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1S0 hyperon superfluidity in neutron stars from a separable pairing force of finite range

Zhong-Hao Tu (���) *

CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

(Received 19 May 2022; accepted 10 August 2022; published 23 August 2022)

Starting from a separable pairing force of finite range of nucleons, a new set of the pairing strengths for the
1S0 hyperon-hyperon pairing based on the quark model is proposed and the 1S0 hyperon superfluidity in neutron
stars with the new hyperon pairing strengths is investigated. The reliable �� pairing strength is 2/3 times NN
pairing strength. The upper limit of �� pairing strength is 2/3 times NN pairing strength. The lower limit of
the ratio of �� pairing strength to NN pairing strength is 1. With these pairing strengths, the maximum ��

pairing gap is several tenths of a MeV which can be compared with the results calculated with the widely used
pairing force ESC00; because of a low fraction of �− hyperon, the � superfluidity is very weak or even absent
in neutron stars; the � superfluidity is stronger than the results calculated with ESC08c and the �−�− pairing
may potentially affect the cooling properties of massive neutron stars.
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I. INTRODUCTION

The neutron star is one of the densest objects in our uni-
verse, and its central density can be several times the nuclear
saturation density ρ0. Our knowledge of the interior of neu-
tron stars, especially for the density region higher than 2ρ0,
is uncertain yet. Hyperons could be populated in neutron-
star cores and a number of works have been devoted to the
study of neutron stars composed of hypernuclear matter; see,
e.g., Refs. [1–11]. The appearance of hyperons results in two
serious problems: One is the hyperon puzzle; i.e., hyperons
strongly soften the equation of state (EOS) of neutron stars
so that the maximum mass is not compatible with astrophys-
ical observations [12–21]. The other one is that the hyperon
direct Urca (dUrca) processes strongly enhance the neutrino
luminosity and rapidly cool neutron stars [22–26] so that the
surface temperatures of neutron stars are much lower than that
observed [13,27,28]. For fixing the hyperon puzzle, several
mechanisms that provide the additional repulsive interactions
between baryons are introduced, see, e.g., Refs. [4,29–34], to
increase the maximum mass of neutron stars; for the latter one,
in order to weaken neutron-star cooling induced by hyperons,
hyperons can be formed as a superfluid to suppress neutrino
emission in the hyperon dUrca processes and to make the
cooling curve of neutron stars compatible with the astrophys-
ical observations.

Hyperons are paired at certain density regions in neutron-
star cores [35–39]. The paired hyperons play an important role
in neutron-star cooling [27]. On the one hand, the hyperon
dUrca processes are exponentially suppressed by the hyperon
superfluidity when T � Tc [40–42], where Tc is the critical
temperature of hyperon pairing. On the other hand, the hy-
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peron pairing provides a new neutrino emission mechanism,
i.e., the Cooper pair breaking and formation (PBF) mecha-
nism [43]. This mechanism is also exponentially suppressed
when Tc � T but dominates the neutrino emissivities near the
critical temperature [40,44]. The enhanced cooling paradigm
resulting from any dUrca processes and the minimal cooling
paradigm involving the PBF processes and the modified Urca
processes have been proposed and they, including other sce-
narios, have been applied to studies of neutron-star cooling
[45–59].

Hyperon superfluidity may potentially affect the glitches
of pulsars. Glitches are the sudden changes of pulsars in
their spin rate during the gradual and stable spin-down via
electromagnetic radiation. The two-component model is a
successful model to explain the occurrence of glitches [60,61].
In this model, the superfluid component in the inner crust
of neutron stars is an angular momentum reservoir and it
transfers angular momentum to the normal component when a
glitch occurs. The inner crust is not enough to support a large
glitch when the crustal entrainment in the crystal lattice is
considered and therefore the two-component model falls into
difficulty [62,63]; this is the so-called glitch crisis. There are
two main ways that could give the two-component model a
new life: One is to consider the effects of pairing of neutrons
[64]; the other one is to include the superfluid component in
neutron-star cores within the standard two-component model
[65,66]. If the superfluid component is extended to the density
range where the paired hyperons exist, the hyperon superflu-
idity takes effect in the two-component model. The possible
contribution of the superfluid hyperons to the glitches may be
supported by future research.

