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Background: Although microscopic models are frequently used to investigate giant resonances built on the
ground state of a nucleus, similar calculations at nonzero temperature are limited. Approaches based on the clas-
sical thermal shape-fluctuation model (TSFM) are often utilized to analyze the properties of giant dipole
resonance at finite temperature. However, TSFM fails to predict the correct trend of resonance width over a
wide range of temperature starting from zero.
Purpose: To study the isovector giant dipole resonance (IVGDR) at finite temperature, we present an improved
version of TSFM, where driving potential and IVGDR centroid energies are obtained self-consistently using the
nuclear energy density functional formalism. The temperature dependence of IVGDR width in 120Sn is calculated
to benchmark the proposed method.
Method: Nuclear free energy surfaces and entropy surfaces are simulated at different temperatures for two
different parametrizations of Skyrme energy density functionals. Moreover, IVGDR centroid energies are
calculated by incorporating nuclear deformations extracted from the corresponding self-consistent densities.
Subsequently, IVGDR widths are obtained within TSFM. Also, we demonstrate the role of pairing fluctuation in
improving the low temperature behavior of IVGDR width.
Result: We found good overall agreement of our results with the measured IVGDR widths. Specifically, except
at a very low temperature, unprecedented accuracy has been achieved in TSFM. Calculated IVGDR widths are
shown to be robust against the choices of driving potential and Skyrme parametrization.
Conclusion: The present paper provides guidance on using TSFM based calculations in predicting the IVGDR
width over a broad range of temperature. For a more consistent calculation, pairing fluctuations are required to
be included as additional degrees of freedom.
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I. INTRODUCTION

The width of isovector giant dipole resonance (IVGDR) is
an important observable to understand the structural details
of excited nuclei [1,2]. Over the last several decades, numer-
ous experiments have been performed [3–11] to extract the
behavior of IVGDR width as a function of nuclear angular
momentum and temperature. In parallel, various theoretical
models have been proposed to explain these dependencies.
However, a comprehensive theoretical understanding of this
process is still missing as the associated collective dynamics
is strongly correlated to the underlying motion of individual
nucleons. The scenario becomes even more complicated when
IVGDR appears on an excited state with nonzero angular
momentum and/or temperature.

The response from collective vibrations in nuclei can be
calculated microscopically by employing different variants of
the random phase approximation (RPA) [12–17] and quasi-
particle RPA (QRPA) [18–21]. Nuclear dipole oscillations
can also be simulated by using a more general dynami-
cal framework as adopted within the time-dependent density
functional theory (TDDFT) [22–25]. To study IVGDR built

on excited states, a method based on finite-temperature QRPA
(FT-QRPA) [26] is applied. However, FT-QRPA fails to repro-
duce the experimental IVGDR widths due to lack of proper
accounting of the collective excitation [27]. Also, a rela-
tivistic version of finite-temperature mean-field theory was
proposed [28,29], but it exhibits a sharper temperature de-
pendence in the IVGDR width compared to the measured
values [29,30]. The experimental temperature dependence of
IVGDR width can be traced with the phonon damping model
(PDM) [31–34]. In this model, phonon energies and their
coupling with single-particle states are adjusted to match the
ground-state IVGDR width. Then, finite-temperature behavior
is extracted for fixed values of these parameters.

Alternatively, the thermal shape fluctuation model (TSFM)
[35–39] can be used to get the IVGDR response from ther-
mally excited nuclei. In TSFM, nuclei are considered to
populate different configurations (shapes) following thermal
equilibrium. Further, the collective motion is assumed to obey
the adiabaticity condition [40,41]. Helmholtz’s free energy
is generally used in TSFM to determine the probability of
different configurations [42–45]. In current implementations
of TSFM, free energy surfaces (FESs) are obtained within the
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Nilsson-Strutinsky approach [35,40,46,47], where the config-
uration space is restricted to quadrupole moments defined by
the shape coordinates β and γ [48]. Also, IVGDR centroid
energies are calculated assuming exact ellipsoidal shapes. The
standard description of TSFM thus obtained cannot reproduce
the observed temperature dependence of IVGDR width [49],
especially at temperatures � 2 MeV. Although improvement
in TSFM was attempted [37,50] through consistent calcula-
tion of the IVGDR response function and the associated FES,
observed enhancement in the IVGDR width was not enough
to match the measured temperature and angular momentum
dependences. In a separate work [46], incorporation of pairing
fluctuations in TSFM was found to be an efficient way to
reproduce the low-temperature behavior of IVGDR width.

In this paper, we demonstrate that a more reliable predic-
tion of the temperature dependence of IVGDR width can be
achieved when the FES in TSFM is calculated from the finite-
temperature density functional theory (FT-DFT) and, simul-
taneously, the IVGDR centroid energies are corrected for the
corresponding energy-optimizing shapes. These shapes may
not be necessarily ellipsoidal even though only quadrupole
moments are constrained during the self-consistent calcula-
tion. We also show that our results remain insensitive to the
choice of energy density functional parametrization and to
the thermodynamic potential out of two different possibilities:
FES and the constant-energy entropy surface (ES).

The theoretical framework used in the present work is
elaborated in Sec. II. Subsequently, calculated results are ex-
plained in Sec. III. Finally, we conclude in Sec. IV.

