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Investigation of the meson-meson interaction
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In the framework of the quark delocalization color screening model, we investigate the meson-meson interac-
tion in the four-quark system with the three flavors u, d , and s. The calculation of the effective potentials of all the
S-wave states shows that for most states the interaction between two vector mesons is attractive, the one between
a pseudoscalar meson and a vector meson is repulsive or weakly attractive, and the one between two pseudoscalar
mesons is always repulsive. However, there are still some exceptions. The interaction of the IJ = 00 ππ channel
is attractive, while the one of the IJ = 02 φφ channel is repulsive. So it is difficult to use the S-wave φφ state to
explain the X (2239) at present calculation. The S-wave ρρ states are more likely to be resonance states, which
are worthy of investigating in future work. The study of the contribution of each interaction term shows that
both the one-gluon exchange and the kinetic energy interaction are important in the interaction between two
mesons. The study of the variation of the delocalization parameter indicates that the contribution of the kinetic
energy relates to the intermediate-range attraction mechanism in the quark delocalization color screening model
(QDCSM), which is achieved by the quark delocalization.
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I. INTRODUCTION

The study of the hadron-hadron interaction is one of the
most active frontiers. The study of nucleon-nucleon (NN)
interaction has lasted over seventy years. The quantitative
description of NN interaction has been achieved in the one-
boson-exchange models, the chiral perturbation theory, and
quark models. The study of ππ interaction is also a classical
subject in the field of strong interactions. The ππ scattering
process has been studied as an important test of the strong
interaction.

With the increasing experimental information of the meson
spectrum, it becomes more and more important to develop
a consistent understanding of the observed mesons from a
theoretical point of view. For the low-lying vector and pseu-
doscalar mesons, this has been done quite successfully within
the simple quark model by assuming the mesons to be quark-
antiquark (qq̄) states. For the scalar mesons, however, some
questions still remain to be answered. One of the most note-
worthy issues is the nature of the experimentally observed
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mesons f0(980) and a0(980). In a long-standing controversial
discussion, the f0(980) has been described as a conventional
qq̄ meson [1], a KK̄ molecule [2–4], or a tetraquark state [5].
In 2018, the BESIII Collaboration reported the observation of
a0(980)- f0(980) mixing [6], which would improve the under-
standing of the nature of f0(980) and a0(980).

In 2019, the BESIII Collaboration analyzed the cross sec-
tion of the e+e+ → K+K− process in the center-of-mass
energy range from 2.00 to 3.08 GeV. A resonant structure
X (2239) was observed, which has a mass of 2239.2 ± 7.1 ±
11.3 MeV and a width of 139.8 ± 12.3 ± 20.6 MeV [7]. This
state aroused the interest of theoretical physicists, and it has
been studied extensively. Reference [8] investigated the mass
spectrum of the sss̄s̄ tetraquark states within the relativized
quark model, and found that the X (2239) can be assigned as
a P-wave 1−− sss̄s̄ tetraquark state. Reference [9] assigned
the X (2239) to be a hidden-strange molecular state from ��̄

interaction.
Quantum chromodynamics(QCD) is the basic theory de-

scribing the strong interaction. However, the low-energy
physics of QCD, such as the structure of hadrons, hadron-
hadron interactions, and so on, is difficult to calculate directly
from QCD, because of the nonperturbative complication. Lat-
tice QCD has provided numerical results describing quark
confinement between two static colorful quarks, a preliminary
picture of the QCD vacuum, and the internal structure of
hadrons, in addition to a phase transition of strongly inter-
acting matter. Besides, the Hadron Spectrum Collaboration
has presented a lattice QCD study of some meson-meson
interactions, such as isoscalar ππ , KK̄ , ηη scattering [10,11]
and πω, πφ scattering [12]. Various QCD-inspired quark
models have been developed to get physical insights into the

2469-9985/2022/106(2)/025204(10) 025204-1 Published by the American Physical Society

https://orcid.org/0000-0002-2349-7828
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.106.025204&domain=pdf&date_stamp=2022-08-22
https://doi.org/10.1103/PhysRevC.106.025204
https://creativecommons.org/licenses/by/4.0/


WU, JIN, HUANG, PING, AND ZHU PHYSICAL REVIEW C 106, 025204 (2022)

hadron-hadron interaction and multiquark systems. There are
the cloudy bag model [13], MIT bag model [14], the Skyrme
topological soliton model [15], the Friedberg-Lee nontopolog-
ical soliton model [16], the constituent quark model [17,18],
etc. Different models use quite different effective degrees of
freedom, which might be indicative of the nature of low-
energy QCD.