Our knowledge of the pairing gaps of hyperons, which
determine the magnitudes of hyperon superfluidity, is uncer-
tain so far. Focusing on 1S0 hyperon-hyperon (YY ) pairing,
the pairing gap depends not only on YY pairing force but
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also on the EOS of neutron stars. For �� pairing, based on
various �� interactions, the maximum pairing gap at the
Fermi surface (the pairing gaps I mention below are all at
the Fermi surface) inside neutron stars may be 0.81 MeV
(ESC00), ∼10−4 MeV (e.g., Urbana-type potential), or even
absent (e.g., NSC97b) [67]. In several studies there is obtained
the upper limit on the maximum pairing gaps of 0.55–1.10
MeV for �� pairing and 1–3 MeV for �� pairing [52,68];
the maximum pairing gaps for �−�− pairing are about 8
MeV [38] and 3.5 MeV [69]. In this work, starting from
the widely used separable pairing force of a finite range of
nucleons, I will determine new pairing strengths for various
YY pairings based on the quark model. The EOSs of neutron
stars are calculated within the framework of the relativistic
mean-field (RMF) model.

This paper is organized as follows. In Sec. II, the theo-
retical framework of the RMF model and the methodology
for calculating EOSs of neutron stars are given. In Sec. III, I
extend the pairing strength of nucleon to the hyperon sector,

and estimate the reliability of the pairing strengths for various
YY pairings. In Sec. IV, I present the results and discussion
on various YY pairing gaps in neutron stars and estimate the
potential effects on the neutron-star cooling. Finally, a brief
summary is given in Sec. V.

II. EQUATION OF STATE

The EOS relates the interior component to macroscopic
properties (i.e., mass, radius, tidal deformability, etc.) of neu-
tron stars. I assume that the nuclear matter inside neutron-star
cores is composed of a β-equilibrated and charge-neutral mix-
ture of nucleons (n and p), hyperons (�, �±,0, and �0,−),
and leptons (e− and μ−). The RMF model is used to calculate
the EOSs of neutron stars. In this model, the baryons interact
with each other through the exchange of isoscalar scalar and
vector mesons (σ and ω), the isovector vector meson (ρ),
and hidden-strangeness mesons (σ ∗ and φ). The Lagrangian
density that describes the nuclear matter of neutron-star cores
can be written as

L =
∑

B

ψ̄B{γ μ[i∂μ − gωBωμ − gρBρμτB − gφBφμ] − [MB + gσBσ + gσ ∗Bσ ∗]}ψB

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2
) + 1

2

(
∂μσ ∗∂μσ ∗ − m2

σ ∗σ
∗2

) − 1

4
W μνWμν + 1

2
m2

ωωμωμ

− 1

4
RμνRμν + 1

2
m2

ρρ
μρμ − 1

4
�μν�μν + 1

2
m2

φφμφμ +
∑

l

ψ̄l (iγμ∂μ − ml )ψl , (1)

where τB are the Pauli matrices for isospin of the baryon
species B; MB and ml represent the baryon and lepton masses,
respectively; ψB(l ) is the Dirac field of the baryon species B or
the lepton species l; σ , ωμ, ρμ, σ ∗, and φμ denote the quantum
fields of mesons; and Wμν , Rμν , and �μν are the antisym-
metric field strength tensors of the vector mesons ω, ρ, and
φ, respectively. For the density-dependent (DD) RMF model,
like DD-ME2 [70] and DD-MEX [71], the coupling constant
between a baryon B and a meson m is density dependent and is
parametrized by the relation gmB(ρB) = gmB(ρ0) fm(ρB) with

fm(ρB) = am
1 + bm(ρB/ρ0 + dm)2

1 + cm(ρB/ρ0 + em)2
, m = σ and ω, (2)

fm(ρB) = exp[−am(ρB/ρ0 − 1)], m = ρ. (3)

For the nonlinear (NL) RMF model, like NL3 [72], all
coupling constants are independent of the density, and the
self-interaction term of the σ meson, −g2σ

3/3 − g3σ
4/4, is

added in the Lagrangian density.
The relations of coupling constants between hyperons and

vector mesons are given by the SU(6) quark model:

gω� = gω� = 2gω� = 2

3
gωN ,

gρ� = 2gρ� = 2gρN , gρ� = 0,

2gφ� = 2gφ� = gφ� = −2
√

2

3
gωN .

(4)

As for the coupling constants between hyperons and scalar
meson, the gσY ’s are determined by fitting the empirical
hyperon potential U (N )

Y in symmetric nuclear matter at the
saturation density:

U (N )
Y = RσY gσNσ 0 + RωY gωNω0 + �0

R, (5)

where RmY is the ratio of gmY to gmN . �R is the rearrange-
ment term originating from the density dependence of the
coupling constants between baryons and mesons and �R = 0
for the NL-RMF model. σ 0, ω0, and �0

R are the values of
the corresponding meson fields and rearrangement term of the
symmetric nuclear matter at the saturation density. I choose
U (N )

� = −30 MeV [67,73], U (N )
� = +30 MeV, and U (N )

� =
−15 MeV [67,74] in the present work. At the saturation
density, the gσ ∗Y ’s are obtained by fitting potential depths of
hyperons in the hypernuclear matter:

U (Y )
Y = gσY σ 0 + gωY ω0 + gσ ∗Y σ ∗0 + gφY φ0 + �0

R. (6)

Here, I choose U (�)
� � U (�)

� � 2U (�)
� � 2U (�)

� � −10 MeV
[75]. Because U (�)

Y is uncertain, one usually assumes gσ ∗� =
gσ ∗� [76,77]. In Table I, the coupling constants between hy-
perons and scalar mesons are listed.

