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Correlations among neutron-proton and neutron-deuteron elastic scattering observables
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We employ two models of the nucleon-nucleon force: the OPE-Gaussian as well as the chiral N 4LO and
N 4LO+ interactions with semilocal regularization in momentum space to study correlations among two-nucleon
and three-nucleon elastic scattering observables. These models contain a number of free parameters whose values
and covariance matrices are evaluated from a fit to the two-nucleon data. Such detailed knowledge of parameters
allows us to create, using various sets of statistically generated parameters, numerous versions of these potentials
and next apply them to two- and three-nucleon scattering to make predictions of various observables at the
reaction energies up to 200 MeV. This permits a systematic analysis of correlations among two-nucleon and
three-nucleon observables, based on a relatively big sample of predictions. We found that most observables
in neutron-proton and neutron-deuteron systems are uncorrelated, but there are exceptions revealing strong
correlations, which depend on the reaction energy and scattering angle. This information may be useful for
precise fixing free parameters of two-nucleon and three-nucleon forces and for understanding dependencies and
correlations between potential parameters and observables.
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I. INTRODUCTION

One of the challenges in nuclear physics is to describe
ab initio, i.e., starting from reliable models of the nucleon-
nucleon (NN) and many-nucleon forces, properties of nuclear
systems and reactions. The current understanding of the nu-
clear forces is that they are residual interactions of the strong
forces between quarks and gluons. Nowadays we are not able
to apply quantum chromodynamics (QCD) directly in the non-
perturbative region and to describe processes at the nuclear
scale starting from quarks and gluons and their interactions.

Instead various effective models of nuclear interactions
have been prepared. The Argonne v18 (AV18) [1] and the CD-
Bonn [2] models of NN interaction are important examples
which provide a quite satisfactory description of numerous
nuclear phenomena. The quality of two-nucleon (2N) data
description can be measured by the χ2/datum value obtained
from a comparison of theoretical predictions and experimen-
tal data. The AV18 and CD-Bonn forces achieved χ2/datum
close to 1 but by using 40 and 45 free parameters, respectively.
These parameters were fitted, via the phase shifts obtained by
the Nijmegen group [3], to all 2N data available at that time.
In both cases, only the central values of the parameters were
determined and no information about their uncertainties, to
the best of our knowledge, was published. A serious disadvan-
tage of these models is the lack of a direct link to QCD. This
issue does not occur in the models of nuclear forces derived
within the chiral effective field theory (χEFT) approach [4]
such as the recent potential with the semilocal regularization

in momentum space (SMS) proposed by the Bochum-Bonn
group [5] or the forces derived by Machleidt et al. [6], Piarulli
et al. [7], and others [8].

In the course of time, as more and more advanced nuclear
force models were derived, the accurate determination of their
free parameters became more and more important. The crucial
step was taken by Navarro Pérez and his collaborators from
the Granada group. They revised the available 2N data and
prepared a new database [9], rejecting experimental results for
which the experimental uncertainties were unknown or poorly
defined. They excluded also data sets inconsistent with other
experimental results. This procedure led to consistency of the
eventually accepted data sets. The Granada-2013 database is
currently a standard collection of data used for fixing param-
eters of the NN forces.

For some models of the NN interaction, derived in the 21st
century, like the OPE-Gaussian force [10] or the chiral SMS
force [5], in addition to the central values of parameters also
their covariance matrices were determined. This has opened
up new possibilities in few-nucleon studies. The propagation
of the uncertainties of the potential parameters from a 2N
system to many-body observables is one example. We have
studied this issue in [11,12] and determined for the first time
in a quantitative way the corresponding theoretical uncer-
tainties for the elastic nucleon-deuteron (Nd) observables.
Another interesting problem that can be investigated with
the help of the covariance matrix of the potential parameters
is the existence of correlations among various observables
in two- and three-nucleon (3N) systems as well as between
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observables and specific potential parameters. In particular
this can lead to establishing a set of observables that should
(should not) be taken into account while fixing the free
parameters of the three-nucleon force (3NF). The free param-
eters of the older 3NF models, like the Tucson-Melbourne
[13–15] or the UrbanaIX [16], were determined from the
3H binding energy and the density of the nuclear matter.
In the case of the chiral models, for which the 3NF occurs
for the first time at N 2LO [17,18], its two free parameters
(cD and cE ) were initially fixed from the 3H binding energy
and the neutron-deuteron (nd) doublet scattering length 2and

[17,19]. However, it is known that these two observables
are strongly correlated and their linear dependence mani-
fests itself in the so-called Phillips line [20]. More recently,
in Ref. [21], beside the 3H binding energy, the differential
cross section at Elab = 70 MeV around its minimum was used
instead of 2and for a 3NF consistent with the SMS regular-
ization. The choice of the cross section was dictated by the
significant 3NF effects observed in this angular region and
by the existence of the very precise experimental data [22].
In Ref. [23] authors discussed also the dependence of the
cD and cE values on the choice of the energy and scattering
angle ranges used during the fixing procedure, and found it
small.

