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Microscopic analysis of the ground state properties of the even-even Dy isotopes in the
reflection-asymmetric relativistic mean-field theory
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Reflection-asymmetric relativistic mean-field theory is used to explore the ground state properties for the
even-even Dy isotopes. The results are compared with those from the finite-range droplet model (FRDM), the
deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc), and the available data. The calculated
binding energies and quadrupole deformations agree with the experimental data as well as the FRDM and
DRHBc calculations. The obtained matter density distributions and potential energy surfaces clearly exhibit the
ground state shapes and the presence of deformation in these nuclei. The experimental fingerprints of octupolarity
in 148,154,156,160Dy around N = 88 are convincing in the present calculations. The predictions on the octupole
deformation in 190–194,200,202Dy around N = 134 agree with the results from the FRDM calculations. In addition,
we obtain more knowledge about the shape evolution and phase transition from oblate to pear shape and then to
prolate shapes in the Dy isotopes.
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I. INTRODUCTION

The shape evolution and phase transition is an interesting
topic in nuclear physics, which has revealed abundant insight
into microscopic details of nuclear structure. As we know,
the ground states of most medium-mass and heavy nuclei
are reflection symmetric and display spherical or ellipsoidal
shapes. However, there are also some nuclei whose shapes
break the reflection symmetry. This phenomenon was detected
experimentally as early as the 1950s. The Berkeley group ob-
served low excited states of negative parity in actinides [1–3],
which means that the nuclei can spontaneously break their
spatial reflection symmetry and acquire nonzero octupole
moments associated with reflection-asymmetric shapes (pear
shapes) [4–6]. Microscopically, strong octupole correlations
can be attributed to the coupling between the adjacent single-
particle states with �l = � j = 3 near the Fermi surface [7].
The most important octupole coupling occurs between the
single-particle energy levels 1g9/2 ↔ 2p3/2, 1h11/2 ↔ 2d5/2,
1i13/2 ↔ 2 f7/2, and 1 j15/2 ↔ 2g9/2, corresponding to proton
(neutron) numbers 34, 56, 88, and 134 [8,9].

The search for the octupole-deformed nuclei in the nuclear
chart is one of the important frontiers in the study of nuclear
structure. Theoretical and experimental explorations on the
octupole-deformed nuclei mainly focus on the neutron-rich
lanthanides around Z = 56 and N = 88 and light actinides
around Z = 88 and N = 134. Recently, the octupolarity in
220Rn and 224Ra was investigated by the Coulomb excitation
experiments, and the measured E3 strength shows that there
is strong octupole deformation in 224Ra [10], which is the first
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experimental evidence of static octupole-deformed even-even
nucleus. Similar experiments were performed to explore the
octupole deformation in 144Ba [11] and 146Ba [12], and the
available data confirm the presence of octupole deformation
in the region centered on the neutron-rich Ba isotopes. The
observations of low-lying states in224Rn and 226Rn [13] show
that radon isotopes undergo octupole vibrations but do not
have static reflection-symmetric shapes in their ground states.
Fingerprints of stable pear shapes are also found in 222,228Ra
and 228Th [14,15]. In order to explore the octupole-deformed
nuclei and understand their exotic properties, many theoretical
methods with the degrees of freedom of octupole deformation
have been applied to investigate the ground state properties
of atomic nuclei, such as the macroscopic-microscopic model
[16–18], the self-consistent mean-field method [19–22], the
interaction boson model [23–27], the reflection-asymmetric
shell model [28], the generator coordinate method [29–33],
the quadrupole-octupole collective Hamiltonian [34–36], and
microscopic calculations based on the energy density func-
tionals [37,38].

The relativistic mean-field (RMF) theory is one of the
most successful microscopic models and is widely used in
the study of ground state properties [39–43]. Recently, this
theory has been used to explore the octupole-deformed nuclei
[44–48] including the shape evolution and phase transition
[49,50] and shape coexistence [51]. To include conveniently
the reflection-asymmetric degrees of freedom, Geng et al.
have established the reflection-asymmetric relativistic mean-
field (RASRMF) theory [52]. Based on the RASRMF theory,
they have investigated the ground state properties for the
octupole-deformed nucleus 226Ra and well reproduced the
experimental data. Zhang et al. have applied the RASRMF
to investigate the octupole deformation for the Sm and Ba
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isotopes and demonstrated their shape evolution and phase
transition features [53,54]. In Refs. [55,56], we have applied
the RASRMF to investigate the shape evolution for the even-
even Th and Ce isotopes and found that the degrees of freedom
of octupole deformation play an important role in the ground
state properties of these nuclei.