Under the mean-field approximation, the meson fields
are treated as classical fields. The equations of motion
of various mesons are obtained via the Euler-Lagrange
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TABLE I. Coupling constants between hyperons and scalar mesons and Rs = (gσY /gσN )2 + (gσ∗Y /gσN )2 for various hyperons with
different effective interactions.

gσ�/gσN gσ�/gσN gσ�/gσN gσ∗�(�)/gσN gσ∗�/gσN R�
s R�

s R�
s

DD-ME2 0.620035 0.470799 0.315064 0.479314 1.138528 0.614185 0.451394 1.395511
DD-MEX 0.617628 0.474792 0.311198 0.494965 1.147999 0.626455 0.470418 1.414746
NL3 0.618895 0.460889 0.309448 0.505989 1.158716 0.639056 0.468444 1.438381

equation

m2
σ σ = −

∑
B

gσBρv
B, (7)

m2
ωω =

∑
B

gωBρv
B, (8)

m2
ρρ =

∑
B

gρBρv
Bτ 3

B, (9)

m2
σ ∗σ

∗ = −
∑

B

gσ ∗Bρs
Bτ 3

B, (10)

m2
φφ =

∑
B

gφBρv
B, (11)

where τ 3
B is the isospin projection of the baryon species B. The

vector density ρv
B and scalar density ρs

B of the baryon species
B read

ρv
B =

(
kB

F

)3

3π2
, (12)

ρs
B = 1

π2

∫ kB
F

0

M∗
B√

k2 + M∗2
B

k2dk, (13)

with the Fermi momentum kB
F and effective mass M�

B = MB +
gσBσ + gσ ∗Bσ ∗ of the baryon species B. The total baryon den-
sity ρB is written as ρB = ∑

B ρv
B. Inside neutron-star cores,

the β-equilibrium condition and charge-neutral condition are
fulfilled:

μn − qBμe = μB, μμ = μe, (14)∑
B

qBρv
B +

∑
l

qlρ
v
l = 0, (15)

where qB is the charge of the baryon species B. μB(l ) is the
chemical potential of the baryon species B or lepton species l ,
and they are given by

μB =
√(

kB
F

)2 + M�2
B

+ gωBω + gρBρτB
3 + gφBφ + �R,

μl =
√(

kl
F

)2 + M�2
l . (16)

The EOS, which is the pressure P as a function of the energy
density ε, is calculated by solving the coupled Eqs. (7)–(11)
and (14)–(15) at a given density region. The EOS and hyperon
properties (e.g., the effective mass and Fermi momentum of
the hyperon species Y ) in neutron-star cores are crucial in
determining the onset and strength of hyperon superfluidity.
Taking the calculated EOS of the core and given EOS of the

crust as input, the mass-radius (M-R) relation of a stationary
neutron star is obtained by solving the Tolman-Oppenheimer-
Volkoff (TOV) equation [78,79]

dP

dr
= − [P(r) + ε(r)][M(r) + 4πr3P(r)]

r[r − 2M(r)]
,

dM

dr
= 4πr2ε(r), (17)

where r is the distance from the center. R and M(R) are the
neutron-star radius and gravitational mass, respectively.

III. PAIRING STRENGTH FOR HYPERON

Under the Bardeen-Cooper-Schrieffer (BCS) approxima-
tion, the 1S0 pairing gap �B(k) of the baryon species B at zero
temperature, which determines the onset of superfluidity, is
obtained by solving the gap equation [35,67,80]

�B(k) = − 1

4π2

∫
k′2dk′ VBB(k, k′)�B(k′)√[

E (k′) − E
(
kF

B

)]2 + �2
B(k′)

,

(18)
where the single-particle energy EB(k) of the baryon species
B and the potential matrix element VBB(k, k′) of the baryon-
baryon pairing interaction in the 1S0 channel are two
important inputs. The single-particle energy in the RMF
model is given by

EB(k) =
√

k2 + M∗2
B + gωBω + gρBτ 3

Bρ + gφBφ + �R.