However, the question of possible correlation between the
3H binding energy and the scattering cross section is still open.
The answer is important since obviously using the strongly
correlated observables to fix free parameters can bias the
results of such a determination method. Moreover, 13 new
free parameters, namely strengths of contact terms, for 3NF
are expected at N4LO [24]. Fixing them will be a tremendous
computational effort, and therefore the set of observables used
for this purpose must be carefully selected. Specifically, to
minimize uncertainties of fixed parameters, the selected ob-
servables should be uncorrelated. While the use of emulators
proposed in [25,26] can reduce the amount of required CPU
time, the accuracy of parameter values will still depend on a
set of input observables. Similarly, correlations discovered in
the 2N system could impact the procedures used to fix free
parameters of the NN force.

In the past a study of correlations was not possible at a
statistically significant level, due to the lack of a sufficiently
large number of the realistic models of the nuclear potential
and precise data. The situation has changed in recent years.
Using the OPE-Gaussian or the chiral SMS forces allows us
to prepare many sets of the potential parameters and thus, after
a procedure described in the next section, obtain a number of
predictions large enough to analyze correlations and to draw
quantitative conclusions. Some attempts to study correlations
in few-nucleon sectors are presented in Refs. [27–29]. In
Ref. [27] the authors study, using the Monte Carlo bootstrap
analysis as a method to randomize proton-proton and neutron-
proton (np) scattering predictions, correlations between the
ground states of the 2H, 3H, and 4He binding energies, focus-
ing mainly on the Tjon line [30], i.e., the correlation between
3H and 4He binding energies, but do not investigate the
scattering observables. In Ref. [28] the correlations between
three- and four-nucleon observables have been investigated
within the pionless effective field theory with the Resonating

Group Method. Because this approach can be applied only
to processes at very low energies the authors focus on the
study of bound-state properties and the 3H-neutron S-wave
scattering length, finding the latter correlated with the 3H
binding energy. Kievsky et al. [29] studied correlations among
the low-energy bound state observables in the two- and three-
nucleon systems, extending this research to some features of
the light nuclei and beyond up to nuclear matter and neutron
star properties. Using a simple model of “Leading-order Ef-
fective Field Theory inspired potential” they found evidence
of the connection between few- and many-nucleon observ-
ables. In addition, in Ref. [31] correlations among partial
wave dependent parameters in NN scattering, arising form
the experimental data have been discussed in the context of
uncertainty of models of the nuclear interaction. None of these
works are focused on correlations in the context of three-
nucleon observables.

In the present paper we study correlations among observ-
ables in neutron-proton elastic scattering as well as among
observables in neutron-deuteron elastic scattering focusing on
the latter ones. The paper is organized as follows. In Sec. II we
list the essential steps of our formalism. In Secs. III and IV we
show results on correlations among various two- and three-
nucleon observables, respectively. Finally, we summarize and
conclude in Sec. V.

II. FORMALISM

The realization of our work can be split into the following
phases:

(1) Preparation of sets of the potential parameters
Having at our disposal the central values of the

potential parameters and their covariance matrix, we
sample, in addition to set S0 of central values of po-
tential parameters, 50 sets Si, i = 1, 2, . . . , 50 of the
potential parameters from the multivariate normal dis-
tribution.

(2) Computing observables for each set of potential pa-
rameters

All results in this work have been obtained in
momentum space by resorting to standard partial
wave decomposition (PWD). We neglect the Coulomb
force and the 3N interaction. For each set Si (i =
0, 1, . . . , 50) defining a NN interaction V , we compute
the deuteron wave function by solving the Schrödinger
equation. Next, for the same V we solve the Lippmann-
Schwinger equation, t = V + V G̃0t (G̃0 is the free 2N
propagator), to obtain the 2N t matrix, from which
2N scattering observables are obtained. For the 3N
system we solve the Faddeev equation and construct
the transition amplitudes from which the 3N scat-
tering observables are computed, see Sec. IV. For
more details on these calculations we refer the reader
to Refs. [32,33] and references therein. As a result,
an angular dependence of various np and nd elastic
scattering observables is obtained for each set of pa-
rameters Si.
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The resulted predictions can be used to study:
(2,1) for a given observable X at an energy E and at a

scattering angle θ , the empirical probability den-
sity function of the observable X (E , θ ) resulting
when various sets Si, (i = 0, . . . , 50) are used;

(2,2) for a given observable X , both the angular and
energy dependencies of predictions based on
various sets Si.

This, in turn, allows us to analyze correla-
tions among all observables.

(2,3) We calculate a sample estimator of the correla-
tion coefficient between two chosen observables
X and Y , using the standard formula

r(X,Y ) =
∑n

i=1 (xi − X̄ )(yi − Ȳ )√∑n
i=1 (xi − X̄ )2 ∑

i=1 (yi − Ȳ )2
,

(2.1)

where the index “i′′ runs over the sets of n = 51
versions of potentials, X̄ and Ȳ are means: X̄ =
1
n

∑n
i=1 xi and Ȳ = 1

n

∑n
i=1 yi, respectively.