II. THEORETICAL FRAMEWORK

We employ β and γ as independent constraints for the
FT-DFT calculation. Hence, the expectation value of an ob-
servable O is given by [51]

〈O〉 =
∫
β

∫
γ

D[β, γ ]P(β, γ )O∫
β

∫
γ

D[β, γ ]P(β, γ )
, (1)

where D[β, γ ] ≡ β4| sin 3γ |dβdγ and P(β, γ ) represents the
relative probability of a particular shape (β, γ ) with respect
to the spherical configuration (β = 0, γ = 0). For a canonical
ensemble of thermally equilibrated nuclei at temperature T ,

P(β, γ ) ≡ PF (β, γ ; T ) ∝ exp

(
−F (β, γ ; T ) − F0

T

)
, (2)

where F (β, γ ; T ) describes the FES and F0 ≡ F (0, 0; T ). The
total energy E of an isolated nucleus remains constant during
the collective oscillations and, hence, P can be expressed more
appropriately as [52]

P(β, γ ) ≡ PS (β, γ ; E ) ∝ exp (S(β, γ ; E ) − S0), (3)

where S(β, γ ; E ) portrays the ES for a particular E and S0 ≡
S(0, 0; E ).

A. Free energy and entropy from FT-DFT

We calculate the potential energy surface by solving the
finite-temperature Hartree-Fock-Bogoliubov (FT-HFB) for-
malism [53–55] where the total energy EHFB is obtained

self-consistently from the constrained Routhian [56],

Ĥ ′ = ĤHFB −
∑

μ=0,2

λμQ̂2μ −
∑

τ=n,p

λτ N̂τ . (4)

Here, ĤHFB represents the FT-HFB Hamiltonian. N̂τ are neu-
tron (τ = n) and proton (τ = p) particle-number operators
with λτ being the associated chemical potentials. Q̂2μ are the
axial (μ = 0) and nonaxial (μ = 2) components of the mass
quadrupole moment operator, and these are uniquely related
[48] to β and γ . In general, FT-HFB equations can be written
as a nonlinear eigenvalue problem [57]:(

h′ �

−�∗ −h′∗

)(
U V ∗
V U ∗

)
=

(
U V ∗
V U ∗

)(
E 0
0 −E

)
, (5)

where U and V are matrices defining quasiparticle states, and
E is a diagonal matrix of quasiparticle energies Ek . The single-
particle Routhian h′[ρ] and the pairing field �[κ] are obtained
by minimizing Ĥ ′ with respect to the particle (ρ) and pairing
(κ) densities. At finite temperature [53,58],

ρ = U f U † + V ∗(1 − f )V T ,

κ = U f V † + V ∗(1 − f )U T , (6)

where f is a diagonal matrix such that fik = δik fk with

fk = 1

1 + eEk/kBT
. (7)

After solving Eq. 5, EHFB can be obtained from the statistical
average:

EHFB = 〈ĤHFB〉 = Tr(D̂ĤHFB), (8)

where the density operator D̂ for the FT-HFB system is given
by [53]

D̂ =
∏

k

[ fk n̂k + (1 − fk )(1 − n̂k )]. (9)

The quasiparticle number operators, n̂ks are obtained from the
U and V matrices. For a particular deformation (β, γ ), entropy
S can be calculated as [53],

S = −kB

∑
k

[ fk ln fk + (1 − fk ) ln(1 − fk )]. (10)

Subsequently, the FES required in Eq. (2) is extracted by
employing the thermodynamics relation

F = EHFB − ST . (11)

For Eq. (3), we need to calculate entropy for a fixed EHFB.
This is achieved by interpolating S out of different FESs.

Two different Skyrme parametrizations, namely SkM∗ [59]
and Sly4 [60], are used in h′. For �, we employ the zero-range
density-dependent mixed pairing interaction given by [61,62]

�(r) = 1
2 f (r)κ (r) (12)

with

f (r) = V τ
0

[
1 − 1

2

ρ(r)

ρ0

]
, (13)

where ρ0 is the saturation density 0.16 fm−3. The neutron pair-
ing strength V n

0 is locally adjusted to reproduce the isotopic
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three-point odd-even mass difference in 120Sn. The same value
is taken for V p

0 . We further use different combinations of V n
0

and V p
0 for a qualitative understanding of the role of pairing

fluctuations. The symmetry unrestricted DFT solver HFODD

(v2.49t) [63] is used for the present self-consistent calculation.

B. IVGDR strength function from self-consistent densities

In case of IVGDR vibration, O in Eq. (1) is the IVGDR
strength function F , which can be expressed as a function of
the γ -ray energy Eγ by using the Breit-Wigner formula [2,64]:

F (Eγ ) =
∑
{xi}

Fxi = Cn
NZ

A

∑
{xi}

(Eγ 
xi )
2(

E2
γ − E2

xi

)2 + (Eγ 
xi )2
.

(14)
Here, N , Z , and A are the neutron number, atomic number,
and mass number of the nucleus, respectively, and Cn is a
normalization constant determined by the sum rule [65]. In
Eq. (14), sum is taken over the components (Fxi ) of F along
the three body-fixed principal axes xi, i = 1, 2, 3. Exi and 
xi

are the centroid energy and FWHM of Fxi , respectively. These
quantities obey the empirical relations [2,66]

Exi = E0

(
R0

Rxi

)
and 
xi = 
0

(
R0

Rxi

)1.6

, (15)

where E0 = 18.0A−1/3 + 25.0A−1/6 and 
0 = 3.64 MeV are
the values of Exi and 
xi , respectively, for the spherical shape
with radius R0. For ellipsoidal shapes [67],

Rxi = R0 exp

[√
5

4π
β cos

(
γ − 2π

3
i

)]
. (16)

This definition of Rxi is usually used in the macroscopic-
microscopic (mac-mic) versions of TSFM where nuclear
shapes are restricted to quadrupole moments generated by the
geometrical shape parameters β and γ . However, deforma-
tions arising from the self-consistent calculation may differ
from an exact ellipsoidal shape. To account for this, we pro-
pose to modify Eq. (16) as

Rxi = R0 exp

[
xi

rms − xrms
i0

xrms
i0

]
, (17)

where xi
rms ≡

√
〈x2

i 〉 and xrms
i0 is the value of xi

rms for the
spherical shape. xrms

i s incorporate the effects due to self-
consistent density distribution. With Eq. (17), we have verified
that the volume conservation condition Rx1 Rx2 Rx3 = R3

0 is
hardly violated even at the highest T considered. Maximum
deviation in the nuclear volume is ≈4% and it occurs at a very
large β where the relative probability P is <0.01.