(19)
For pairing interaction, many-body theories have shown that
its irreducible vertex at the lowest order is the bare baryon-
baryon interaction [81,82]. As an approximation, VBB(k, k′)
can be written as

VBB(k, k′) = 〈k|VBB(1S0)|k′〉
= 4π

∫
r2dr j0(kr)VBB(r) j0(k′r), (20)

where j0(kr) = sin (kr)/(kr) is the zeroth-order spherical
Bessel function and VBB(r) denotes the 1S0 baryon-baryon
interaction in coordinate space. The hyperon-hyperon interac-
tions are very uncertain; several hyperon-hyperon potentials
have been used to study the superfluidity properties of �

[35,37,52,67,69], � [38,69], and � [52] in nuclear matter and
neutron stars.

Tian et al. [83] derived a finite-range separable pair-
ing force by fitting the 1S0 nucleon pairing gap calculated
with Gogny force. For Gogny force D1 parametrization,
the separable pairing force of the nucleon is VNN (k, k′) =
GN p(k)p(k′) = GN e−a2k2

e−a2k′2
with the pairing strength

025806-3



ZHONG-HAO TU PHYSICAL REVIEW C 106, 025806 (2022)

GN = 738 MeV fm3 and the effective range a = 0.636 fm.
With the separable pairing force, the energy gap equation (18)
is rewritten as

1 = − 1

4π2

∫
k2dk

GN p2(k)√[
E (k) − E

(
kF

N

)]2 + �2
0 p2(k)

(21)

with the trivial solution �(k) = �0 p(k). The critical tem-
perature Tc can be obtained through the weak-coupling
approximation Tc � 0.57�F with �F = �0 p(kF) [27,35].
Combining with the separable pairing force of the nucleon
and the naive quark model, the �� pairing strength G� =
4GN/9 was proposed and was applied to the investigation
of � hypernuclei [84]. The ratio of the strength G� to GN

is obtained by counting the number nu/d of u/d quarks in a
� hyperon. Because only u/d quarks involve the coupling
of a non-strangeness meson to a baryon at the tree level,
the relation holds: gmY = (nu/d/3)gmN , where the number 3
comes from the fact that a baryon is composed of three quarks.
The interaction strength resulting from exchanging mesons
between two baryons B is proportional to g2

mB [84]. Since
the pairing force is the residual of the two-body baryon-
baryon interaction, the pairing force is also proportional to
g2

mB. For the � hyperon, its number of u/d quarks is 2,
G�/GN = (gm�/gmN )2 = n2

u/d/9 = 4/9. Although the rela-
tion GY /GN = (nu/d )2/9 is so far only used to study the
multistrangeness � hypernuclei, it is easy to extend this re-
lation to study the YY pairing in nuclear matter and neutron
stars. Similarly, the YY pairing strengths are G� = 4GN/9 for
� and G� = GN/9 for �.

In Ref. [84], it was assumed that gmY /gmN are the same
for all non-strangeness mesons, and the hidden-strangeness
mesons (e.g., σ ∗ and φ) are not included. Here I extend this
relation to the case with the hidden-strangeness mesons in
the framework of the RMF model, and gmY /gmN for various
mesons need not be the same to each other. I consider the non-
strangeness meson (σ , ω) and the hidden-strangeness mesons
(σ ∗, φ), and ρ is not included in this work. I assume that all
mesons which mediate different interactions are independent
of each other and the cross terms between various mesons are
not included in the Lagrangian density. The effective ranges
for different mesons are uncertain and thus I assume that they
are the same. The pairing strength GB can be written by the
sum of the contributions from different mesons:

GB =
∑

m

GB,m = GB,σ + GB,ω + GB,σ ∗ + GB,φ. (22)

The independence between different mesons ensures that
the relation holds for every meson: GY,m = (gmY /gmN )2GN,m.
Since σ ∗ and φ mesons do not couple to nucleons, the
couplings of strangeness mesons are usually determined by
gσ ∗Y /gσN and gφY /gωN . Hence GY,σ ∗ and GY,φ are related to
GN,σ and GN,ω, respectively. The ratio of GY to GN can be
written as

GY

GN
= RsGN,σ + RvGN,ω

GN,σ + GN,ω

, (23)

where Rs = (gσY /gσN )2 + (gσ ∗Y /gσN )2 and Rv =
(gωY /gωN )2 + (gφY /gωN )2. The values from the SU(6)

quark model are applied to the coupling constants between
vector mesons (ω and φ) and hyperons; see Eq. (4). If the
couplings of scalar mesons are the same as those of vector
mesons [85], the pairing strengths for YY pairing are obtained
as G� = 2GN/3, G� = 2GN/3, and G� = GN .