In order to extensively study the octupole deformation in
atomic nuclei, Cao et al. have performed a systematic survey
of ground state shapes for the even-even nuclei with Z � 110
and N � 210 by the nuclear density functional theory [37].
Besides the traditional octupole-deformation regions (Z ≈ 88
and N ≈ 134, and Z ≈ 56 and N ≈ 88), they have found
that there are the reflection-asymmetric deformations in the
neutron-rich nuclei around 200Gd.

Recently, the octupole deformation in the Dy isotopes have
received additional attention. Much effort has been devoted to
exploring octupole deformation in the Dy isotopes. The spec-
troscopy of low-spin states in 157Dy is studied in Ref. [57],
where the observed interlacing band structures are interpreted
as the bands of parity doublets with simplex quantum number
s = −i related to possible octupole correlations. The octupole
vibrations in 152Dy [58], the E1 transitions in 154Dy [59], and
the negative-parity band structure in 162Dy [60] and 156Dy
[61] have been observed experimentally, which stimulates
the interest in exploring the octupole correlations in the Dy
isotopes. Usmanov et al. have analyzed the mixing of octupole
vibrational bands in 160Dy with a phenomenological model
[62]. The ground state and low-energy negative-parity bands
of 156Dy have been studied in Ref. [63] and the experimental
data [61] have been reproduced well. Zhao et al. investigated
the ground state properties for 160,162,164Dy. The available
potential energy surfaces show that these nuclei are β3 soft,
and the energy minimum lies in the direction of axial octupole
deformation β3 [64].

To better understand the octupole deformation in the Dy
isotopes, we apply the RASRMF theory to systematically
study the ground state properties for the Dy isotopes. The
calculated binding energies and deformations have repro-
duced the experimental data. The available matter density
distributions and potential energy surfaces show that the
reflection-asymmetric degrees of freedom play an important
role in the ground state properties of atomic nuclei. In addi-
tion to these nuclei discovered experimentally, we have also
explored the nuclei far from the stability line and obtained
more knowledge on the shape evolution and phase transition
in the Dy isotopes. Furthermore, the predictive power of the
RASRMF theory is convincing in comparison with the ex-
perimental data and the finite-range droplet model (FRDM)
and deformed relativistic Hartree-Bogoliubov theory in con-
tinuum (DRHBc) calculations. This paper is organized as
follows. The RASRMF theory is sketched in Sec. II. The
numerical details and results are presented in Sec. III. A
summary is given in Sec. IV.

II. FORMALISM

To explore the novel properties for the nuclei with
reflection-asymmetric degrees of freedom, we first present
the theoretical formalism. The starting point of the relativistic

mean-field theory is an effective Lagrangian density [39–42]:

L = ψ̄[iγ μ∂μ − M − gσ σ − gωωμγ μ − gρ �ρμ�τγ μ

− 1
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2
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where ψ is the Dirac spinor of the nucleon with the cor-
responding mass M, σ is the isoscalar-scalar meson that
provides medium-range attraction, ω is the isoscalar-vector
meson that provides short-range repulsion, ρ is the isovector-
vector meson reflecting the difference of neutron and proton,
and A is the photon field describing the electromagnetic prop-
erties of atomic nuclei.

Starting from the Lagrangian density, with the classical
variational principle, the Dirac equation for the nucleons,

{−i�α · �∇ + V (�r) + β[M + S(�r)]}ψi = εiψi, (2)

and the Klein-Gordon equations for the mesons,[−� + m2
σ

]
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3(�r),[−� + m2

ω

]
ωμ(�r) = gω jμ(�r) − g4(ωvωv )ωμ(�r),

(3)[−� + m2
ρ

]
ρμ(�r) = gρ �jμ(�r),

−�Aμ(�r) = e jμρ (�r),

are obtained. Equations (2) and (3) are nonlinear coupled
equations, which are very difficult to be solved strictly. In
order to easily obtain the solutions of Eqs. (2) and (3), the ba-
sis expansion method is often used. For the axially symmetric
deformed nuclei, the Dirac spinors can be presented as