Among many phenomenological models, the quark delo-
calization color screening model (QDCSM) was developed
in the 1990s with the aim of explaining the similarities be-
tween nuclear (hadronic clusters of quarks) and molecular
forces [19]. In this model, the intermediate-range attraction
is achieved by the quark delocalization, which is like the
electron percolation in molecules. The color screening pro-
vides an effective description of the hidden color channel
coupling [20], and leads to the possibility of the quark de-
localization. The QDCSM gives a good description of NN
and Y N interactions and the properties of the deuteron [21].
It is also employed to calculate the baryon-baryon scattering
phase shifts and predict the dibaryon candidates d∗ [22] and
N� [23]. Besides, it has been used for a systematic search of
dibaryon candidates in the u, d , and s three-flavor world [24],
and the law of baryon-baryon interaction was proposed. In
QDCSM, the interaction between two decuplet baryons is
always deeply attractive, the one between a decuplet baryon
and an octet baryon is always weakly attractive, and the one
between two octet baryons is mostly repulsive or weakly
attractive. So it is interesting to extend this model to the
study of the meson-meson interaction, which will help us to
understand the low-energy physics of QCD and explore the
nature of the new hadron states.

The structure of this paper is as follows. A brief introduc-
tion of the quark model and wave functions is given in Sec. II.

Section III is devoted to the numerical results and discussions.
The summary is given in Sec. IV.

II. MODEL AND WAVE FUNCTIONS

A. The quark delocalization color screening model (QDCSM)

The quark delocalization color screening model (QDCSM)
has been described in detail in Refs. [19,21]. Here, we only
give the Hamiltonian, in which three types of quark-quark
interacting potentials are included. The first is the color con-
fining potential, and it mimics the “confinement” property of
QCD. The second is the one-gluon exchange (OGE) poten-
tial, reflecting the “asymptotic freedom” property of QCD,
and the third is Goldstone boson exchange (OBE), coming
from “chiral symmetry spontaneous breaking” of QCD in the
low-energy region. The models with inclusion of these three
types of potentials have been successfully applied to describe
hadron spectra and hadron-hadron interactions [21,22].

To avoid double counting, two cutoffs are used in OBE.
One is the sharp cutoff, which eliminates the short range
contribution of OBE completely. Another is the soft cutoff,
the form factor that is inserted into OBE, which makes the ef-
fects of OBE continuous. In Ref. [25], the one-pion exchange
(OPE) with sharp cutoff and OGE interactions were used
in studying nucleon-nucleon interactions. Our group make a
comparison of these two cutoffs in Ref. [26], where the prop-
erties of the deuteron were well reproduced by inclusion of an
OPE interaction in the QDCSM. By adjusting parameters, the
binding energy and even the D-wave mixing of the deuteron
can be reproduced well by both kinds of OPE, although the
root-mean-square radius of the deuteron is a little smaller by
using the Yukawa smearing in OPE. This indicates that the
double counting effect of adding both OGE and OPE can be
reduced by adjusting the parameters:

H =
4∑
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(
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)
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4∑
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, χ = π, K, η, (5)
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3
(σ i · ri j )(σ j · ri j )

r2
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− σ i · σ j

}
, (6)

H (x) = (1 + 3/x + 3/x2)Y (x), Y (x) = e−x/x, (7)
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where Si j is quark tensor operator; Y (x) and H (x) are standard
Yukawa functions; TCM is the kinetic energy of the center of
mass; αs is the quark-gluon coupling constant; and gch is the
coupling constant for chiral field, which is determined from
the NNπ coupling constant through

g2
ch

4π
=

(
3

5

)2 g2
πNN

4π

m2
u,d

m2
N

. (8)

The other symbols in the above expressions have their usual
meanings. All model parameters, which are determined by
fitting the meson spectrum, are from our previous work on the
tetraquark X (2900) [27]. A phenomenological color screening
confinement potential is used here, and μi j is the color screen-
ing parameter, which is determined by fitting the deuteron
properties, NN scattering phase shifts, and N� and N� scat-
tering phase shifts, with μuu = 0.45 fm−2, μus = 0.19 fm−2,
and μss = 0.08 fm−2, satisfying the relation μ2

us = μuuμss.