In practice, the couplings of scalar mesons are determined
by fitting empirical hyperon potentials in the RMF model. The
GY /GN is adjusted by the mean-field approximation. Using
Eq. (5) and combining U (N )

Y and U (N )
N , one obtains

RσY = gσY

gσN
� U (N )

Y + RωY
(
gσNσ 0 − U (N )

N

)
gσNσ 0

. (24)

The potential depth of nucleons is about −70 MeV and the
scalar potential is about −400 MeV; RY ω are the values from
the SU(6) quark model. With these values, RσY < 2/3 when
U (N )

Y � −46 MeV for � and � and Rσ� < 1/3 when U (N )
� �

−23 MeV. The � hyperon potential is about −30 MeV and
the � hyperon potential is generally considered to be repul-
sive (U (N )

� > 0) [67,73]. Recently, Harada and Hirabayashi
suggested a �-nucleus potential of −17 ± 6 MeV in the 9Be
(K−, K+) reaction [86]. Hence one concludes that gσY /gσN

are always smaller than gωY /gωN from the SU(6) quark model,
and the deviation of gσY /gσN from gωY /gωN for � is signifi-
cantly greater than those for � and �. Using Eq. (6), gσ ∗Y are
determined by fitting potential depths U (Y )

Y in the hypernuclear
matter. Using DD-ME2, DD-MEX, and NL3, one obtains
gσ ∗�(�)/gσN = 0.479314, 0.494965, and 0.505989 which do
not deviate much from gφ�(�)/gωN . The strong attractive po-
tential U (�)

� leads to gσ ∗�/gσN = 1.138528, 1.147999, and
1.158716 for DD-ME2, DD-MEX, and NL3 which all are
significantly greater than gφ�/gωN . Taking these coupling
constants into Eq. (23), one finds that Rs < Rv for � and �,
and the derivation of Rs from Rv for � is obviously larger
than that for � due to the repulsive � hyperon potential. For
�, Rs is significantly larger than Rv due to the strong attractive
potential U (�)

� . The values of Rs are listed in Table I. In addi-
tion, because GN < 0, −GN,σ > GN,ω, and GY < 0, the lower
limits of Rs for � and � are obtained: Rs > −RvGN,ω/GN,σ .
In conclusion, the upper limits of G�/GN and G�/GN are 2/3
and the lower limit of G�/GN is 1.

IV. RESULTS AND DISCUSSION

In this section, I investigate the 1S0 YY pairings in neu-
tron stars and determine the YY pairing gaps by using the
single-particle energy obtained in Sec. II and the YY pair-
ing strengths derived in Sec. III. I employ three successful
effective interactions, i.e., DD-ME2, DD-MEX, and NL3, to
calculate the EOSs and M-R relations of neutron stars in our
present work. In Ref. [11], it has been shown that DD-ME2
and DD-MEX produce the two stiffest EOSs in the case
without the σ ∗ meson and the most massive neutron stars
(�2 M
) composed of hypernuclear matter. In this work, the
σ ∗ meson is included in calculations. In Fig. 1, I display
the EOSs and M-R relations of neutron stars calculated with
DD-ME2, DD-MEX, and NL3. From Fig. 1(a), at low energy
density (� 500 MeV fm−3), there is little difference between
the pressures calculated with DD-ME2 and DD-MEX, and
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FIG. 1. (a) Equations of state and (b) mass-radius relations of neutron stars calculated with DD-ME2, DD-MEX, and NL3. In panel (b),
the dashed line represents the constraint of 2 M
; the mass and radius of PSR J0030 + 0451 from NICER in Riley et al. [87] (dark green error
bar) and Miller et al. [88] (dark cyan error bar) are also shown.

the EOS calculated with NL3 is slightly stiffer than the other
two EOSs. At high energy density (�800 MeV fm−3), the
EOS calculated with NL3 is significantly stiffer than those
calculated with DD-ME2 and DD-MEX, and the stiffness of
EOS calculated with DD-MEX is slightly larger than that
calculated with DD-ME2.

Taking EOSs above as inputs, the corresponding M-R rela-
tions of neutron stars are calculated and are shown in Fig. 1(b).
The BPS [89] and BBP [90] EOSs are chosen as the EOSs
of the outer and inner crusts of neutron stars, respectively.
The observed maximum mass of neutron stars is about 2 M

[91–94]. The stiffnesses of EOSs at high density determine the
theoretical maximum masses of neutrons stars. NL3 produces
a maximum mass of about 2.07 M
 which is slightly larger
than those calculated with DD-ME2 (∼1.94 M
) and DD-
MEX (∼2.00 M
). Considering that the rotation of neutron
stars can increase the maximum mass by about 20% [95–97],
these EOSs I use in this work cannot be ruled out by the mass
constraints from astrophysical observations. For the canonical
neutron stars, the corresponding radii calculated with NL3
are significantly larger than those calculated with DD-ME2
and DD-MEX due to its stiffer EOS at low density. The
radii calculated with NL3 are far away from the results from
NICER [87,88], but this problem can be fixed by introducing
a density-dependent isovector coupling [98].