The interpretation of the correlation coefficient is to some
extent arbitrary. The correlation coefficient takes values from
−1 to 1 and we define the case |r| � 0.3 as no correla-
tion, while 0.3 < |r| � 0.5, 0.5 < |r| � 0.7, and 0.7 < |r| �
1 mean weak, moderate, and strong correlation, respec-
tively. Specifically, |r(X,Y )| = 1 means linear dependence
between the two observables X and Y . If the correlation
coefficient equals 0, then there is no linear dependence be-
tween the observables, however, they can still be nonlinearly
dependent.

In the determination of the correlation coefficient for a
given pair of observables, we have in practice only one 50-
element sample at our disposal. Estimation of uncertainty
of computed sample correlation coefficients is not straight-
forward. To find this uncertainty we apply two methods.
First we use the well-known Fisher transformation [34,35].
To construct a confidence interval by Fisher’s method, it is
assumed that X and Y have a bivariate normal distribution.
This assumption is only approximately satisfied by observ-
ables, see Ref. [11] for the corresponding discussion on 3N
observables obtained with the OPE-Gaussian potential. The
variable Z = 1

2 ln( 1−r(X,Y )
1+r(X,Y ) ), which has the standard normal

distribution is used to construct a confidence interval at a
given confidence level γ . After inverse transformation of the
confidence limits one gets the confidence interval for r(X,Y ).
Applying this method to various pairs (X,Y ), we found that
the obtained half-confidence interval at γ = 0.9 is usually
≈0.05 for r ≈ 0.9 and ≈0.25 for r ≈ 0.25.

Secondly, we use the bootstrap resampling method [36–38]
to estimate uncertainties of r(X,Y ). The advantage of the
bootstrap method lies in working directly with sample el-
ements without any assumption about the normality of the
X and Y distributions. Resampling [up to 1000 (X,Y ) ele-
ments] allows us to find the properties (e.g., distribution or
standard derivation) of the bootstrap estimator for the correla-
tion coefficient and thus estimate the uncertainty of originally
received r(X,Y ), again as a half of bootstrap confidence in-

terval. Typically, the half of the bootstrap confidence interval
at γ = 0.9 is ≈0.05 for r ≈ 0.9 (≈0.23 for r ≈ 0.25). These
values are similar to uncertainties resulting from the Fisher
method.

This shows that the uncertainty of the correlation coeffi-
cients, especially for small r(X,Y ), is relatively high. Thus in
the following we will restrict ourselves to a more qualitative
discussion of correlation coefficients. Since we are interested
in finding whether given observables are or are not correlated,
such a qualitative result is sufficient.

III. CORRELATIONS AMONG NEUTRON-PROTON
ELASTIC SCATTERING OBSERVABLES

Elastic scattering of two spin-1/2 particles offers much
more diverse measurements than only of the differential cross
section, dσ/d�, since beside the unpolarized cross sec-
tion various spin observables are available. In this section we
present a few observables: the asymmetry A′, the polarization
P, the depolarization R, and the spin transfer coefficient D
[32]. We determine their correlation coefficients at two inci-
dent neutron energies Elab = 10, and 135 MeV in the range
of the scattering angle θc.m. ∈ [12.5◦, 167.5◦]1 using the chi-
ral N 4LO and N 4LO+ SMS NN potentials with the cutoff
parameter � = 450 MeV as well as the OPE-Gaussian NN
force.

In Fig. 1 we demonstrate, in the form of scatter plots,
predictions for the chosen 2N scattering observables based
on these three models of the NN potential, using, for each
force, 51 sets of potential parameters. The top row in Fig. 1
visualizes a strong positive correlation between dσ/d� and A′
at Elab = 10 MeV at three scattering angles θc.m. = 30◦, 90◦,
and 150◦. The correlation coefficients for the chiral N 4LO
SMS force are r(θc.m. = 30◦) = 0.81, r(θc.m. = 90◦) = 0.99,
r(θc.m. = 150◦) = 0.85, and (r(θc.m. = 30◦) = 0.87, r(θc.m. =
90◦) = 0.99, r(θc.m. = 150◦) = 0.74 for the OPE-Gaussian
potential, so we conclude that the dσ/d� and A′ are rather
strongly correlated at this energy. For Elab = 135 MeV and all
three scattering angles, the scatter plots in the second row of
Fig. 1, show, that the strong correlation observed at Elab =
10 MeV disappears at higher energy for all the potentials,
leaving only weak correlation between (dσ/d� and A′).

An analysis of two medium rows in Fig. 1 leads to conclu-
sion that dσ/d� is weakly correlated with the polarization P,
independently of the NN potential used, the scattering energy,
and the scattering angle (in fact, that is true for the entire
θc.m.) interval. Yet another pattern of correlations occurs for
the (R, A′) pair, see two bottom rows of Fig. 1. While at Elab =
10 MeV there is strong positive correlation for all the three
scattering angles, at Elab = 135 MeV correlation depends on
the scattering angle, changing from strong positive to almost
negligible one. Once again we see that the three models of
the NN interaction yield similar predictions for the correlation
coefficients.