B. Wave function

The resonating group method (RGM) [28] can be used
to study a bound-state or a scattering problem. The wave
function of the four-quark system is of the form

�4q = A
∑

L

[
[�A�B][σ ]IS

⊗
χL(R)

]
., (9)

The symbol A is the antisymmetrization operator. [σ ] = [222]
gives the total color symmetry, except that all other symbols
have the usual meanings. �A and �B are the two-quark cluster
wave functions,

�A =
(

1

2πb2

)3/4

e−ρ2
A/(4b2 )ηIASAχ

c
A, (10)

�B =
(

1

2πb2

)3/4

e−ρ2
B/(4b2 )ηIBSBχ

c
B, (11)

Where ηIASA and ηIBSB represent the multiplied wave functions
of flavor and spin of the clusters A and B. χ c

A and χ c
B are the

internal color wave functions of clusters A and B, and the
Jacobi coordinates are

ρA = r1 − r2, ρB = r3 − r4,

RA = 1
2 (r1 + r2), RB = 1

2 (r3 + r4),

R = RA − RB, RC = 1
2 (RA + RB),

From the variational principle, after variation with respect
to the relative motion wave function χ (R) = ∑

L χL(R), one
obtains the RGM equation

∫
H (R, R′)χ (R′)dR′ = E

∫
N (R, R′)χ (R′)dR′, (12)

where H (R, R′) and N (R, R′) are Hamiltonian and norm ker-
nels. By solving the RGM equation, we can get the energies
E and the wave functions. In fact, it is not convenient to
work with the RGM expressions. So, we use the Gaussian
bases to expand the relative motion wave function χ (R),

respectively:

χL(R) = 1√
4π

∑
L

(
1

πb2

) 3
4 ∑

i

Ci,L

×
∫

e− 1
2 (R−Si )2/b2

YLM (Ŝi )dŜi. (13)

where Si is the generating coordinate in the model, denoting
the separation of two reference centers. R is the dynamic coor-
dinate defined in Eq. (12). In each cluster, the reference center
is fixed, and the quarks move around the reference center,
whereas the dynamic coordinate R is a quantity varies with
the motion of each quark. Ci,L is the expansion coefficient.
After the inclusion of the center of mass motion,

�C (RC ) =
(

4

πb2

)3/4

e−2R2
C/b2

, (14)

the ansatz, Eq. (9), can be rewritten as

�4q = A
∑
i,L

Ci,L

∫
d�Si√

4π

2∏
α=1

φα (Si )
4∏

β=3

φβ (−Si)

×[[
ηIASAηIBSB

]IS
YLM (Si )

]J[
χ c

Aχ c
B

][σ ]
, (15)

where φα (Si ) and φβ (−Si ) are the single-particle orbital wave
functions with different reference centers:

φα (Si) =
(

1

πb2

)3/4

e− 1
2 (rα−Si/2)2/b2

,

φβ (−Si ) =
(

1

πb2

)3/4

e− 1
2 (rβ+Si/2)2/b2

, (16)

With the reformulated ansatz, the RGM equation (13) be-
comes an algebraic eigenvalue equation:∑

j,L

Cj,LHL,L′
i, j = E

∑
j

Cj,L′NL′
i, j, (17)

where NL′
i, j and HL,L′

i, j are the overlaps and Hamiltonian matrix
elements (without the summation over L′), respectively. By
solving the generalized eigenproblem, we can obtain the ener-
gies of the four-quark systems E and corresponding expansion
coefficient Cj,L . Besides, the overlaps and Hamiltonian matrix
elements can be used to calculate the effective potential. The
effective potential between two mesons is defined as V (Si ) =
E (Si ) − E (∞), where E (Si ) is the energy of the system with
the separation Si of two reference centers, E (Si ) = Hi,i/Ni,i,
where Ni,i and Hi,i are the overlaps and Hamiltonian matrix
elements with the separation Si.

In QDCSM, the quark delocalization is achieved by writing
the single-particle orbital wave function as a linear combi-
nation of the left and right Gaussian functions, the single
particle orbital wave functions used in the ordinary quark
cluster model,

ψα (Si, ε(Si )) = [φα (Si ) + ε(Si )φα (−Si )]/N (ε(Si )),

ψβ ( − Si, ε(Si )) = [φβ (−Si ) + ε(Si )φβ (Si )]/N (ε(Si)),

N (ε(Si )) =
√

1 + ε2(Si ) + 2ε(Si )e−s2
i /4b2

, (18)
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For each separation Si, the energies of the system are differ-
ent for different ε, and the variational parameter ε is fixed
according to the principle of minimum of energy, which can
make the system choose the favorable configuration in the
interacting process. So ε(Si ) is determined variationally by
the dynamics of the multiquark system itself rather than an
adjustable parameter.