With the single-particle energies of hyperons calculated
with DD-ME2, DD-MEX, and NL3, the pairing gaps of var-
ious YY pairings as a function of the density are obtained
by using the pairing strengths GY = (n2

u/d/9)GN , and the
results are shown in Fig. 2. Because the effective ranges
are assumed to be the same for all mesons, I use the YY
pairing strength GY to represent the corresponding YY sep-
arable pairing force I mention below. For the � hyperon,
the 1S0 superfluid is formed as soon as the � hyperon is
populated in neutron-star cores. The pairing gap increases
with increasing density, then decreases after reaching a max-
imum pairing gap and finally vanishes at a higher density.
One pays special attention to the maximum pairing gap
which represents the strength of superfluidity. The maximum
�� pairing gaps are about 0.059 MeV, 0.057 MeV, and

0.051 MeV for DD-ME2, DD-MEX, and NL3. They are
significantly smaller than the values widely used for calcu-
lations of neutron-star cooling [27,52,56,99] and the small
pairing gap could cause the stronger hyperon dUrca process
and the faster cooling of neutron stars. Among three effective
interactions, only DD-MEX gives �−�− pairing gaps with
the maximum value 0.005 MeV. The corresponding critical
temperature is about 107 K. The neutrino cooling, which dom-
inates when the interior temperatures T > 108 K, lasts for
105−106 yr after the birth of neutron stars; thus the � su-
perfluidity is absent before subsequent photon cooling [100].
The � superfluidity vanishes in neutron-star cores due to the
weak pairing strength G� = (1/9)GN . The result is contrary
to previous conclusions that � hyperons are likely to form
a superfluid and the pairing gaps of several MeV have been
obtained [36,52]. The relation GY = (n2

u/d/9)GN neglects the

FIG. 2. 1S0 pairing gaps of various YY pairings as a function
of the density ρB in neutron stars with the pairing strengths G� =
4GN/9, G� = 4GN/9, and G� = GN/9. The color lines represent re-
sults calculated with different effective interactions: DD-ME2 (black
line), DD-MEX (red line), and NL3 (green line).
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FIG. 3. 1S0 �� pairing gaps in neutron stars with G� = 2GN/3
(solid line) and ESC00 (dashed line). The color lines represent results
calculated with different effective interactions: DD-ME2 (black line),
DD-MEX (red line), and NL3 (green line).

contributions from the hidden-strangeness mesons (σ ∗ and φ)
and leads to the weak YY pairing strengths, especially for �

hyperon with two s quarks.
Next, I calculate the 1S0 pairing gaps of various YY pair-

ings with G� = 2GN/3 for the �� pairing, the upper limit of
�� pairing strength G� = 2GN/3, and the lower limit of ��

pairing strength G� = GN . The contributions from σ ∗ and φ

are included in the new pairing strengths.

A. �� pairing

The pairing strength G� = 2GN/3 for �� pairing is reli-
able because Rs is close to Rv . The resulting 1S0 �� pairing
gaps in neutron stars are shown in Fig. 3. The phenomeno-
logical interaction ESC00 [101] is generally considered to
provide maximum attraction in the �� channel, and thus
ESC00 maximizes the � superfluidity and generates the up-
per limit of the �� pairing gap. The results calculated with
ESC00 are also shown in Fig. 3 for comparison. The max-
imum pairing gaps calculated with G� = 2GN/3 are 0.552
MeV, 0.536 MeV, and 0.508 MeV for DD-ME2, DD-MEX,
and NL3 and they are an order of magnitude larger than those
calculated with G� = 4GN/9. The � superfluidity disappears
at a larger density due to the larger �� pairing gap. The
ESC00 interaction still provides a maximum attraction so that

FIG. 4. Central density ρc as a function of neutron-star mass M
for DD-ME2 (top), DD-MEX (middle), and NL3 (bottom). The mass
regions where � hyperons form a 1S0 superfluid are hatched (G� =
2GN/3) and shadows (ESC00), respectively.

the maximum pairing gaps calculated with it are larger than
our results calculated with G� = 2GN/3. In Table II, I list the
maximum 1S0 �� pairing gap (�max

F ) and the corresponding
density (ρmax

B ), effective mass (M∗
�), and Fermi momentum

(k�
F ) calculated with different pairing forces and effective

interactions. Our results calculated with G� = 2GN/3 can be
compared with those calculated with ESC00. Using a given
pairing force, for various effective interactions, the larger �

effective mass calculated with them, the larger the maximum
pairing gap obtained.