1This interval was chosen to avoid divergences occurring due to
division by a very small value or by zero for θc.m. = 0◦ or θc.m. =
180◦, where the variance of observable tends to zero
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FIG. 1. Scatter plots for the chosen np scattering observables at the c.m. scattering angle θc.m. = 30◦ (left), θc.m. = 90◦ (middle), and
θc.m. = 150◦ (right) and at the incoming neutron laboratory energy Elab = 10 MeV (odd rows) and Elab = 135 MeV (even rows). Two top
rows are for the differential cross section dσ/d� and the asymmetry A′, two middle rows are for the np differential cross section dσ/d�

and the polarization P and two bottom rows are for the np depolarization R and the asymmetry A′. The blue up-pointing triangles, green
down-pointing triangles, and red circles show predictions of 50 sets of potential parameters of the chiral N 4LO (� = 450 MeV), chiral N4LO+

(� = 450 MeV) SMS force, and the OPE-Gaussian potential, respectively. The single pluses show predictions obtained with the central values
of these potentials.
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FIG. 2. Scatter plots for dσ/d� and A′ in np scattering at the
c.m. scattering angle θc.m. = 50◦ (left) and θc.m. = 150◦ (right) and
at the incoming neutron laboratory energy Elab = 10 MeV (top) and
Elab = 135 MeV (bottom) based on two 50-elements sets of potential
parameters, represented by the open black squares and the full red
squares. The chiral SMS potential at N4LO with � = 450 MeV was
used.

In the case of the 2N system we are able to check
how our estimation of the correlation coefficients
r(X,Y ) depends on the sample size and find this
dependence very weak. For example a correlation
coefficient r50(X,Y ) obtained from the 50-element
sample calculated with the N4LO SMS force and the
corresponding correlation coefficient r100(X,Y ) derived from
the 100-element sample have similar values. In particular,
at Elab = 10 MeV and θc.m. = 50◦ the correlation coefficient
r50(dσ/d�, R) = 0.95 while r100(dσ/d�, R) = 0.93. At
θc.m. = 150◦r50(dσ/d�, R) = 0.82 and r100(dσ/d�, R) =
0.80. Similarly, for r(dσ/d�, A′) we get r50(dσ/d�, A′) =
0.88 and r100(dσ/d�, A′) = 0.87 at θc.m. = 50◦ and
r50(dσ/d�, A′) = 0.83 and r100(dσ/d�, A′) = 0.78 at
θc.m. = 150◦. At Elab = 135 MeV the correlation coefficients
are much smaller: at θc.m. = 50◦ r50(dσ/d�, R) = 0.29 and
r100(dσ/d�, R) = 0.37, at θc.m. = 150◦ r50(dσ/d�, R) =
−0.40 while r100(dσ/d�, R) = −0.44. For r(dσ/d�, A′)
we have r50(dσ/d�, A′) = 0.24 and r100(dσ/d�, A′) =
0.27 at θc.m. = 50◦ and r50(dσ/d�, A′) = −0.35 and
r100(dσ/d�, A′) = −0.41 at θc.m. = 150◦. While a small
(usually about 5%) difference between r50 and r100 is seen,
the qualitative conclusion about correlation coefficients
remains unchanged with the increasing sample size. The
independence from the sample used is also exemplified in
Fig. 2 for dσ/d� and A′, where two samples of size 50 yield
a similar distribution of predictions.

Focusing on the correlation coefficients we are able now to
study their dependence on the scattering angle and the reaction

energy in a more compact form than shown in Fig. 1. Figure 3
shows the angular dependence of four correlation coefficients
for three energies of the incoming nucleon: Elab = 10, 65,

and 135 MeV. Note the range of the y axis in Fig. 3 does
not cover the full possible range of the correlation coefficient
r ∈ [−1, 1] otherwise many curves would be indistinguish-
able. The top row, for r(dσ/d�, P), shows that at the lowest
energy these observables remain uncorrelated for all presented
scattering angles, despite differences among predictions based
on the considered interactions. At the two higher energies the
pattern of angular dependence is more complex and beside
ranges of very weak or medium correlation for both chiral
models dσ/d� and P are strongly correlated around θ = 50◦
at Elab = 135 MeV. As seen from the second row of Fig. 3, the
np differential cross section dσ/d� is, in general, strongly
correlated with the asymmetry A′ over a wide range of the
scattering angle at the incoming neutron laboratory energy
Elab = 10 MeV. A magnitude of the r(dσ/d�, A′) exceeds at
this energy 0.8 in a wide range of the scattering angle. For
the two higher energies (Elab = 65 and 135 MeV) the corre-
lation decreases, but still at some regions remains moderate.
Figure 3 shows also the angular dependence of the correlation
coefficient for the (R, A′) pair, which is strongly correlated
for all interactions at Elab = 10. At Elab = 65 MeV, the mag-
nitude of the correlation coefficient still has high values, but
in the interval θc.m. ∈ (100◦, 150◦) reaches its minimum of
r ≈ 0.65 for the chiral N 4LO SMS potential (r ≈ 0.75 for
N 4LO+). At Elab = 135 MeV, strong correlation is observed
at θc.m. ∈ (50◦, 70◦) and only negative moderate correlation
occurs at θc.m. ∈ (110◦, 130◦). Finally, in the last row of Fig. 3
we display r(R, D), which is close to 1 for the lowest en-
ergy, but changes with the increasing energy, ending at Elab =
135 MeV in moderate positive correlation with an exception
around θc.m. = 60◦, where a moderate negative correlation is
observed.