We calculate the canonical [Eq. (2)] and microcanonical
[Eq. (3)] averages of F , yielding the average GDR widths 
′

F
and 
′

E , respectively. In case of 
′
E , the E axis is transformed

to the T axis by employing the Fermi gas formula T = √
E/a,

a being the level density parameter, which is assumed to be
A/9 in the present work.

C. Contribution from particle evaporation

At higher temperature (for T � 2 MeV in general),
IVGDR width is further broadened [40,68,69] due to evap-
oration of light particles and statistical γ rays. As we have
verified for the present system, a major contribution in this
respect comes only from evaporation of neutrons. Moreover,
evaporation may occur either from the initial state or from
a state after the GDR decay. Therefore, we need to account
for the enhancement in GDR width considering both the pos-
sibilities [70]. Consequently, the total GDR width will be

F,E = 
′

F,E + 2
CN [71], where 
CN is the sum of particle
(neutron, proton, and α) and γ evaporation widths of the
compound nucleus. We neglect the variation in 
CN caused
by the GDR decay. All the widths in 
CN are calculated from
the statistical prescription described in [72].

III. RESULTS

We consider the IVGDR width of 120Sn to benchmark our
model since the measured data [5,6] for this system are avail-
able over a wide range of temperature. We moreover select
particular measurements where angular momentum effects are
negligible as the corrections due to nuclear angular momen-
tum are not included in the present model.

A. Inputs for IVGDR width calculation

Figure 1 illustrates FESs and ESs of 120Sn obtained with
the Sly4 EDFs at different T and E (≡EHFB), respectively.
Below T = 1 MeV, behavior of FES is strongly influenced
by the pairing interaction [54]. Hence, FES does not change
much at T = 0.5 MeV. Then, FES flattens out as T increases
considerably and it effectively leads to a broadening of the
IVGDR width. For ES, the accessible (β, γ ) space is limited
by the fixed-E criterion and, as depicted in Fig. 1, the allowed
region grows as E increases. Also, entropy changes with de-
formation in a similar manner as the free energy; i.e., for large
E , ES becomes smooth enough to populate large deformations
following PS . We have checked that FESs and ESs from SkM∗

also show a pattern similar to Sly4.
To asses the impact of Rxi as prescribed in Eq. (17), we

define a quantity rxi , which is the ratio of Rxi in Eq. (17) to
the Hill-Wheeler semiaxes given in Eq. (16). Variations of
rxi for each xi are plotted in Fig. 2. Here, x3 represents the
symmetry axis for prolate deformation. It is evident that self-
consistent shapes deviate from an ellipsoidal configuration
at large deformations. Specifically, rx3 < 1 for large β and
small γ , which indicates the preference for a more compact
shape than ellipsoid. Moreover, for deformations with large
β and γ , self-consistent calculation enhances triaxiality by
stretching the density along the longer semiminor axis x1.
As a result, rx1 > 1 while rx2 ≈ 1 at theses extreme deforma-
tions. To understand the structural details more precisely, we
extract the hexadecapole moment (Q40) from self-consistent
densities. The landscape of Q40 on the (β, γ ) plane is shown
in Fig. 2. Although the absolute magnitude of Q40 is small
everywhere, Q40 is relatively large in the region where nuclear
shape deviates considerably from an ellipsoid.
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FIG. 1. (a)–(d) Free energy surfaces [F (β, γ ; T ) − F0] for 120Sn calculated for Sly4 EDFs at different T as indicated. (e)–(h) Constant
energy entropy surfaces [S(β, γ ; E ) − S0] from Sly4 EDFs.

The IVGDR strength functions (F) arising form the two
different prescriptions of Rxi [Eq. (16) and Eq. (17)] are com-
pared in Fig. 3 for various combinations of β and γ . As β

increases, F becomes broader with distinct resonance peaks
appearing at the respective centroid energies. In contrast, this
broadening is somewhat inhibited when the modified form of
Rxi in Eq. (17) is used. It is in accordance with the shape
dependence of rxi as demonstrated in Fig. 1.
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FIG. 2. (a)–(c) Variations of rxi s on the (β, γ ) plane calculated
for 120Sn with SkM∗ EDFs. (d) Corresponding variation of Q40.

B. Comparison of IVGDR widths from different inputs

The robustness of our results against both the categories
of driving potential and EDF parametrizations is tested in
Fig. 4. It shows that, apart from small deviations around T = 1
MeV, 
E almost coincides with 
F for both SkM∗ and Sly4
interactions. We could not calculate 
E below a certain T
because of computational restrictions: the FT-DFT calculation
must to be performed in a finer (β, γ ) mesh to generate a
large enough number of points below E = 5 MeV. The over-
lap between 
F and 
E reaffirms [45,52] the applicability of
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FIG. 3. IVGDR strength function corresponding to various com-
binations of β and γ . Solid and dashed lines are obtained with Rxi in
Eqs. (17) and (16), respectively.
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FIG. 4. (a) Total IVGDR width (including particle evaporation
width 
p) calculated for SkM∗ EDFs from canonical (solid line)
and microcanonical (dashed line) averaging of the IVGDR strength
function. The dash dotted line is the canonical average without 
CN.
(b) Same quantities calculated for Sly4 EDFs.

canonical thermodynamics in TSFM. Also, Fig. 4 indicates
that our results are independent of the choice of EDFs. For
both EDF variants, the IVGDR width approaches saturation
at T ≈ 3 MeV unless we account for the enhancement due to

CN. Here, the contribution from 
CN is of similar magnitude
to that reported in [71]. A small bump in IVGDR width ap-
pears in 0.5 � T � 1 MeV because of a sharp change in the
potential profile in this region.