Comparing with the pairing gaps calculated with ESC00,
one notes that though the maximum pairing gaps calculated
with G� = 2GN/3 are smaller, the � superfluidity can exist
at higher densities where � hyperons are nonsuperfluid in
the case of ESC00. In Fig. 4, I show the central density as
a function of neutron-star mass and shade the mass regions
where � hyperons form a 1S0 superfluid. No matter which
effective interaction is used, one finds that the � superfluidity

TABLE II. Maximum 1S0 �� pairing gap at the Fermi surface �max
F (in MeV) and the corresponding density ρmax

B (in fm−3), effective
mass M∗

B (in MeV), and Fermi momentum k�
F (in fm−1) calculated with different pairing forces and effective interactions.

DD-ME2 DD-MEX NL3

�max
F ρmax

B M∗
B k�

F �max
F ρmax

B M∗
B k�

F �max
F ρmax

B M∗
B k�

F

(MeV) (fm−3) (MeV) (fm−1) (MeV) (fm−3) (MeV) (fm−1) (MeV) (fm−3) (MeV) (fm−1)

2GN/3 0.552 0.373 716 0.843 0.536 0.362 710 0.841 0.508 0.313 698 0.849
4GN/9 0.059 0.369 718 0.822 0.057 0.358 712 0.817 0.051 0.310 700 0.821
ESC00 0.722 0.367 719 0.801 0.695 0.352 716 0.768 0.638 0.306 704 0.770
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FIG. 5. Particle fraction Xi as a function of density ρB: DD-ME2
(top), DD-MEX (middle), and NL3 (bottom).

exists in neutron-star cores both for G� = 2GN/3 and ESC00.
For all effective interactions, the mass regions only allowed
for the existence of superfluid � hyperons with G� = 2GN/3
are wider than those with ESC00. The � superfluidity can
exist in the central region of the heavier neutron stars; e.g.,
using DD-ME2, the upper limit of neutron-star mass that
allows superfluid � hyperons to exist in the central region
of a neutron star is 1.80 M
 for ESC00 and 1.90 M
 for
G� = 2GN/3. Combining Figs. 3 and 4, for a massive neutron
star, because G� = 2GN/3 produces a smaller �� pairing
gap compared with the case of ESC00, the hyperon dUrca
process are stronger at low density, but at a higher density, the

pairing gap calculated with G� = 2GN/3 is larger and thus
the hyperon dUrca process is weakened.

B. �� pairing

The � superfluidity is calculated with the upper limit of
�� pairing strength G� = 2GN/3. �0 and �+ are charge-
unfavored and thus they do not appear in our calculations.
The presence and fraction of the �− hyperon depend on the
effective interaction. In Fig. 5, I show the particle fractions
(Xi = ρv

i /ρB, i = p, n,�, �±,0, �0,−, e−, and μ−) as a func-
tion of density ρB with DD-ME2, DD-MEX, and NL3. The
�− fractions are on the order of 10−4 and 10−3 for DD-
ME2 and DD-MEX, respectively. The �− hyperons are not
populated in the calculation of NL3. The obtained maximum
�−�− pairing gaps are 0.008 MeV and 0.107 MeV which
are significantly smaller than the results in Refs. [38,69]. The
superfluid �− hyperons do not exist in the core of a hot
neutron star (�109 K). In fact, G�/GN could be significantly
less than 2/3 because of the large deviation between R�

s and
R�

v . With the small �− fractions, the strongest �� pairing
strength generates some small pairing gaps; one can draw the
conclusion that the � superfluidity is very weak or even absent
in neutron-star cores.

C. �� pairing

The pairing strength G� = GN is the lower limit of ��

pairing strength as I discussed in Sec. III. Although G�/GN

may be much greater than 1, it is meaningful to find the
magnitude of the maximum �� pairing gap and estimate
the influence of � superfluidity on the cooling properties of
neutron stars. The �− hyperon is charge-favored and thus its
threshold density is smaller than that of �0 hyperon. The ��

pairing gaps calculated with G� = GN are shown in Fig. 6.
For the case of NL3, the threshold density of the �0 hyperon
is significantly smaller than those in the cases of DD-ME2 and
DD-MEX. The reasons are as follows: On the one hand, the
EOS calculated with NL3 is stiffer (see Fig. 1) and the Fermi
energy of neutrons is larger so that the threshold condition