(
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where �i is the third component of angular momentum. To
include the reflection-asymmetric degrees of freedom, the
eigenfunctions of the two-center harmonic-oscillator (TCHO)
potential are used as the basis to expand the Dirac spinors f ±

i
and g±

i in the RMF calculations. The TCHO potential [52] has
the following form:

V (r⊥, z) = 1

2
Mω2

⊥r2
⊥ +

{ 1
2 Mω2

1(z + z1)2, z < 0,
1
2 Mω2

2(z − z2)2, z � 0.
(5)

Here, z1 and z2 represent the distance from the center of the
ellipsoid to the plane of their intersection, and ω1 (ω2) corre-
sponds to the oscillation frequency of the harmonic oscillator
for z < 0 (z � 0), respectively.

The TCHO potential can be completely determined by
the following three parameters: δ2, δ3, and �z. δ2 is the
quadrupole deformation parameter in the hemisphere with
z > 0. δ3 is the asymmetric coefficient of TCHO, δ3 = ω1/ω2.
When δ3 = 1, the system is axially symmetric. �z(= �z1 +
�z2) represents the center distance of the TCHO basis. Here,
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we mainly focus on the reflection-asymmetric deformation
and do not discuss the effect of �z in the properties. There-
fore, the value of �z in the calculation is consistent with
Ref. [52].

In order to obtain the potential energy surfaces, i.e., the
total binding energy as a function of deformation, we perform
the constrained RMF calculations. The binding energies under
different shapes (β2, β3) can be obtained by constraining the
quadrupole moment 〈Q̂2〉 and the octupole moment 〈Q̂3〉 to
given values μ2 and μ3 [65] simultaneously, i.e.,

〈H ′〉 = 〈H〉 + 1
2C2(〈Q̂2〉 − μ2)2 + 1

2C3(〈Q̂3〉 − μ3)2, (6)

where C1 and C2 are two spring constants, and μ2 and μ3 are
the given quadrupole and octupole moments. 〈Q̂2〉 and 〈Q̂3〉
are the expectation values of the quadrupole and octupole mo-
ment operators, which are expressed as 〈Q̂2〉 = 〈2r2P2(cos θ )〉
and 〈Q̂3〉 = 〈2r3P3(cos θ )〉, respectively. The deformation pa-
rameter β2 is related to 〈Q̂2〉 by 〈Q̂2〉 = 3√

5π
AR2β2 with R =

r0A
1
3 (r0 = 1.2 fm) and A is the mass number. Similarly, the

relationship between the deformation parameter β3 and the
moment 〈Q̂3〉 is 〈Q̂3〉 = 3√

7π
AR3β3.

We also fix the center of mass of the nuclei at the origin
under the constraints of the monopole moment operator 〈Q̂1〉
to avoid spurious motions of the center of mass:

〈Q̂1〉 = 0. (7)

III. NUMERICAL DETAILS AND RESULTS

We apply the constrained RASRMF theory to explore the
novel properties for the Dy isotopes. Without loss of gener-
ality, the parameter set NL3* [66] is adopted in the present
calculations. Seventeen main shells are used in the TCHO ba-
sis, the convergence of the numerical calculations is checked.
The pairing correlations are treated with the BCS approxi-
mation by fixing the energy gap � = 11.2/A1/2 MeV. The
calculated binding energies are shown in Fig. 1. For conve-
nience in comparison, the figure also shows the results from
the FRDM calculations [67], the results from the DRHBc
calculations [68], and the available data [69]. For the three
models, the calculated binding energies are consistent with
the experimental data for the Dy isotopes with mass number
A = 138–176. Although the FDRM calculation is more in line
with the experiment, the deviation of the DRHBc and the
RASRMF calculations from the experimental data is also very
small. The largest difference between the present calculations
and the experiment data �E is smaller than 0.025 MeV, which
appears in 174Dy. Compared with the DRHBc calculation, the
RASRMF calculation matches the experiment better.