Combining all the given above observations for the corre-
lation coefficients among 2N observables and not shown here
results for other pairs of 2N observables we conclude:

(1) we observe a complex dependence of the correlation
coefficients on the scattering angle and this complexity
grows with the reaction energy. While at small ener-
gies there are many correlated observables, this picture
changes for the higher energies, where more and more
observables become uncorrelated. We suppose this ef-
fect is related to a bigger number of partial waves (and
thus also potential parameters) contributing at higher
energies. Due to this complex pattern and relatively big
uncertainties of the correlation coefficients, especially
for small correlation coefficients, we restrict ourselves
to only qualitative conclusions.

(2) correlation coefficients predicted from various models
of the NN interaction, that is from the chiral poten-
tials at various orders and the more phenomenological
OPE-Gaussian force, are in qualitative agreement. The
observed differences are well inside the uncertainty of
the obtained correlation coefficients. Thus, in practice
it is possible to conclude about the correlation strength
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FIG. 3. The angular dependence of correlation coefficients r(dσ/d�, P) (top), the r(dσ/d�, A′) (second row), r(R, A′) (third row),
and r(R, D) (bottom) in np scattering at the incoming neutron laboratory energy Elab = 10 MeV (left), Elab = 65 MeV (middle), and
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using a sample of parameters from only one model of
interaction.

(3) the polarization P is weakly correlated with the other
2N scattering observables. This is true for all NN
potentials (in the case of the chiral SMS forces starting
from N 3LO), the scattering energies and scattering
angles.

(4) the differential cross section dσ/d� is strongly corre-
lated with all 2N scattering observables, except for P,
at energies up to Elab = 30 MeV, in specific intervals
of θc.m..

(5) a sample of 50 sets of potential parameters is sufficient
to study correlations between 2N observables. Such
a study was impossible with availability of only few
models of the NN potential for which only central
values of parameters were known.

IV. CORRELATIONS AMONG NEUTRON-DEUTERON
ELASTIC SCATTERING OBSERVABLES

We investigate the 3N system within the Faddeev formal-
ism [32,33,39]. In the following we will just briefly describe
the key equations used in this work.

Since we also studied correlations of scattering observables
with the 3H binding energy, beside the scattering states we
also computed the 3H bound state for all Si sets of the potential
parameters. The Faddeev component |ψ1〉 of the 3N bound
state |	〉 fulfills [40]

|ψ1〉 = G0tP|ψ1〉, (4.1)

where the two-nucleon t operator, defined in the previous
section, acts now in the 3N space. G0 is the free 3N propagator
and P is a permutation operator built from transpositions Pi j :
P = P12P23 + P13P23. The complete 3N bound state |	〉 =
(1 + P)|ψ1〉.

The transition amplitude U for the Nd elastic scattering
is calculated prior to computing 3N scattering observables.
Its matrix elements between the initial |φ〉 and final |φ′〉 Nd
states, neglecting 3NF, are given by [33]

〈φ′|U |φ〉 = 〈φ′|PG−1
0 |φ〉 + 〈φ′|PT |φ〉. (4.2)

The Faddeev equation for the auxiliary state T |φ〉 with
nucleons interacting only via a NN interaction V entering a
t matrix expresses as [33]

T |φ〉 = tP|φ〉 + tPG0T |φ〉. (4.3)
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In the above equations the initial and final Nd states are
products of the deuteron state |ϕd〉 and a relative momentum
eigenstate of the free nucleon, | �q0〉, |φ〉 = |ϕd md〉| �q0mN 〉 with
the corresponding spin quantum numbers md and mN , respec-
tively.

Applying partial wave decomposition to operators and
states in Eqs. (4.1) and (4.3) we solve them numerically,
generating for Eq. (4.3) its Neumann series and summing it
up using the Padè method [32,33]. The 3N partial wave basis
comprises all states with the two-body subsystem total angu-
lar momentum j � 5 and the total 3N angular momentum
J � 25

2 . This guarantees convergence of predictions with
respect to these total angular momenta. The total number
of the 3N states for given Jπ (total 3N angular momentum
with parity π equal +1 or −1) amounts up to 142. We
use grids of 32 p points in the range 0–40 fm−1 and 37 q
points in the range 0–25 fm−1 both for the chiral SMS force
and the OPE-Gaussian potential. From Eq. (4.2) one finds
matrix elements of the elastic transition amplitude U , from
which a large set of observables can be computed [33]. In
total, there are 55 different observables for elastic scattering
comprising the unpolarized cross section dσ/d�, nucleon
and deuteron analyzing powers, spin correlation coefficients,
and polarization transfer coefficients from nucleon/deuteron
to nucleon/deuteron; for more details see Ref. [33]. It gives
1
2 × 55 × 54 = 1485 pairs of observables, so in the following
we choose and describe only a few examples.