In Fig. 5, we display a detailed comparison of our predic-
tion with the IVGDR width from existing theoretical models.
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FIG. 5. IVGDR width from present calculations (solid and thin
dashed lines) are compared with results (thick dashed and dash
dotted lines) from PDM [73] (thick dashed line) and mac-mic [36]
(dash dotted line). Experimental widths are indicated by circles [74]
and triangle [6].

To this end, we consider two popular models: (i) the TSFM
based on the mac-mic inputs [36] and (ii) the PDM that in-
cludes appropriate pairing interaction [73]. Mac-mic results
are further augmented with the particle evaporation width
to maintain consistency with our calculation. Since the cal-
culated widths are almost independent of the chosen EDF
parametrizations and the type of driving potential, we arbi-
trarily select the 
F from SkM∗ parametrization to compare in
Fig. 5. Also, we include the IVGDR width 
HW

F , where Hill-
Wheeler radii [Eq. (16)] are used instead of the Rxi ’s proposed
in Eq. (17). Except at 1 MeV, the rest of the experimental
data are taken from Ref. [74]. We further reanalyze the data
to extract the average temperature at each data point. To this
end, we follow the procedure introduced in [70]. Here, a lower
cut in the excitation energy is determined in such a way that
the IVGDR decay seizes below this energy. A more detailed
description of this method can be found in [11,75].

As is evident in Fig. 5, 
HW
F drastically overpredicts the

measured data over the whole range of T . It clearly indi-
cates the inconsistency in assuming pure ellipsoidal shapes
while using self-consistent frameworks for other inputs. In
contrast, good overall agreement is achieved when IVGDR
centroid energies are properly obtained from the associated
self-consistent density distributions. Further, as illustrated in
Fig. 5, the measured trend of IVGDR width as a function
of T could be reproduced more accurately by our model in
comparison to the predictions from the mac-mic based TSFM,
which grossly overestimate the data when evaporation widths
are added. Although PDM provides a superior T dependence
in the low T region where paring fluctuations play a crucial
role, the agreement with our predictions is marginally better
in the mid-T region: 1.5 � T � 2 MeV.

C. Effect of pairing fluctuation

We extended the present study to understand the possible
effects of pairing fluctuations on the IVGDR width below T =
1 MeV. The ominant role of pairing fluctuations in 120Sn was
demonstrated in [47], where pairing gaps for neutrons (�n)
and protons (�p) were treated as independent coordinates.
It was shown that, for both �n and �p, an average pairing
gap of �1 MeV is required to reproduce the experimental
data up to T = 2 MeV. Also, the extracted 〈�n〉 and 〈�p〉
[averages taken over the (β, γ ) space] vary smoothly within
this range of temperature. In contrast, the pairing gap from
self-consistent calculations usually quenches at a much lower
temperature, T ≈ 1 MeV.

In current implementations of the HFB formalism, average
values of �n and �p are determined self-consistently and
these cannot be used directly as free parameters. To this end,
as proposed in [56], dynamical paring gaps can be probed by
constraining the HFB Hamiltonian with the particle number
fluctuations. However, implementation of such a method is
beyond the scope of the present work as it involves large-scale
simulation on a multidimensional hyperspace. Alternatively,
we adjust the pairing strengths V τ

0 to assess the effect of pair-
ing fluctuations. As representative cases, we consider three
combinations of V n

0 and V p
0 : (i) V n

0 = −253.40 MeV and
V p

0 = −253.40 MeV, where V n
0 reproduces the experimental

034303-5



ROY, SEN, MUKHOPADHYAY, AND SADHUKHAN PHYSICAL REVIEW C 106, 034303 (2022)

0.0 0.2 0.4 0.6 0.8

4

5

6

IV
G

D
R

 w
id

th
 (

M
eV

)

T (MeV)

(b)

0.0

0.4

0.8

1.2

1.6
<��n>

<� p> 

<
�

 n
>

, <
�

 p
>

 (
M

eV
)

120Sn

(a)

FIG. 6. (a) Temperature dependence of average pairing gaps
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0

combinations (i) (solid lines), (ii) (dashed lines), and (iii) (dash-
dotted lines) as defined in the text. The average is taken over the
(β, γ ) space. (b) Corresponding IVGDR widths.

ground-state neutron pairing gap (these values are also used
for calculations above); (ii) V n

0 = −265.25 MeV and V p
0 =

−340.06 MeV, which are frequently used for heavy nuclei

[76]; and (iii) V n
0 = −240 MeV and V p

0 = −300 MeV, an
arbitrary choice that reduces the overall pairing gap. Although
this limited number of choices do not exhaust the whole
(�n,�p) space, they can provide a qualitative understanding
of the correlation between pairing fluctuation and IVGDR
width.

The calculated 〈�n〉 and 〈�p〉 for (i), (ii), and (iii) are
plotted in Fig. 6 as a function of T . Evidently, except for (ii),
〈�p〉 remains almost zero for the full T range. This is consis-
tent with the existing result [47] for the closed-proton-shell
nucleus 120Sn. Also, 〈�p〉 from (ii) indicates the necessity
for an even stronger V p

0 to produce a reasonable pairing gap
in protons: the experimental ground-state �p from the three-
point formula is 2.46 MeV. As Fig. 6 shows, 〈�n〉 changes
monotonically with V n

0 . Corresponding IVGDR widths are
also plotted in Fig. 6 and, as expected, a larger pairing gap
suppresses the IVGDR width. However, the overall shift in
the width is small due to the restricted variation in 〈�τ 〉. A
proper thermodynamic averaging over the whole (�n,�p)
space may improve the result. Further, as 〈�n〉 disappears, all
three IVGDR widths merge with a decreasing slope. It depicts
a correlation between the nuclear paring and IVGDR width.