For the Dy isotopes with mass number A = 178–208,
which have not been found in the experiment, the RAS-
RMF calculation is more consistent with the result from the
FRDM calculation, especially on the extremely neutron-rich
side. In comparison with the experimental data, the extremely
neutron-rich Dy isotopes predicted by the DRHBc are rela-
tively bound. Considering that the DRHBc is only applicable
to the axially symmetric deformed nuclei, this difference may
reflect the importance of the reflection-asymmetric degrees of
freedom.

FIG. 1. The binding energy per nucleon E/A and its variation
with the mass number A in the Dy isotopes. The results from the
RASRMF calculations, the FRDM calculations, and the DRHBc cal-
culations are denoted as open boxes, open circles, and open triangles,
respectively. The experimental data are marked as closed circles.

As we know, most nuclei have axially symmetric
quadrupole deformation. However, there are also some nuclei
that spontaneously break their intrinsic reflection symmetry,
resulting in octupole deformation in their ground states. By
introducing the reflection-asymmetric degrees of freedom,
the RASRMF theory can give simultaneously the quadrupole
deformation β2 and the octupole deformation β3 of atomic
nuclei.

The calculated deformations and their variations with mass
number A are shown in Fig. 2 for the Dy isotopes. That in

(a)

(b)

FIG. 2. The calculated deformations and their variations with the
mass number A. (a) The quadrupole deformation β2. For comparison,
this figure also shows the results from the FRDM and DRHBc calcu-
lations including the available data. (b) The octupole deformation β3

together with the results from the FRDM calculations.
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Fig. 2(a) is the quadrupole deformation β2 and its evolution
to the mass number A, and that in Fig. 2(b) is the octupole
deformation β3 and its evolution to the mass number A. For
comparison, the results from the FRDM and DRHBc calcu-
lations and the experimental data are also displayed there.
The calculated quadrupole deformations from the RASRMF
and DRHBc calculations agree better with the experimental
data. There is little deviation between the FRDM calculation
and experimental data, but the trend of deformation with the
mass number is consistent. The largest deviation occurs in
158Dy, the difference between the calculation and the exper-
iment |�β2| = 0.067 is small (the experimental β2 = 0.327
and the FRDM calculated β2 = 0.26) except 152Dy, whose
quadrupole deformation is systematically overestimated in
the three calculations. Over the range of the Dy isotopes
considered here, the calculated quadrupole deformations are
comparable in the three models. For the Dy isotopes with
mass number A = 138–168, the calculated quadrupole defor-
mation first decreases and then increases with the increase of
mass number. The same case does appear in the Dy isotopes
with mass number A = 168–208. For the Dy isotopes for
which experimental data are not available, the β2 values calcu-
lated by RASRMF and DRHBc are slightly larger than those
calculated by FRDM. However, for the very neutron-rich re-
gion with A > 184, the three calculations yield similar β2

values for most of the nuclei, up to A = 194 including A =
202 and 204. Noteworthy for these nuclei around A = 144,
the β2 changes rapidly from a positive value to a negative one;
i.e., the shape evolves from a prolate shape to an oblate shape.

Since the DRHBc does not consider the reflection-
asymmetric degrees of freedom, the Fig. 2(b) shows only
the results from the RASRMF and FRDM calculations. The
present calculations show that there are octupole deformations
in the Dy isotopes with mass number A = 148, 154, 156,
160, 190–194, 200–206. While in the FRDM calculations,
there is no octupole deformation in these nuclei around mass
number N = 88, the observable octupole deformation (|β3| �
0.1) appears in the extremely neutron-rich nuclei 196–200Dy.
Considering that the experiment has given many fingerprints
of octupole deformation in the Dy isotopes around N = 88,
the theoretical predictions of RASRMF about the octupole-
deformed nuclei should be more credible. For examples, the
alternating parity rotation bands in 157Dy [57], the octupole
vibrations in 152Dy [58], the E1 transitions in 154Dy [59], and
the negative-parity band structure in 162Dy [60] and 156Dy [61]
have been observed experimentally. These indicate there are
the octupole-deformed nuclei in the Dy isotopes around N =
88. For the Dy isotopes around N = 134, although the results
of these two theoretical calculations are not completely con-
sistent, they both predict the existence of octupole-deformed
nuclei.