The flavor, the spin, and the color wave functions are con-
structed differently depending on different structures. Here,
we investigate the meson-meson interaction, so we construct
these wave functions within the meson-meson structure. As
the first step, we give the wave functions of the meson cluster.
The flavor wave functions of the meson cluster are

χ1
I11

= ud̄, χ2
I1−1

= −dū, χ3
I10

=
√

1
2 (dd̄ − uū),

χ4
I 1

2
1
2

= sd̄, χ5
I 1

2
1
2

= us̄, χ6
I00

= ss̄,

where the superscript of the χ is the index of the flavor wave
function for a meson, and the subscript stands for the isospin
I and the third component Iz. The spin wave functions of the
meson cluster are

χ1
σ11

= αα, χ2
σ10

=
√

1
2 (αβ + βα),

χ3
σ1−1

= ββ, χ4
σ00

=
√

1
2 (αβ − βα) (19)

and the color wave function of a meson is

χ1
[111] =

√
1
3 (rr̄ + gḡ + bb̄). (20)

Then, the wave functions for the four-quark system with the
meson-meson structure can be obtained by coupling the wave
functions of two meson clusters. Every part of the wave func-
tions are shown below. The flavor wave functions are

ψ
f1

22 = χ1
I11

χ1
I11

, ψ
f2
3
2

3
2

= χ1
I11
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I 1

2
1
2
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1
2

1
2
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I 1

2
1
2
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√

1
2

[
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I10
− χ3

I10
χ1

I11

]
,

ψ
f5
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1
3

[
χ1

I11
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− χ3

I10
χ3
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. (21)

The spin wave functions are

ψ
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00 = χ4

σ00
χ4

σ00
,

ψ
σ2
00 =

√
1
3
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,
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σ11
, ψ
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11 = χ1
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σ00
,

ψ
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√
1
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[
χ1

σ11
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σ10
− χ2
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]
,

ψ
σ6
22 = χ1

σ11
χ1

σ11
. (22)

The color wave function is

ψc1 = χ1
[111]χ

1
[111]. (23)

Finally, multiplying the wave functions ψL, ψσ , ψ f , and ψc

according to the definite quantum number of the system, we
can acquire the total wave functions.

TABLE I. Channels for different systems.

I J Channel

0 0 ππ , ηη, ηη′, η′η′, KK̄ , φφ, ωω, ωφ, ρρ, K∗K̄∗

0 1 πρ, ηφ, ηω, η′φ, η′ω, KK∗, KK̄∗, K̄K∗, ωφ, K∗K∗, K∗K̄∗

0 2 φφ, ωω, ρρ, ωφ, K∗K̄∗

1 0 πη, πη′, KK , KK̄ , ωρ, φρ, K∗K∗, K∗K̄∗

1 1 πρ, πφ, πω, ηρ, η′ρ, KK∗, KK̄∗, K̄K∗, ωρ, φρ, ρρ, K∗K̄∗

1 2 ωρ, φρ, K∗K∗, K∗K̄∗

2 0 ππ , ρρ

2 1 πρ

2 2 ρρ
1
2 0 πK , π K̄, ηK , ηK̄ , η′K , η′K̄ , φK∗, φK̄∗, ωK∗,

ωK̄∗, ρK∗, ρK̄∗
1
2 1 πK∗, π K̄∗, ρK , ρK̄ , ηK∗, ηK̄∗, η′K∗, η′K̄∗, ωK ,

ωK̄ , φK , φK̄ , ωK∗, ωK̄∗, φK∗, φK̄∗, ρK∗, ρK̄∗
1
2 2 φK∗, φK̄∗, ωK∗, ωK̄∗, ρK∗, ρK̄∗
3
2 0 πK , π K̄ , ρK∗, ρK̄∗
3
2 1 πK∗, π K̄∗, ρK , ρK̄ , ρK∗, ρK̄∗
3
2 2 ρK∗, ρK̄∗