IV. CONCLUSION

We presented an improved version of TSFM, where micro-
scopic DFT inputs are implemented to calculate the IVGDR
width of 120Sn. Our model is found to be quite insensitive to
the theoretical parameters like the choice of interaction and
thermodynamic potential. Our results show better agreement
with the experimental data in comparison to the conven-
tional mac-mic predictions. The low-temperature behavior of
IVGDR width depends strongly on the nuclear paring and, in
addition to the standard static paring; we need to incorporate
pairing fluctuations [47] to achieve a better agreement in this
region. We qualitatively explain the plausible effect of pairing
fluctuations. More comprehensive study along this direction
is in progress.
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[4] M. Kicińska-Habior, K. A. Snover, J. A. Behr, C. A. Gossett,
J. H. Gundlach, and G. Feldman, Comparison of giant dipole
resonance decay in stiff 92Mo and soft 100Mo excited nuclei,
Phys. Rev. C 45, 569 (1992).

[5] T. Baumann, E. Ramakrishnan, A. Azhari, J. Beene, R. Charity,
J. Dempsey, M. Halbert, P.-F. Hua, R. Kryger, P. Mueller, R.
Pfaff, D. Sarantites, L. Sobotka, D. Stracener, M. Thoennessen,

G. Van Buren, R. Varner, and S. Yokoyama, Evolution of the gi-
ant dipole resonance in excited 120Sn and 208Pb nuclei populated
by inelastic alpha scattering, Nucl. Phys. A 635, 428 (1998).

[6] P. Heckman, D. Bazin, J. Beene, Y. Blumenfeld, M. Chromik,
M. Halbert, J. Liang, E. Mohrmann, T. Nakamura, A. Navin,
B. Sherrill, K. Snover, M. Thoennessen, E. Tryggestad, and
R. Varner, Low-temperature measurement of the giant dipole
resonance width, Phys. Lett. B 555, 43 (2003).

[7] D. Pandit, S. Mukhopadhyay, S. Bhattacharya, S. Pal, A. De,
S. Bhattacharya, C. Bhattacharya, K. Banerjee, S. Kundu, T. K.
Rana, A. Dey, G. Mukherjee, T. Ghosh, D. Gupta, and S. R.
Banerjee, Extreme nuclear shapes examined via giant dipole
resonance lineshapes in hot light-mass systems, Phys. Rev. C
81, 061302(R) (2010).

[8] D. R. Chakrabarty, V. M. Datar, S. Kumar, G. Mishra,
E. T. Mirgule, A. Mitra, P. C. Rout, V. Nanal, D. Pandit,
S. Mukhopadhyay, and S. Bhattacharya, Exclusive giant

034303-6

https://doi.org/10.1146/annurev.ns.36.120186.002553
https://doi.org/10.1146/annurev.ns.42.120192.002411
https://doi.org/10.1103/PhysRevLett.62.2080
https://doi.org/10.1103/PhysRevC.45.569
https://doi.org/10.1016/S0375-9474(98)00197-3
https://doi.org/10.1016/S0370-2693(03)00017-0
https://doi.org/10.1103/PhysRevC.81.061302


FINITE-TEMPERATURE CALCULATION OF THE … PHYSICAL REVIEW C 106, 034303 (2022)

dipole resonance measurement on the Jacobi transition in the
19F +27Al system, Phys. Rev. C 85, 044619 (2012).

[9] S. Mukhopadhyay, D. Pandit, S. Pal, S. Bhattacharya, A. De,
S. Bhattacharya, C. Bhattacharya, K. Banerjee, S. Kundu, T.
Rana, G. Mukherjee, R. Pandey, M. Gohil, H. Pai, J. Meena,
and S. Banerjee, Measurement of giant dipole resonance width
at low temperature: A new experimental perspective, Phys. Lett.
B 709, 9 (2012).

[10] M. Ciemała, M. Kmiecik, A. Maj, K. Mazurek, A. Bracco, V. L.
Kravchuk, G. Casini, S. Barlini, G. Baiocco, L. Bardelli, P.
Bednarczyk, G. Benzoni, M. Bini, N. Blasi, S. Brambilla, M.
Bruno, F. Camera, S. Carboni, M. Cinausero, A. Chbihi et al.,
Giant dipole resonance built on hot rotating nuclei produced
during evaporation of light particles from the 88Mo compound
nucleus, Phys. Rev. C 91, 054313 (2015).

[11] S. Mukhopadhyay, P. Roy, D. Mondal, D. Pandit, S. Pal, B. Dey,
S. Bhattacharya, A. De, T. K. Rana, S. Kundu, J. Sadhukhan, C.
Bhattacharya, and S. R. Banerjee, No signature of the saturation
of giant dipole resonance width in medium-mass nuclei, Phys.
Rev. C 104, L031304 (2021).

[12] K. Goeke and J. Speth, Theory of giant resonances, Annu. Rev.
Nucl. Part. Sci. 32, 65 (1982).

[13] K.-F. Liu, H. Luo, Z. Ma, and Q. Shen, Skyrme-landau pa-
rameterization of effective interactions: (II). Self-consistent
description of giant multipole resonances, Nucl. Phys. A 534,
25 (1991).

[14] S. Shlomo and G. Bertsch, Nuclear response in the continuum,
Nucl. Phys. A 243, 507 (1975).

[15] T. Sil, S. Shlomo, B. K. Agrawal, and P.-G. Reinhard, Effects
of self-consistency violation in Hartree-Fock RPA calculations
for nuclear giant resonances revisited, Phys. Rev. C 73, 034316
(2006).