FIG. 6. 1S0 pairing gaps of (a) �0�0 and (b) �−�− in neutron stars with the pairing strength G� = GN (solid line) and ESC08c (dashed
line). The upper and lower triangles represent the pairing gaps in the central region of the most massive neutron star calculated with G� = GN

and ESC08c, respectively.
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of �0 hyperon is easier to be fulfilled; on the other hand,
the Fermi energy of the neutron is not suppressed by the
populated �− hyperons because they do not appear in the
calculation of NL3. A �� potential ESC08c has been applied
to the investigations of neutron-star cooling [52,102]; the ��

pairing gaps calculated with ESC08c are also shown in Fig. 6.
From Figs. 6(a) and 6(b), using G� = GN , the maximum

pairing gaps are about 3.0–3.5 MeV for �0�0 pairing and
4–5 MeV for �−�− pairing; they are significantly larger
than the results calculated with ESC08c: 1.0–1.5 MeV for
�0�0 pairing and 2–3 MeV for �−�− pairing. Because
G�/GN > 1, the larger maximum �� pairing gaps and the
stronger � superfluidity than previous results may exist in
neutron-star cores [36,52]. One finds that the pairing gap
calculated with G� = GN is larger than that calculated with
ESC08c at low density but is smaller at high density. In
the central region of the most massive neutron star, the
pairing gaps calculated with G� = GN and ESC08c are on
the order of 10−1 MeV and are compared for �0�0 pair-
ing; for �−�− pairing, the pairing gaps calculated with
G� = GN are very small and those calculated with ESC08c
are several tenths of a MeV. For �−�− pairing, the large
pairing gaps imply that dUrca processes involving �− hy-
perons are suppressed strongly inside neutron-star cores
except in the central region of massive neutron stars. The
neutron-star masses calculated with the threshold densities
of �0 hyperon as the central densities are close to the top
of M-R relations, i.e., M(ρ�0

Thold = 0.757 fm−1) = 1.92 M

for DD-ME2, M(ρ�0

Thold = 0.720 fm−1) = 1.98 M
 for DD-
MEX, and M(ρ�0

Thold = 0.570 fm−1) = 2.03 M
 for NL3; the
�0 superfluidity only exists in the central region of massive
neutron stars and hence �0 hyperons with a large pairing gap
could hardly contribute to the cooling of neutron stars via the
dUrca processes.

V. SUMMARY AND PERSPECTIVES

A new set of YY pairing strengths based on the quark
model are proposed in this work. The contributions from
every meson are considered to be independent of each other
and the effective ranges induced by various mesons are as-
sumed to be the same. The YY pairing strength GY can be
written by the sum of the contributions from various mesons
GY,m, and GY,m is related to GN,m through the relation GY,m =
(gmY /gmN )2GN,m. The SU(6) quark model and several em-
pirical potentials are used to determine the ratios Rs and Rv

of the pairing strength of hyperons to that of nucleon. The
reliable �� pairing strength G� = 2GN/3, and the upper
limit of �� pairing strength G� = 2GN/3 and the lower limit
of �� pairing strength G� = GN are obtained. This set of

YY pairings strengths has included the contributions from
hidden-strangeness mesons and has been applied to study the
1S0 YY pairing in neutron-star cores.

The �� pairing gaps calculated with G� = 2GN/3 are
several tenths of a MeV and are compared with the results
calculated with ESC00. The � superfluidity can exist in the
central region of a massive neutron star. With the upper limit
of �� pairing strength G� = 2GN/3, the pairing gaps are
small because of low fraction of �− hyperon, and thus the
� superfluidity is weak or even absent in neutron-star cores.
With the lower limit of �� pairing strength G� = GN , both
for �0 and �− hyperons, the pairing gaps are significantly
larger than results calculated with ESC08c, implying that the
� superfluidity in neutron-star cores is stronger than that
shown in Refs. [52,68]. Due to the large pairing gaps, the
�− superfluidity strongly suppresses the corresponding dUrca
processes inside neutron-star cores except in the central region
of massive neutron stars; the �0 superfluidity could play a
negligible role in the cooling of neutron stars.

Although the �� pairing strength is reliable, the spe-
cific pairing strengths for � and � hyperons are still very
uncertain. The realistic values need to be fixed by further
determining the exact contributions of σ and ω mesons to the
effective pairing strength of the nucleon. The isospin effects of
the hyperon pairing force should be considered and thus the
ratios GY /GN may be shifted, especially for the � hyperon.
Besides, I also expect that the short and long corrections
[103] on baryon-baryon pairing are included in future works.
I expect that the new YY pairing strengths are useful not only
to the investigations of nuclear matter and neutron-star matter,
but also to the calculations of hypernuclei.
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