculations and reverse their dependence on the hardness
of interaction. The computations within the most advanced
version of NCSMC resulted in value rm = 2.46(2) fm.

It is important to ask which of the values of the matter
radius obtained in experiments is confirmed in ab initio cal-
culations: the larger one, 2.44(7) fm obtained in work [27],
or the smaller ones, coinciding with good accuracy [mean
value is approximately equal to 2.31(6) fm] presented in
Refs. [28–30]. For several reasons, we, evidently, give pref-
erence the results obtained with the use of the Daejeon16
interaction. Compared with JISP16 one, this Hamiltonian is

newer, provides faster convergence of total binding energies
of various nuclei. A lot of other nuclear observables are more
reproductive by it. What about 6He example it results in
correct binding energies of two neutrons in this isotope and
yields better value of the point-proton radius. The extrapolated
values of radii obtained with the use of it better satisfy relation
(2). Therefore, our study can be considered as a theoretical
confirmation of the results of measurements of the matter
radius presented in Ref. [27]. The results of NCSMC calcu-
lations presented in Ref. [13] are also in good agreement with
these two values of the matter radius.

The same question concerning the size of neutron halo is,
perhaps, even more intriguing. The measurements presented
in Refs. [28–30] resulted in well-consistent small values
of rh: 0.57, 0.53, and 0.51 fm. The result of Ref. [27] is
much greater: rh = 0.72 fm. The last value is in reasonable
agreement with the results of calculations using the Dae-
jeon16 potential, not only within the framework of the
proposed extrapolation procedure, but also within the frame-
work of the crossover prescription. It is noteworthy that this
is also true for calculations using the JISP16 potential. An ad-
ditional confirmation the discussed result may be found in the
framework of the analysis of the results presented in Ref. [13].
The value of neutron radius rn = 2.70 fm obtained by us on
the basis of the data of this work using formula (2) is, evi-
dently, in good agreement with the data from Ref. [27] and the
results of our calculations. So, the computations performed
in this work for two versions of the internucleon interaction,
the results of advanced NCSMC computations from Ref. [13]
and the experimental data presented in Ref. [27] give well-
consistent large values of the size of the neutron halo of 6He
nucleus rh: 0.792, 0.783, 0.80, and 0.72 fm, i.e., about one and
a half times larger than those presented in Refs. [28–30].

IV. CONCLUSIONS

In conclusion let us list the basic points of the performed
studies:

1. A new two-dimensional procedure for extrapolation
of the values of matter, neutron, and proton radii
obtained in no-core shell-model calculations, using
various harmonic-oscillator bases characterized by dif-
ferent parameters of Nmax and h̄ω, to infinite basis size
is proposed.

2. To estimate stability of the results of extrapolation of
size parameters, the domain of h̄ω values has been
varied. A relationship between the values of these three
radii is used as an additional test.

3. The JISP16 and Daejeon16 internucleon interactions
are used in NCSM computations of halo nucleus 6He.
The latter one is involved to the calculations of radii for
the first time.

4. The small values of the rms deviations of studied
radii together with reasonable agreement between the
obtained results and experimental data, as well as suc-
cessful testing using a relationship between the values
of these three radii demonstrate the high efficiency of
the developed approach. This merits of it allows one,
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probably, in many cases to compare the quality of the
description of the size parameters of nuclei by different
Hamiltonians.

5. The results of computations of the size of 6He nucleus
halo turns out to be the very stable. They are almost the
same for the JISP16 and Daejeon16 potentials unlike
the results of calculation of neutron and proton radii.
The performed investigations and analysis of the results
of other ab initio studies indicate that the halo of 6He
has a large size: 0.7–0.8 fm. These results confirm
the material radius measurement datum presented in
Ref. [27].

6. Based on the features of the geometry of surfaces of
radii, the method as a whole was called twisted tape

extrapolation. In our opinion, it looks rather general
and promising approach for studying observables that
reflect long-range internuclear correlations in various
nuclei.
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