[16] P. Ring and J. Speth, RPA-calculations in 208Pb with a density
dependent interaction, Phys. Lett. B 44, 477 (1973).

[17] H. Sagawa and G. Bertsch, Self-consistent calculations of finite
temperature nuclear response function, Phys. Lett. B 146, 138
(1984).

[18] S. Péru and H. Goutte, Role of deformation on giant resonances
within the quasiparticle random-phase approximation and the
gogny force, Phys. Rev. C 77, 044313 (2008).

[19] K. Yoshida and N. V. Giai, Low-lying dipole resonance in
neutron-rich Ne isotopes, Phys. Rev. C 78, 014305 (2008).

[20] K. Hagino, N. Van Giai, and H. Sagawa, Continuum QRPA
response for deformed neutron-rich nuclei, Nucl. Phys. A 731,
264 (2004).

[21] T. Oishi, M. Kortelainen, and N. Hinohara, Finite amplitude
method applied to the giant dipole resonance in heavy rare-earth
nuclei, Phys. Rev. C 93, 034329 (2016).

[22] T. Nakatsukasa and K. Yabana, Linear response theory in
the continuum for deformed nuclei: Green’s function vs
time-dependent Hartree-Fock with the absorbing boundary con-
dition, Phys. Rev. C 71, 024301 (2005).

[23] C. Simenel and P. Chomaz, Nonlinear vibrations in nuclei,
Phys. Rev. C 68, 024302 (2003).

[24] Y. Shi, N. Hinohara, and B. Schuetrumpf, Implementation of
nuclear time-dependent density-functional theory and its appli-
cation to the nuclear isovector electric dipole resonance, Phys.
Rev. C 102, 044325 (2020).

[25] J. Maruhn, P.-G. Reinhard, P. Stevenson, and A. Umar, The
TDHF code Sky3D, Comput. Phys. Commun. 185, 2195
(2014).

[26] E. Yüksel, G. Colò, E. Khan, Y. F. Niu, and K. Bozkurt, Mul-
tipole excitations in hot nuclei within the finite temperature
quasiparticle random phase approximation framework, Phys.
Rev. C 96, 024303 (2017).

[27] D. R. Chakrabarty, N. Dinh Dang, and V. M. Datar, Giant dipole
resonance in hot rotating nuclei, Eur. Phys. J. A 52, 143 (2016).

[28] Y. K. Gambhir, J. P. Maharana, G. A. Lalazissis, C. P. Panos,
and P. Ring, Temperature dependent relativistic mean field for
highly excited hot nuclei, Phys. Rev. C 62, 054610 (2000).

[29] E. Litvinova and H. Wibowo, Nuclear response in a finite-
temperature relativistic framework, Eur. Phys. J. A 55, 223
(2019).

[30] H. Wibowo and E. Litvinova, Nuclear dipole response in
the finite-temperature relativistic time-blocking approximation,
Phys. Rev. C 100, 024307 (2019).

[31] N. D. Dang and A. Arima, Quantal and Thermal Dampings of
Giant Dipole Resonances in 90Zr, 120Sn, and 208Pb, Phys. Rev.
Lett. 80, 4145 (1998).

[32] N. Dinh Dang and A. Arima, Phonon damping model us-
ing random-phase-approximation operators, Phys. Rev. C 64,
024302 (2001).

[33] N. Dinh Dang and A. Arima, Temperature dependence of quan-
tal and thermal dampings of the hot giant dipole resonance,
Nucl. Phys. A 636, 427 (1998).

[34] N. Dinh Dang, Damping of giant dipole resonances in hot
rotating nuclei, Phys. Rev. C 85, 064323 (2012).

[35] M. Gallardo, M. Diebel, T. Døssing, and R. Broglia, Damping
of the giant dipole resonance in hot, strongly rotating nuclei,
Nucl. Phys. A 443, 415 (1985).

[36] D. Kusnezov, Y. Alhassid, and K. A. Snover, Scaling Properties
of the Giant Dipole Resonance Width in Hot Rotating Nuclei,
Phys. Rev. Lett. 81, 542 (1998).

[37] A. Ansari, N. Dinh Dang, and A. Arima, Thermal shape and
orientation fluctuation corrections for the hot giant dipole res-
onance within the static path approximation, Phys. Rev. C 63,
024310 (2001).

[38] Y. Alhassid, B. Bush, and S. Levit, Thermal Shape Fluctuations,
Landau Theory, and Giant Dipole Resonances in Hot Rotating
Nuclei, Phys. Rev. Lett. 61, 1926 (1988).

[39] A. K. Rhine Kumar and P. Arumugam, Thermal shape fluctua-
tion model study of the giant dipole resonance in 152Gd, Phys.
Rev. C 92, 044314 (2015).

[40] W. E. Ormand, P. F. Bortignon, and R. A. Broglia, Temperature
Dependence of the Width of the Giant Dipole Resonance in
120Sn and 208Pb, Phys. Rev. Lett. 77, 607 (1996).

[41] Y. Alhassid and B. Bush, Effects of orientation fluctuations on
the angular distribution of the giant dipole resonance γ -rays in
hot rotating nuclei, Nucl. Phys. A 531, 39 (1991).

[42] Y. Alhassid, B. Bush, and S. Levit, Landau theory of shapes,
shape fluctuations and giant dipole resonances in hot nuclei,
Nucl. Phys. A 482, 57 (1988).

[43] Y. Alhassid and B. Bush, Effects of thermal fluctuations on giant
dipole resonances in hot rotating nuclei, Nucl. Phys. A 509, 461
(1990).