We present results for 3N observables in the same way as
in the 2N case, i.e., first we discuss scatter plots and next move
to the angular dependence of the correlation coefficients.

The scatter plots for the differential cross section dσ/d�

and the spin correlation coefficient CXX are shown in two up-
per rows of Fig. 4 for three scattering angles, θc.m. = 30◦, 90◦,
and 150◦, and two laboratory kinetic energies of the incom-
ing nucleon, Elab = 13 MeV and Elab = 135 MeV. As in the
two-body case, we use the chiral N4LO and N4LO+ SMS
potentials at � = 450 MeV, and the OPE-Gaussian force. The
dσ/d� appears strongly correlated with CXX at θc.m. = 90◦
and θc.m. = 150◦ for Elab = 13 MeV, and moderately corre-
lated at the three scattering angles at Elab = 135 MeV for all
the employed potentials. We find that for θc.m. = 30◦ at the
lower energy only a weak correlation for this pair of 3N
observables exists.

Another picture emerges for the neutron analyzing power
AY (n) and the deuteron vector analyzing power iT11 which are
strongly or moderately correlated, depending on the scattering
angle and energy, see the third and fourth rows of Fig. 4.
The N 4LO (N 4LO+) potential yields for Elab = 13 MeV: at
θc.m. = 30◦ r = 0.95 (r = 0.97), at θc.m. = 90◦ r = 0.90 (r =
0.94), and at θc.m. = 150◦ r = 0.99 (r = 0.99). For Elab =
135 MeV, the dependence between the observables looks
very linear at θc.m. = 30◦ and indeed the magnitudes of r
are θc.m. = 30◦ r = 0.99 (r = 0.98) for the N 4LO (N 4LO+)
forces. The same interactions lead at θc.m. = 90◦ to r =
0.60 (r = 0.35), and at θc.m. = 150◦ r = 0.71 (r = 0.74) with
N 4LO (N 4LO+).

Finally, in the two bottom rows of Fig. 4 we demonstrate
yet another pattern for the correlation coefficient, which oc-
curs for the spin correlation coefficient CXX and the spin

transfer coefficient KY ′
Y (n). Here, at lower energy and θc.m. =

30◦ and θc.m. = 90◦ the observables are strongly anticor-
related, while at θc.m. = 150◦ we observe strong positive
correlation. This picture changes significantly when moving
to the higher energy: there is no correlation at θc.m. = 30◦ but
a strong positive correlation at θc.m. = 90◦ and θc.m. = 150◦.

Comparison between predictions of the chiral potentials
and the OPE-Gaussian model reveals the very similar pattern
of correlations. The “cloud” of predictions has usually the
same shape for all used forces what leads to comparable
values of the correlation coefficient. To give an example: in
the case of (AY (n), iT11) pair the OPE-Gaussian potential pre-
dicts the correlation coefficients: r = 0.89 at θc.m. = 30◦, r =
0.95 at θc.m. = 90◦, and r = 0.98 at θc.m. = 150◦ for Elab =
13 MeV (r = 0.99 at θc.m. = 30◦, r = 0.61 at θc.m. = 90◦, and
r = 0.45 at θc.m. = 150◦ for Elab = 135 MeV).

From other, not shown here, scatter plots it can be
generally concluded that for the vast majority of selected
angles at Elab = 13 MeV there is often a strong correla-
tion, or less often observed moderate correlation. At the
higher energy, Elab = 135 MeV, we typically observe a weak
correlation at almost all scattering angles, but there are ex-
ceptions that indicate a moderate correlation. We can also
conclude, that the correlation coefficients for Nd scatter-
ing observables predicted with the OPE-Gaussian, N4LO, or
N4LO+ forces usually lead to the same qualitative conclusion
about the correlation/uncorrelation. The biggest differences
in predicted values of the correlation coefficients occur for
uncorrelated or weakly correlated cases what is in agreement
with our estimation of correlation coefficients uncertainties.

Let us now turn to the angular dependence of the cor-
relation coefficients. We exemplify it in Fig. 5, for the
r(dσ/d�,CXX ), r(AY (n), iT11), and r(CXX , KY ′

Y (n)) at three
scattering energies Elab = 13, 65, and 135 MeV. The predicted
correlation coefficients are, as in the 2N case, complicated
energy-dependent functions of the scattering angle so again
we restrict ourselves to qualitative conclusions only. The
differential cross section dσ/d� is, in general, moderately
correlated with CXX for the chiral SMS at both presented
orders, and for the OPE-Gaussian potential at all energies.
However, we can also observe a weak or a strong correlation
in some ranges of the scattering angle. A weak correlation
for this pair is observed at forward scattering angles at Elab =
13 MeV, for 70◦ < θc.m. < 150◦ at Elab = 65 MeV, and for
45◦ < θc.m. < 140◦ at Elab = 135 MeV. Strong anticorrela-
tion is found at Elab = 13 MeV in the case of N 4LO+ SMS
predictions for 80◦ < θc.m. < 100◦ but with the increasing
scattering angle it changes to strong correlation for 100◦ <

θc.m. < 120◦. With increasing energy a strong correlation ap-
pears at forward/backward scattering angles. It is interesting
that at the middle energy the N4LO SMS and OPE-Gaussian
predictions are close one to another while the N4LO+ SMS
results show a slightly different pattern. However, this is not
very important for our qualitative study of the correlation co-
efficients and does not affect our general conclusion about the
weak/moderate dependence between these 3N observables.