III. THE RESULT AND DISCUSSION

In this work, we investigate the interaction between two
light mesons, which includes three types: two pseudoscalar
mesons (PP), a pseudoscalar meson and a vector meson (PV),
and two vector mesons (VV). As a preliminary calculation,
only the S-wave systems are studied here, so we set the or-
bital angular momentum to zero. Due to the limit of the spin
quantum number, the PP system has the total spin quantum
number S = 0, the PV system has the total spin quantum
number S = 1, while the VV system has three possible spin
quantum numbers, which are S = 0, 1, and 2. Since the orbital
angular momentum is L = 0, the total angular momentum can
be J = 0 for PP systems, J = 0 and 1 for PV systems, and
J = 0, 1, and 2 for VV systems. The isospin of the four-quark
systems with light quarks can be I = 0, 1

2 , 1, 3
2 , and 2. All

possible channels for different systems are listed in Table I.
To investigate the interaction between two mesons, we

calculate the effective potentials of all the channels listed in
Table I. All the results are shown in Figs. 1–7. Here, we
note that some channels have the same effective potential.
For example, the potentials of the πK and πK̄ are the same,
because the contribution of each interaction term to the πK
and π K̄ is the same. To save space, we only show the potential
for one of them in the figure. And the same treatment is used
in similar situations.

For the I = 0 system, there are five PP channels and
five VV channels for the system with J = 0. It is clear that
Fig. 1(a) shows the effective potential between PP mesons,
while Fig. 1(b) shows the effective potential between VV
mesons. We can see that the potential is repulsive for the ηη,
ηη′, η′η′, and KK̄ channels, while it is attractive for the ππ

channel. In contrast, the potential is attractive for all channels
of the VV systems. The attraction between ρ-ρ is the largest
one, followed by that of the ωω channel, which is larger than
that of the ωφ channel. Besides, the attraction of both the
φφ and K∗K̄∗ channels is very weak. For the J = 1 system,
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FIG. 1. Figures (a) and (b) are the effective potentials of all
channels for the system with IJ = 00.

there are seven PV channels and three VV channels. From
Figs. 2(a) and 2(b) we can see that the potential for the η′φ,
ηω, and KK̄∗ channels is repulsive, while the one for other
channels is attractive. In addition, the attraction of the VV
channels is a little deeper than that of the PV channels. For
the J = 2 system, there are five VV channels. It is obvious in
Fig. 2(c) that there is a deep attraction between two ρ mesons.
The potential for all channels is attractive, except for the φφ

channels.
For the I = 1 system, there are four PP channels and four

VV channels for the system with J = 0. From Fig. 3(a) we can
see that the potential for the four VV channels is all attractive,
while it is repulsive for the four PP channels. Moreover, there
are four VV channels for the system with J = 2, and the po-
tential of all of them is attractive, which is shown in Fig. 3(b).
For the system with J = 1, there are seven PV channels and
four VV channels, and the potential of them is shown in Fig. 4.
The potential for the PV channels πω and ηρ is repulsive,
while it is attractive for the PV channels πρ and η′ρ. Besides,
there is a very shallow attraction for the PV channels πφ,
KK∗, and KK̄∗. By contrast, the potential for all VV channels

FIG. 2. Figures (a) and (b) are the effective potentials of all
channels for the system with IJ = 01, and (c) is for the system with
IJ = 02.

FIG. 3. Figure (a) is the effective potentials of all channels for
the system with IJ = 10, and (b) is for the system with IJ = 12.

is attractive, and that for both ωρ and ρρ channels is very
deep.

For the I = 2 system, it is obvious in Fig. 5 that the po-
tential for both the ππ channel with J = 0 and πρ channels
with J = 1 is repulsive, while the one for the ρρ channel with
J = 0 and J = 2 is attractive.

For the I = 1
2 system, Fig. 6(a) shows the potential for

three PP channels and three VV channels with J = 0. One
sees that the potential is repulsive for two PP channels ηK and
η′K , while it is attractive for the πK channel. Moreover, it is
obviously attractive for three VV channels. Figure 6(b) shows
the potential for six PV channels and three VV channels with
J = 1, from which we can see that the potential is repulsive
for four PV channels ηK∗, η′K∗, ωK , and φK . However, the
potential is attractive for other PV channels πK∗ and ρK . It
is also attractive for all VV channels. Meanwhile, Fig. 6(c)
shows the potential for three VV channels with J = 2. Obvi-
ously, the potential for both the ωK∗ and ρK∗ is attractive,
while it is repulsive for the φK∗ channel.