[44] J. Gaardhøje, A. Atac, A. Maj, A. Bracco, F. Camera, B.
Million, M. Pignanelli, and E. Rebesco, Gamma decay of giant
dipole resonances and the shapes and fluctuations of hot nuclei,
Nucl. Phys. A 538, 573 (1992).

[45] A. L. Goodman, Thermal shape fluctuations in hot rotating
nuclei: Comparison of constant energy constraint and constant
temperature constraint, Nucl. Phys. A 528, 348 (1991).

034303-7

https://doi.org/10.1103/PhysRevC.85.044619
https://doi.org/10.1016/j.physletb.2012.01.059
https://doi.org/10.1103/PhysRevC.91.054313
https://doi.org/10.1103/PhysRevC.104.L031304
https://doi.org/10.1146/annurev.ns.32.120182.000433
https://doi.org/10.1016/0375-9474(91)90556-L
https://doi.org/10.1016/0375-9474(75)90292-4
https://doi.org/10.1103/PhysRevC.73.034316
https://doi.org/10.1016/0370-2693(73)90001-4
https://doi.org/10.1016/0370-2693(84)91004-9
https://doi.org/10.1103/PhysRevC.77.044313
https://doi.org/10.1103/PhysRevC.78.014305
https://doi.org/10.1016/j.nuclphysa.2003.11.037
https://doi.org/10.1103/PhysRevC.93.034329
https://doi.org/10.1103/PhysRevC.71.024301
https://doi.org/10.1103/PhysRevC.68.024302
https://doi.org/10.1103/PhysRevC.102.044325
https://doi.org/10.1016/j.cpc.2014.04.008
https://doi.org/10.1103/PhysRevC.96.024303
https://doi.org/10.1140/epja/i2016-16143-9
https://doi.org/10.1103/PhysRevC.62.054610
https://doi.org/10.1140/epja/i2019-12771-9
https://doi.org/10.1103/PhysRevC.100.024307
https://doi.org/10.1103/PhysRevLett.80.4145
https://doi.org/10.1103/PhysRevC.64.024302
https://doi.org/10.1016/S0375-9474(98)00211-5
https://doi.org/10.1103/PhysRevC.85.064323
https://doi.org/10.1016/0375-9474(85)90409-9
https://doi.org/10.1103/PhysRevLett.81.542
https://doi.org/10.1103/PhysRevC.63.024310
https://doi.org/10.1103/PhysRevLett.61.1926
https://doi.org/10.1103/PhysRevC.92.044314
https://doi.org/10.1103/PhysRevLett.77.607
https://doi.org/10.1016/0375-9474(91)90567-P
https://doi.org/10.1016/0375-9474(88)90575-1
https://doi.org/10.1016/0375-9474(90)90087-3
https://doi.org/10.1016/0375-9474(92)90806-U
https://doi.org/10.1016/0375-9474(91)90093-L


ROY, SEN, MUKHOPADHYAY, AND SADHUKHAN PHYSICAL REVIEW C 106, 034303 (2022)

[46] A. K. Rhine Kumar, P. Arumugam, and N. D. Dang, Pairing
effect in the thermal shape-fluctuation model on the width of
the giant dipole resonance, Phys. Rev. C 90, 044308 (2014).

[47] A. K. Rhine Kumar, P. Arumugam, and N. D. Dang, Effects
of thermal shape fluctuations and pairing fluctuations on the
giant dipole resonance in warm nuclei, Phys. Rev. C 91, 044305
(2015).

[48] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, New York, 1980).

[49] D. Pandit, S. Mukhopadhyay, S. Pal, A. De, and S. Banerjee,
Critical behavior in the variation of GDR width at low temper-
ature, Phys. Lett. B 713, 434 (2012).

[50] A. Ansari, N. Dinh Dang, and A. Arima, Hot giant dipole res-
onance with thermal shape fluctuation corrections in the static
path approximation, Phys. Rev. C 62, 011302(R) (2000).

[51] Y. Alhassid, Giant dipole resonances in hot rotating nuclei:
Overview and recent advances, Nucl. Phys. A 649, 107 (1999).

[52] A. L. Goodman, Thermal shape fluctuations at constant energy,
Nucl. Phys. A 520, c567 (1990).

[53] A. L. Goodman, Finite-temperature HFB theory, Nucl. Phys. A
352, 30 (1981).

[54] J. C. Pei, W. Nazarewicz, J. A. Sheikh, and A. K. Kerman,
Fission Barriers of Compound Superheavy Nuclei, Phys. Rev.
Lett. 102, 192501 (2009).

[55] F. A. Dodaro and A. L. Goodman, Statistical orientation fluctu-
ations in 188Os, Nucl. Phys. A 596, 91 (1996).

[56] J. Sadhukhan, J. Dobaczewski, W. Nazarewicz, J. A. Sheikh,
and A. Baran, Pairing-induced speedup of nuclear spontaneous
fission, Phys. Rev. C 90, 061304(R) (2014).

[57] A. Baran, J. A. Sheikh, J. Dobaczewski, W. Nazarewicz, and
A. Staszczak, Quadrupole collective inertia in nuclear fission:
Cranking approximation, Phys. Rev. C 84, 054321 (2011).

[58] V. Martin, J. L. Egido, and L. M. Robledo, Thermal shape
fluctuation effects in the description of hot nuclei, Phys. Rev.
C 68, 034327 (2003).

[59] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Håkansson,
Towards a better parametrisation of Skyrme-like effective
forces: A critical study of the SkM force, Nucl. Phys. A 386,
79 (1982).

[60] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer,
A Skyrme parametrization from subnuclear to neutron star den-
sities Part II. Nuclei far from stabilities, Nucl. Phys. A 635, 231
(1998).

[61] J. Dobaczewski, W. Nazarewicz, and M. V. Stoitsov, Nuclear
ground-state properties from mean-field calculations, Eur. Phys.
J. A 15, 21 (2002).