In order to intuitively perceive the nuclear shapes and pos-
sible octupole deformations, the matter density distributions
on the x = 0 plane as a function of z and y are plotted in
Fig. 3. Considering that the most likely octupole-deformed
nuclei locate at the two regions N = 88 and N = 134, we
have only plotted the matter density distributions for the Dy
isotopes with mass number A = 146–160 and A = 188–202.
From Fig. 3(a), it can be seen that 146Dy is an oblate nucleus,

FIG. 3. The calculated matter density distributions for the ground
states of Dy isotopes on the plane x = 0. Panel (a) is for 146–160Dy,
and panel (b) is for 188–202Dy. The RASRMF calculations were per-
formed with NL3∗.

148Dy is a pear-shaped nucleus, 150Dy is an oblate nucleus
with a little octupole deformation, and 152Dy is a prolate
nucleus. The matter density distributions of 154,156Dy are pear
shaped, indicating that they are octupole-deformed nuclei.
158,160Dy are axially symmetric deformed nuclei. There is
a little asymmetry in 160Dy. Compared with 148Dy, the oc-
tupole deformation in 154,156Dy is more significant. For the Dy
isotopes from A = 148 to A = 158, there appears the shape
evolution from pear to axially symmetric to pear to axially
symmetric shapes, where 150Dy is a transitional nucleus from
pear to axially symmetric shape, and 156Dy is a stable reflec-
tion asymmetric nucleus. As 150Dy is a transitional nucleus, it
is the reason for inconsistency in the calculated deformations
with RASRMF, DRHBc, and FRDM.

From Fig. 3(b), it can be seen that 188Dy is an axially
symmetric oblate nucleus. There is clear octupole deforma-
tion in these 190–194Dy. Further increasing the mass number,
the reflection-asymmetric deformation disappears, the nuclei
196,198Dy become a reflection-symmetric shape. Starting from
200Dy, the nuclei turn into the reflection-asymmetric shape
again. Compared with 190–194Dy, the octupole deformation
in 200,202Dy is more remarkable. Totally, the shape of these
nuclei with A = 188–202 evolve from axially symmet-
ric oblate shape to reflection-asymmetric shape, return
to reflection-symmetric shape, and return to reflection-
asymmetric shape again. The shape evolution is consistent
with the changes of quadrupole deformation β2 and octupole
deformation β3 shown in Fig. 2.
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Although the matter density distributions clearly show the
shape of these nuclei, to understand why the nucleus takes this
shape, we plot the potential energy surface as the function of
deformations. The contours of total binding energies as the
functions of β2 and β3 are shown in Fig. 4 for the Dy isotopes.
From Fig. 4(a), it can be seen that the energy minimum of
most nuclei locates at the position β2 �= 0 and/or β3 �= 0; i.e.,
they are deformed nuclei. For 146,152,158Dy, the energy mini-
mum appears in the position β3 = 0; i.e., the ground states of
these nuclei hold an axially symmetric shape. 146Dy is a fairly
stable oblate nucleus because the energy minimum appears on
the side β2 < 0 and is quite deep in the potential energy sur-
face. 152,158Dy are prolate nuclei with the energy minimum on
the side β2 > 0. Since the energy minimum of the two nuclei
is considerably deep, 152,158Dy are stable prolate quadrupole-
deformed nuclei. For 148,154,156,160Dy, the energy minimum
appears in the position β3 �= 0; i.e., these nuclei hold oc-
tupole deformation. In the position of energy minimum, the
quadrupole deformation β2 in 148Dy is nearly zero; i.e., 148Dy
is almost a pure octupole-deformed nucleus. Different from
148Dy, 154,156,160Dy have an octupole deformation accompa-
nied by a large quadrupole deformation. Comparably, 156Dy is
a β3 soft nucleus since the energy minimum along β3 extends
to a large range. It is worth noting that for 150Dy, although
the energy minimum appears on the oblate side, there appears
an almost identical energy minimum on the prolate side; that
is, 150Dy may be a coexistence nucleus of the oblate and
prolate shapes, which leads to the inconsistency in the cal-
culated deformations with RASRMF, DRHBc, and FRDM.
From 148Dy to 158Dy, the potential energy surfaces clearly
show the shape evolution from pear to axially symmetric to
pear to axially symmetric shapes, which is consistent with the
shape evolution obtained in the matter density distributions.
Especially, the transitional nucleus 150Dy and remarkably re-
flection asymmetric nucleus 156Dy can be identified from the
potential energy surface.