For the I = 3
2 system, Fig. 7 clearly shows that the potential

is attractive for the VV channel ρK̄∗ with J = 0, 1 and 2.

FIG. 4. Figures (a) and (b) are the effective potentials of all
channels for the system with IJ = 11.
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FIG. 5. Figure (a) is the effective potentials of all channels for the
system with IJ = 20, (b) is for the system with IJ = 21, and (c) is
for the system with IJ = 22.

However, there is no attractive potential for either the PP
channel πK with J = 0 or the PV channels πK∗ and ρK with
J = 1.

From the above analysis, it is not difficult to find a rule that
for most channels the interaction between two vector mesons
is attractive, the one between a pseudoscalar meson and a
vector meson is repulsive or weakly attractive and the one
between two pseudoscalar mesons is always repulsive. This
law is similar to the one of the baryon-baryon interaction.
In Ref. [24], the interaction between two decuplet baryons is
always deeply attractive, the one between a decuplet baryon
and an octet baryon is always weakly attractive, and the one
between two octet baryons is mostly repulsive or weakly
attractive. However, there are still some exceptions. For ex-
ample, the potential for the PP channel ππ with IJ = 00 is
attractive, while it is repulsive for the ππ with IJ = 20. This
conclusion is consistent with most theoretical work. The ππ

interaction has been studied as an important test of the strong
interaction for a long time. Much attention has been paid to the
isospin I =] ππ S-wave interaction due to its direct relation

FIG. 6. Figure (a) is the effective potentials of all channels for
the system with IJ = 1

2 0, (b) is for the system with IJ = 1
2 1, and

(c) is for the system with IJ = 1
2 2.

FIG. 7. Figure (a) is the effective potentials of all channels for
the system with IJ = 3

2 0, (b) is for the system with IJ = 3
2 1, and

(c) is for the system with IJ = 3
2 2.

to the σ particle and the scalar glueball candidates [29–35].
However, the study of the I = 2 ππ S-wave interaction is also
necessary since a correct description of the I = 2 ππ S-wave
interaction is important for the extraction of the I = 0 ππ

S-wave interaction from experimental data [36]. Moreover,
the S-wave φφ channel is a special state, which is composed of
two vector mesons but with the repulsive interaction. So it is
difficult to use the S-wave φφ state to explain the X (2239) in
the present calculation. To explore the candidate of X (2239),
the study of the high partial wave of the φφ state will be
performed in future work.

To further study the ππ and φφ interactions, we calculate
the scattering phase shifts of the S-wave ππ and φφ chan-
nels by using the well-developed Kohn-Hulthen-Kato (KHK)
variational method. The details of the method can be found
in Ref. [28]. The phase shifts of the S-wave ππ and φφ

channels are shown in Figs. 8 and 9, respectively. From Fig. 8
we can see that the scattering phase shift of the ππ chan-
nel with IJ = 00 goes to 180 degrees at the incident energy

FIG. 8. The scattering phase shifts of ππ channels with IJ = 00
and IJ = 20.
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FIG. 9. The scattering phase shifts of φφ channel with IJ = 02.

Ec.m. ≈ 280 and rapidly decreases as Ec.m. increases, which
implies the existence of a bound state for this channel. This is
consistent with the work of using lattice QCD by the Hadron
Spectrum Collaboration [11]. Besides, the phase shift of this
channel is positive, which indicates that the interaction of
the IJ = 00 ππ channel is attractive, and this is consistent
with the attractive behavior of the effective potential of this
channel. However, it is inconsistent with the experimental
data. This may be due to the complexity of the π system.
In the work of Ref. [37], the authors employed the effective
Lagrangian and Roy equation to study the ππ phase shift,
and the I = 0 S-wave phase shift is found to be increasing,
roughly linearly, from threshold, which is consistent with the
experimental data. In their work, π represents the correspond-
ing Goldstone boson. In our work, on the one hand we treat
the π meson as the qq̄ (q = u or d) system when studying
the ππ interaction, but on the other hand we regard π as the
Goldstone boson in the OPE interaction. It is still a debatable
problem to regard the π meson as the qq̄ system. Besides, it is
also a complex system for the tetraquark, which may involve
many factors, such as the mixing of two- and four-quark
systems (sea quarks/antiquarks excitation), σ resonance, etc.
These factors may need to be taken into account in future
study.