[62] J. Dobaczewski and P. Olbratowski, Solution of the Skyrme–
Hartree–Fock–Bogolyubov equations in the Cartesian de-
formed harmonic-oscillator basis. (IV) HFODD (v2.08i): a new
version of the program, Comput. Phys. Commun. 158, 158
(2004).

[63] N. Schunck, J. Dobaczewski, J. McDonnell, W. Satuła, J.
Sheikh, A. Staszczak, M. Stoitsov, and P. Toivanen, Solu-
tion of the Skyrme–Hartree–Fock-Bogolyubov equations in the
Cartesian deformed harmonic-oscillator basis.: (VII) HFODD
(v2.49t): A new version of the program, Comput. Phys.
Commun. 183, 166 (2012).

[64] N. Dinh Dang, M. Ciemala, M. Kmiecik, and A. Maj, Giant
dipole resonance in 88Mo from phonon damping model strength
functions averaged over temperature and angular momentum
distributions, Phys. Rev. C 87, 054313 (2013).

[65] A. Bohr and B. Mottelson, Nuclear Structure, Vol. II (W.A.
Benjamin, New York, 1975).

[66] B. Bush and Y. Alhassid, On the width of the giant dipole
resonance in deformed nuclei, Nucl. Phys. A 531, 27 (1991).

[67] D. L. Hill and J. A. Wheeler, Nuclear constitution and the inter-
pretation of fission phenomena, Phys. Rev. 89, 1102 (1953).

[68] W. J. Knox, A. R. Quinton, and C. E. Anderson, Evaporation of
charged particles from highly excited compound nuclei, Phys.
Rev. 120, 2120 (1960).

[69] V. Kolomietz, Splashing and evaporation of nucleons from ex-
cited nuclei, Nucl. Phys. A 743, 211 (2004).

[70] O. Wieland, A. Bracco, F. Camera, G. Benzoni, N. Blasi, S.
Brambilla, F. Crespi, A. Giussani, S. Leoni, P . Mason, B.
Million, A. Moroni, S. Barlini, V. L. Kravchuk, F. Gramegna,
A. Lanchais, P. Mastinu, A. Maj, M. Brekiesz, M. Kmiecik, M.
Bruno, E. Geraci, G. Vannini, G. Casini, M. Chiari, A. Nannini,
A. Ordine, and E. Ormand, Giant Dipole Resonance in the Hot
and Thermalized 132Ce Nucleus: Damping of Collective Modes
at Finite Temperature, Phys. Rev. Lett. 97, 012501 (2006).

[71] D. Santonocito and Y. Blumenfeld, The hot GDR revisited, Eur.
Phys. J. A 56, 279 (2020).

[72] P. Fröbrich and I. Gontchar, Langevin description of fusion,
deep-inelastic collisions and heavy-ion-induced fission, Phys.
Rep. 292, 131 (1998).

[73] N. D. Dang and A. Arima, Pairing effect on the giant dipole
resonance width at low temperature, Phys. Rev. C 68, 044303
(2003).

[74] E. Ramakrishnan, T. Baumann, A. Azhari, R. A. Kryger, R.
Pfaff, M. Thoennessen, S. Yokoyama, J. R. Beene, M. L.
Halbert, P. E. Mueller, D. W. Stracener, R. L. Varner, R. J.
Charity, J. F. Dempsey, D. G. Sarantites, and L. G. Sobotka,
Giant Dipole Resonance Built on Highly Excited States of 120Sn
Nuclei Populated by Inelastic α Scattering, Phys. Rev. Lett. 76,
2025 (1996).

[75] A. Bracco, F. Camera, O. Wieland, and W. E. Ormand, Progress
in the study of the γ -decay of the giant dipole resonance in hot
nuclei, Mod. Phys. Lett. A 22, 2479 (2007).

[76] N. Schunck, D. Duke, H. Carr, and A. Knoll, Description of
induced nuclear fission with Skyrme energy functionals: Static
potential energy surfaces and fission fragment properties, Phys.
Rev. C 90, 054305 (2014).

034303-8

https://doi.org/10.1103/PhysRevC.90.044308
https://doi.org/10.1103/PhysRevC.91.044305
https://doi.org/10.1016/j.physletb.2012.06.033
https://doi.org/10.1103/PhysRevC.62.011302
https://doi.org/10.1016/S0375-9474(99)00047-0
https://doi.org/10.1016/0375-9474(90)91175-Q
https://doi.org/10.1016/0375-9474(81)90557-1
https://doi.org/10.1103/PhysRevLett.102.192501
https://doi.org/10.1016/0375-9474(95)00397-5
https://doi.org/10.1103/PhysRevC.90.061304
https://doi.org/10.1103/PhysRevC.84.054321
https://doi.org/10.1103/PhysRevC.68.034327
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/S0375-9474(98)00180-8
https://doi.org/10.1140/epja/i2001-10218-8
https://doi.org/10.1016/j.cpc.2004.02.003
https://doi.org/10.1016/j.cpc.2011.08.013
https://doi.org/10.1103/PhysRevC.87.054313
https://doi.org/10.1016/0375-9474(91)90566-O
https://doi.org/10.1103/PhysRev.89.1102
https://doi.org/10.1103/PhysRev.120.2120
https://doi.org/10.1016/j.nuclphysa.2004.08.002
https://doi.org/10.1103/PhysRevLett.97.012501
https://doi.org/10.1140/epja/s10050-020-00279-6
https://doi.org/10.1016/S0370-1573(97)00042-2
https://doi.org/10.1103/PhysRevC.68.044303
https://doi.org/10.1103/PhysRevLett.76.2025
https://doi.org/10.1142/S0217732307024474
https://doi.org/10.1103/PhysRevC.90.054305