Similar to Fig. 4(a), Fig. 4(b) shows that the energy
minimum of most nuclei locates at the position β2 �= 0
and/or β3 �= 0; that is, they are deformed nuclei. 188Dy is a
quadrupole-deformed nucleus with an oblate shape for energy
minimum on the side β2 < 0. For 190−194Dy, the energy min-
imum appears in the position β3 �= 0; i.e, the ground states of
these nuclei hold octupole deformation. For 196,198Dy, the en-
ergy minimum appears at the positions with β2 > 0 and β3 =
0 and is relatively deep in comparison with their neighbors.
Namely, the ground state of these nuclei has much quadrupole
deformation. Different from 196,198Dy, the energy minimum
for 200,202Dy appears at the positions β2 > 0 and β3 �= 0 and
is quite deep in their potential energy surfaces. It indicates that
200,202Dy are considerably stable octupole-deformed nuclei.
For the Dy isotopes with mass number from A = 188 to 202,
the potential energy surfaces show that octupole deforma-
tion happens at 190–194,200,202Dy. Compared with 190–194Dy,
200,202Dy are more stable octupole-deformed nuclei and may
be detected experimentally.

FIG. 4. The available potential energy surfaces versus the
quadrupole deformation β2 and the octupole deformation β3 in the
present calculations. Panel (a) is for 146–160Dy and panel (b) is for
188–202Dy. The RASRMF calculations are performed with NL3∗.

034301-5



QIU, WANG, AND GUO PHYSICAL REVIEW C 106, 034301 (2022)

IV. SUMMARY

In summary, the RASRMF theory is used to explore the
ground state properties for the even-even Dy isotopes. The
calculated binding energies agree with the experimental data.
Compared with the DRHBc calculations, the present calcula-
tions match the experiment better. In addition, that the present
calculations agree better the FRDM calculations for the un-
known Dy isotopes may originate from this consideration of
the reflection-asymmetric degrees of freedom.

The calculated quadrupole deformations are consistent
with the experimental data as well as the DRHBc calculations.
There is little deviation between the FRDM calculations and
experimental data, but the deformation trend is consistent.
Especially, the experimental fingerprints of octupole deforma-
tion in the Dy isotopes around N = 88 are convincing in the
present calculations. The prediction of octupole deformation
in the extremely neutron-rich nuclei around N = 132 is in
accordance with the FRDM calculations.

The available matter density distributions clearly show
the ground state deformation and the shape evolution. For
the Dy isotopes with A = 146–160, it is found that 150Dy
is a transitional nucleus from pear to axially symmetric
shape, and 148,154,156Dy are reflection-asymmetric nuclei.
Compared with 148Dy, the octupole deformation in 154,156Dy
is more remarkable. For the Dy isotopes with A = 188–202,
there is an octupole deformation in 190–194Dy and 200,202Dy.
In contrast, the octupole deformation in 200,202Dy is more
significant.

The position of the ground state in the potential en-
ergy surfaces is observed with the deformations β2 and β3.
Besides quadrupole deformation, the energy minimum of
148,154,156,160Dy locates at β3 �= 0, which implies they hold oc-
tupole deformation. Especially, the potential energy surfaces
show 150Dy may be a coexistence nucleus of the oblate and
prolate shapes and 156Dy is a stable reflection-asymmetric nu-
cleus with a deep energy minimum of octupole deformation.
Similarly, the energy minimum of 190–194,200,202Dy locates
at β3 �= 0. From the depth of the energy minimum, it can
be judged that 200,202Dy are more stable octupole-deformed
nuclei.

Overall, the present calculations predict two promising
regions of octupole-deformed nuclei in the Dy isotopes. One
is the area near N = 88, including 148,154,156,160Dy, and the
experimental fingerprints of octupolarity are convincing in the
present calculations. The promising region is the area around
N = 134, including 190–194,200,202Dy, which is consistent with
the FRDM calculations. These are helpful for experimental
exploration of octupole-deformed nuclei.
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[32] P. Marević, J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar,
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