From Fig. 8, we can see that the phase shifts of the ππ

channel with IJ = 20 are negative, which means that the
interaction of the IJ = 20 ππ channel is repulsive, and this
is also consistent with the repulsive behavior of the effective
potential of this channel. Moreover, the phase shifts of the
IJ = 02 φφ channel shown in Fig. 9 also indicate the re-
pulsive interaction for this channel. We will explain why the
interaction is repulsive between two φ mesons later.

In addition, the deep attraction between two vector mesons
also attracts great attention to the systems composed of two
vector mesons. For the S-wave ρρ state, the deepest effective
attraction of the states with different quantum numbers is from
about 100 to 200 MeV. We find that the attraction of the state
with isospin I = 0 is larger than that with I = 2. For the I =
0 ρρ the attraction of the state with the angular momentum

FIG. 10. The contributions to the effective potentials from vari-
ous terms of ηρ and ρρ with IJ = 11.

J = 0 is larger than that with J = 2, while for the I = 2 ρρ

the attraction of the state with J = 0 is smaller than that with
J = 2. Nevertheless, there is great attraction in the ρρ state,
which makes it more possible to form some bound states or
resonance states.

In order to explore the contribution of each interaction term
to the system, the interaction from various terms, the kinetic

energy (Vνk ) [
∑ p2

i
2mi

− TCM in Eq. (1)], the confinement (Vcon),
the one-gluon exchange (Voge), and the one-boson exchange
(Vπ ,VK ,Vη ), are studied. One may note that all these inter-
actions are the energies between two mesons. To save space,
we take a few states as examples: the ηρ and ρρ states with
IJ = 11 and the ππ and ρρ states with IJ = 20. The contri-
bution of each interaction term is shown in Figs. 10 and 11.
From Fig. 10 we can see that the kinetic energy term provides
an attractive interaction for both IJ = 11 ηρ and ρρ states,
and this attraction of the ρρ state is obviously larger than that
of the ηρ state. Besides, the one-gluon exchange interaction
provides deep attraction for the ρρ state, while it is repulsive
for the ηρ state. In contrast, the contribution of other items is
small. So both the kinetic energy and the one-gluon exchange

FIG. 11. The contributions to the effective potentials from vari-
ous terms of ππ and ρρ with IJ = 20.
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FIG. 12. The delocalization parameter ε of ηρ and ρρ with IJ =
11 and of ππ and ρρ with IJ = 20.

interactions provide attraction, which leads a large total attrac-
tion for the ρρ state, while for the ηρ the repulsive interaction
by the one-gluon exchange and the attractive interaction by the
kinetic energy almost cancel each other out, which result in
the total repulsive interaction. Towards the ππ and ρρ states
with IJ = 20, we find that the one-gluon exchange provides
repulsive interaction for both ππ and ρρ states. However, the
kinetic energy interaction is attractive for the ρρ state, which
leads to a total attraction, while it is repulsive for the ππ state,
which leads to a total repulsive interaction. From the above
discussion, we can see that the kinetic energy interaction plays
an important role in providing attractions, which relates to the
intermediate-range attraction mechanism in QDCSM.

In QDCSM, two ingredients were introduced: quark delo-
calization and color screening; the former is to enlarge the
model variational space to take into account the mutual dis-
tortion or the internal excitations of nucleons in the course
of interaction, and the latter is assuming that the quark-quark
interaction dependents on quark states and aims to take into
account the QCD effect which has not been included in
the two body confinement and effective one gluon exchange
yet. By introducing the quark delocalization, quarks have
larger motion space, and the kinetic energy of the system
will be depressed compared with two noninteracting mesons.
So it is possible for the kinetic energy to provide an at-
tractive potential in QDCSM. Therefore, in this model, the
intermediate-range attraction is achieved by the quark delocal-
ization, which is like the electron delocalization in molecules.
The color screening is needed to make the quark delocal-
ization effective. It is worth noting that the delocalization
parameter is not an adjusted one but determined variationally
by the dynamics of the system itself. Here, we show the
variation of the delocalization parameter, which relates to the
intermediate-range attraction for the different states.

In Fig. 12(a), the delocalization parameter of the ρρ state
with IJ = 11 is close to 1 when the distance S between two
mesons is less than 0.8 fm, which means that the quarks are
likely to run between different clusters, thereby reducing the
kinetic energy and introducing the attractive interaction. In
contrast, the delocalization parameter of the ηρ state with

FIG. 13. The delocalization parameter ε for the IJ = 02 system.