The (AY (n), iT11) pair remains strongly correlated at the
two lower energies practically for all the scattering angles.
At Elab = 135 MeV the correlation coefficient is close to one
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represent predictions of the OPE-Gaussian, the SMS N4LO, and the SMS N4LO+ interactions, respectively.

only for scattering angles below θc.m. ≈ 40◦ and correlation
becomes moderate for bigger angles. Again at lower energies
N4LO+ predictions are slightly different from the N4LO and
OPE-Gaussian ones.

Yet another pattern emerges for r(CXX , KY ′
Y (n)) and is dis-

played in the bottom row of Fig. 5. Here at the highest energy
all predictions are close one to another and reveal weak, mod-
erate or even strong correlation, depending on the range of
the scattering angle. At two lower energies all predictions, in
general, also show a similar behavior.

Conclusions arising from this analysis of Fig. 5 (and not
shown here results for other pairs of 3N observables) are as
follows:

(1) the angular dependence of the correlation coefficients
reveals complex structures for all pairs of observables
and energies. These structures are a consequence of
nonlinear dependence of the observables on poten-
tial parameters. In addition, the fact that the genuine
potential parameters are fitted after the partial wave
decomposition of the NN potential makes this relation
even more hidden. Also our method of calculating
r, which is based on a sample of 50 predictions,
introduces additional uncertainty. Nevertheless, tests
performed in the 2N system, and the fact that us-
ing different potentials (therefore different parameter
spaces) leads to similar conclusions about the strength
of correlations, seem to prove the correctness of the
picture obtained.

(2) in most cases, the N 4LO and N 4LO+ yields similar
correlation coefficients, although there are also pairs

of 3N observables for which they significantly dif-
fer, like (AY (n), iT11) at 70◦ < θc.m. < 110◦ at Elab =
135 MeV.

(3) at Elab = 13 MeV 3N observables are usually strongly
correlated for θc.m. < 120◦ when the chiral N 4LO+

SMS potential is used. They become moderately or
weakly correlated or even uncorrelated above this an-
gle up to θc.m. ≈ 150◦ where again strong correlation
is seen.

(4) among the most easily experimentally available ob-
servables, i.e., the differential cross section, the neu-
tron vector analyzing power AY (n), the deuteron vector
analyzing power iT11, and the deuteron tensor analyz-
ing powers T20, T21, and T22, only the (AY (n), iT11)
pair shows strong correlation in the whole range of
the scattering angle. The (T20, T21) and (T20, T22) are
strongly correlated for scattering angles θc.m. below
below approx. 80◦ at the lowest studied energy Elab =
13 MeV. At higher energies, all these observables,
with the exception of (AY (n), iT11) are characterized
by weak correlation for a wide range of the scatter-
ing angle with correlation coefficients in the range of
−0.5 < r < 0.5.

(5) in the case of the N 2LO SMS force at all considered
energies the correlation coefficient undergoes stronger
changes with the scattering angle than the correla-
tion coefficients computed with other potentials. The
observed stabilization at higher orders shows that re-
stricting calculations to the third order of the chiral
expansion can be misleading for some correlation co-
efficients at the energies studied here.
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(6) the absolute value of the correlation coefficient de-
creases with increasing energy, which indicates weak
correlation or even no correlation, with rare excep-
tions of (CXX , KY ′

Y (n)) (Fig. 5) and (CZZ , KY ′
Y (d )) pairs.

For other observables at Elab = 65 and 135 MeV
strong/moderate correlation appears only in specific
intervals of the scattering angles. This is true for all
the used NN forces: the chiral SMS N 4LO, N4LO+,
and the OPE-Gaussian potentials.

All the SMS chiral force based results presented above
have been obtained with the regularization parameter � =
450 MeV. It is also interesting to study the sensitivity of
correlation coefficients to the value of that cutoff parameter.
Figure 6 demonstrates this dependence at N 4LO+ using three
values of �: 450, 500, and 550 MeV for the pairs (CXX ,CYY )
(top row) and (AY (n), iT11) (bottom row). What is interest-
ing is that the cutoff dependence of r(CXX ,CYY ) is the most
significant at the lowest energy Elab = 13 MeV, while at the
two higher energies predictions are close to each other, lead-
ing firmly to the same quantitative conclusion on correlation
between these observables. In contrast, at Elab = 13 MeV and
θc.m. ≈ 90◦ for � = 450 and 550 MeV we obtain a weak or
moderate positive correlation, while for � = 500 MeV the
correlation is negative. For r(AY (n), iT11) at all three energies,
despite some differences between predictions, a qualitative
description of correlations is cutoff independent. At Elab =
13 MeV and for all cutoffs there is strong correlation in the
whole range of θc.m. with the correlation coefficient dropping
only to ≈0.9 for θc.m. = 112.5◦ for � = 550 MeV. The same
is observed for � = 500 MeV but r reaches a minimum of
≈0.83 for θc.m. = 115◦. Also at Elab = 13 MeV the cutoff

� = 450 MeV provides a gradual decreasing of r from 0.97
at θc.m. = 12.5◦ to r ≈ 0.87 at θc.m. = 115◦, but starting from
that θc.m. r(Ay(n), iT11) increases.