IJ = 11 approaches 1 when S � 0.3 fm, and it quickly ap-
proaches 0 as the distance increases. Although it can also
reduce the kinetic energy, the reduction of the ηρ state is not
as great as that of the ρρ state, so the attraction of the ηρ state
is smaller than that of the ρρ state, as shown in Fig. 10. The
case is similar for the ππ and ρρ states with IJ = 20. From
Fig. 12(b) we can see that the delocalization parameter of the
ρρ state with IJ = 20 is close to 1 when the distance S � 0.5
fm, then it approaches 0 more quickly than that of the ρρ state
with IJ = 11, which is why the kinetic energy of the ρρ state
with IJ = 11 is lower than that of the ρρ state with IJ = 20.
With regard to the ππ state with IJ = 20, the delocalization
parameter is close to 1 only when the distance S � 0.2 fm,
and it approaches 0 more quickly than that of the ηρ state
with IJ = 11, so the kinetic energy of ππ state with IJ = 20
is much higher than that of the ηρ state with IJ = 11, even it
cannot provide the attractive interaction.

The variation of the delocalization parameter can also be
used to explain the repulsive interaction of the φφ state. We
show the variation of the delocalization parameter for the
IJ = 02 system in Fig. 13. Comparing the φφ and ρρ states,
although both of them are composed of two vector mesons,
the quark component of the φφ state is ss̄ss̄, and the one of the
ρρ state is qq̄qq̄ (q = u or d). The mass of the strange quark
is heavier than that of the nonstrange quark, so the strange
quark is less likely to run between two clusters. As shown in
Fig. 13, the delocalization parameter of the φφ state is close
to 1 only when the distance S � 0.2 fm, and it approaches to 0
very quickly, so it cannot reduce the kinetic energy too much.
So the interaction between two φ is repulsive. By comparing
Figs. 13 and 2(c), we find that the variation of the delocaliza-
tion parameter relates to the interaction between two mesons.
The more the quark runs between two mesons, the stronger
the attraction is between the two mesons.

IV. SUMMARY

The study of the hadron-hadron interaction is one of the
critical issues in hadron physics. In this work, we investigate
the meson-meson interaction in the four-quark system with
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the three flavors u, d , and s in the framework of the QDCSM.
The effective potentials of all the S-wave states, the contri-
bution of each interaction term to the states, as well as the
variation of the delocalization parameter, which relates to the
intermediate-range attraction for the different states, are all
studied in this work.

Our results show that for most states the interaction be-
tween two vector mesons is attractive, the one between a
pseudoscalar meson and a vector meson is repulsive or weakly
attractive, and the one between two pseudoscalar mesons is
always repulsive. However, there are still some exceptions.
The interaction of the IJ = 00 ππ channel is attractive, while
the one of the IJ = 02 φφ channel is repulsive. This law
is similar to the one of the baryon-baryon interaction. In
dibaryon systems, the interaction between two � baryons is
deeply attractive, which leads to the well-known bound state
d∗. So we should pay more attention to the four-quark system
composed of two vector mesons here. Among all these states,
the S-wave ρρ state, especially the state with IJ = 00, is
more likely to be a bound state or a resonance state. We will
continue to study these states in further work. Moreover, the
scattering phase shifts of the ππ channels with IJ = 00 and
IJ = 20 and of the φφ channel with IJ = 02 are preliminary
studied. To further study the meson-meson interaction and
observe more resonance states, we will take a deeper look at
the meson-meson scattering process in future work.

The study of the contribution of each interaction term
shows that both the one-gluon exchange and the kinetic energy
interaction play an important role in the interaction between
two mesons and, the kinetic energy relates to the intermediate-
range attraction mechanism in QDCSM, which is achieved
by the quark delocalization. The delocalization parameter ap-
proaching 1 means that the quarks are more willing to run
between the two mesons, thereby reducing the kinetic energy
and introducing the attractive interaction. Our results show
that the more the quark runs between two mesons, the stronger
the attraction is between the two mesons.

In present work, our purpose is to study the S-wave meson-
meson interactions and find out whether there are some rules
for these interactions. The P-wave phase shift of ππ is usually
mixed with the ρ resonance, because the ρ state is observed
in the ππ scattering. The calculation by coupling with four-
quark and two-quark systems is more complicated, which
should be carried out by the unquenched quark model. So we
do not do this calculation in present work, but it is work worth
studying, and it is also the work we will do in the future.
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