Another interesting case of correlation between observ-
ables is given by the so-called Phillips line [20,41] describing
a dependence between the 3H binding energy and the nucleon-
deuteron doublet scattering length, 2and . The Phillips line was
observed in the past both in calculations with and without
3NF. As seen from Fig. 7 we reproduce the Phillips line
using chiral N 3LO, N 4LO, and N 4LO+ SMS interactions
with � = 450 MeV. The correlation coefficient between these
observables takes values of 0.75, 0.71 (0.97 after removing
three outliers), 0.98, and 0.96 for predictions at N 2LO, N 3LO,
N 4LO, and N 4LO+, respectively. With the increasing chiral
order, the values of these two observables change a little
but are far from the experimental data (E (3H ) = −8.4820 ±
0.0001 MeV [42] and 2and = 0.65 ± 0.04 fm [43]). The ob-
served discrepancy between our present predictions and the
data is not surprising as it is well known that both 3H binding
energy and 2and are strongly influenced by 3NF.

As mentioned in the Introduction, the differential cross sec-
tion at medium energy and the 3H binding energy E (3H) are
nowadays used to fix parameters of the 3NF in the chiral SMS
model. Now we are able to check if these two observables
are uncorrelated. This is done in Fig. 8. Indeed, the presented
scatter plots confirm no correlation between these two observ-
ables. The correlation coefficient r(dσ/d�, E (3H)) is small
at both energies and for all the scattering angles. Its absolute
value remains below |r| = 0.28. For not shown here energy
65 MeV |r(dσ/d�, E (3H)| does not exceed |r| ≈ 0.3. We ex-
pect that this picture will not change for complete predictions
comprising 3NF.
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FIG. 8. A scatter plot between the nd elastic differential cross section dσ/d� and the triton binding energy E (3H) at the c.m. scattering
angle θc.m. = 30◦ (left), θc.m. = 90◦ (middle), and θc.m. = 150◦ (right) and at the incoming neutron laboratory energy Elab = 13 MeV (top) and
Elab = 135 MeV (bottom). The blue up-pointing triangles (the green down-pointing triangles) represent the chiral NN SMS predictions at
N4LO (N4LO+).
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V. SUMMARY AND OUTLOOK

In the presented work we give a systematic analysis of
the correlation coefficients among 2N and 3N observables.
We demonstrated that it is possible to analyze correlations
among various 2N and 3N observables using the covariance
matrices of potential parameters provided with the models of
NN interactions from the Granada and Bochum-Bonn groups.
Consequently, we showed that there are pairs of 2N spin
observables for which an almost linear dependence exists,
as documented by correlation coefficients close to ±1. For
example, these are the cases of the np depolarization R and
the asymmetry A′ or of the differential cross section and the
asymmetry A′. Correlations between given observables are
observed both for the chiral SMS force (at N 3LO and beyond)
and for the OPE-Gaussian potential. For some pairs of 2N
observables, the angular dependence of the correlation coef-
ficients depends strongly on the order of the chiral expansion
as well as on the scattering energy.

The same is true for elastic neutron-deuteron scattering. All
correlation coefficients change in a complicated way with the
scattering angle. For many pairs of 3N observables we found
intervals of scattering angles where the correlation coefficient
|r| > 0.8. We also studied the dependence of the correlation
coefficients on the order of the chiral expansion and on the
scattering energy. For some pairs of the spin correlation and
spin transfer coefficients, as well as for the analyzing powers,
a moderate dependence on the chiral cutoff parameter � is
observed. However, in most cases it does not change our qual-
itative conclusions on the correlation/uncorrelation between
specific observables. Our results reflect a complex dependence

of observables on potential parameters. Our calculations re-
produce the Phillips line E (3H)-2and and support the practice
of determining values of free parameters of the three-nucleon
interaction from the uncorrelated differential cross section and
the triton binding energy.

The next step in studies of correlations in few-nucleon
systems is to investigate the sensitivity of a given observable
to the value of a specific potential parameter. In such a case
one deals with nonlinear dependence of observables on many,
mutually correlated, potential parameters. Thus much more
sophisticated statistical tools than the sample correlation coef-
ficient must be applied. Information about sensitivity of some
2N or 3N observables to a given potential parameter can be
used to improve a procedure of fixing potential parameters.
Existence of strongly correlated observable-potential parame-
ter pairs could also motivate experimental groups to perform
precise measurements of such observable, especially if the
experimental data are not yet available.
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