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Considering the saturation effect in nuclei based on the Kharzeev-Levin-Nardi model
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We consider the total and longitudinal cross sections by using the color dipole model according to the known
Kharzeev-Levin-Nardi model in nuclei. Our calculations can predict the low-x electron-nucleus cross sections,
the saturation effect, and the ratio between the structure functions for different nuclei and energies of colliding
particles. The results indicate the differences between two perturbative and nonperturbative regions at low x,
which are compared with the H1, ZEUS, New Muon, and E665 Collaborations.
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I. INTRODUCTION

It is well-known that the study of cross sections and struc-
ture functions in high-energy interaction between an electron
and a proton or nuclei provides a new understanding of the
low-x region of quantum chromodynamics (QCD). Although
QCD of the low-x nuclear interactions have various similar-
ities with light particle collisions, some new physics exist in
the former. It has been a long time since the nuclear parton
distribution functions (nPDFs) and structure functions have
been studied [1,2], but our understanding of them is still in-
complete. Therefore, to uncover the secrets of nuclear matter
we need a proper theoretical prediction and new experimen-
tal data to verify them. In this way, the future Electron-Ion
Collider (EIC) at Brookhaven National Laboratory [3,4] and
the Large Hadron Electron Collider (LHeC) at CERN [5] will
provide a good opportunity to unravel the mystery surround-
ing nuclear structure function. The difference between two
perturbative and nonperturbative QCD regions, shadowing,
and the saturation effect in small x can be studied with the
help of new data.

In the low-x region of the high-energy QCD, the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) [6–8] equation or its improved
forms, like the Gribov-Leven-Ryskin (GLR) [9] and the
Balitsky-Kovchegov (BK) [10,11] equations, can be used to
investigate the gluon distribution evolution.

The result of using the BFKL linear evolution is a sig-
nificant rise in gluon numbers in small-x dynamics because
of the ladder evolution of g → gg. It leads to σtot ≈ sαP−1

and the power αP − 1 > 0 for which the cross section would
violate the Froissart bound. The Froissart-bound limits σtot to
be smaller than ln2s.

A modified version of the BFKL equation is the nonlinear
GLR equation, which tackles the BFKL unitarity problem
by subtracting a new quadratic term of the gluon distribu-
tion. This nonlinear term causes the recombination of gluons,
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gg → g, which slows down the growth of the gluon numbers
in small-x and high-Q2 values. This phenomenon is known as
the saturation effect [12]. It adapts σtot to the Froissart-bound.
The perturbation method is valid when the strong coupling,
as the function of a definite scale, takes small values [13].
In the high-energy region of the QCD, Qs is a proper scale
that provides this condition and determines the critical line
that separates the linear region from the saturation region.
If we assume kT as the transverse momentum of the gluon,
the transverse size of the gluon ≈ 1/kT . Gluon fusions gg → g
occur at large transverse sizes (small kT); in this way the
saturation effect is weak for k2

T > Q2
s and strong for k2

T < Q2
s .

We want to show these differences in nuclear cross sections,
structure functions, and their ratio. Several other attempts
have been made to generalize the equations by Ayala–Gay
Ducati–Levin [14], Balitsky, and Kovchegov.

The Kharzeev-Levin-Nardi (KLN) model [15] as a phe-
nomenologically tested model [16–18] represents the gluon
distribution of the proton which involves saturation, linear,
and nonlinear physics. In this paper, we generalize this model
to nuclear targets with the appropriate saturation scale for
nuclei and we combine the results with the color dipole model
(CDM) to calculate cross sections.

The CDM is a strong approach developed by Nikolaev and
Zakharov [21] to analyze inclusive or diffractive1 processes
and their cross sections in deep inelastic scattering (DIS). In
this approach, a (virtual) photon is scattered off a fixed-target
hadron in such a way that the latter will carry more energy.
The photon has enough energy to fluctuate into a pair of qq
(a dipole). So we can consider the dipole-hadron interaction
instead of the main photon-hadron process. Since the forma-
tion time of the qq pair is longer than the interaction time, the
transverse size of the dipole is approximately frozen during
the interaction with the target. This picture factorizes the main
process (γ ∗-target) cross section into the (virtual) photon-pair
wave function and dipole cross section. The factorization

1In Refs. [19,20], the authors review diffractive processes.
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capability makes this viewpoint very strong and popular. An-
other way to study the γ ∗-target process is to consider γ ∗–sea
quark interactions [22–24].

Golec-Biernat and Wüsthoff [25] have introduced a famous
model for the dipole cross section. This model has attracted
great attention not just for how it treated the problem but for
the recognition of geometric scaling [25,26]. One of the per-
fect predictions of color glass condensate (CGC) [27–29] and
saturation physics [30] is the agreement between experimental
data and the geometric scaling property [31–35] of total DIS
cross sections, which states that the total cross section only
depends on the geometric scaling variable τ = Q2

/Q2
s .

Recently, some other models have been proposed for dipole
cross sections [36–40]. Mostly, by using a forward scatter-
ing amplitude and the eikonal approximation [41,42], they
have calculated the dipole cross section. The IP-SAT [37]
and b-CGC [36] models have succeeded in illustrating the
data for dipole-proton interaction very well, and an interesting
comparison between these two ideas can be found in Ref. [43].

Fixed-target DIS experimental data show that the ratio (R)
of the structure function per nucleon for a nucleus (F A

2 /A) to
a nucleon structure function (F D

2 /2) does not equal unity for
various x [44,45]. The reason for using a deuteron is to contain
the nearest approximation to the structure of a single nucleon.
This observable, which is a proper quantity to examine nuclear
effects on QCD, requires a multilateral study.

The paper is organized as follows. Section II gives a re-
view of the CDM, then KLN model, and the calculations of
the dipole cross section. In Sec. III, we present the results,
the diagrams, and a comparative study that includes nuclear
cross sections, structure functions, and the R ratio. Finally, our
conclusions are given in Sec. IV.

II. APPLYING THE KLN MODEL IN THE DIPOLE FRAME

In the small-x region, the nuclear structure functions F A
2

and F A
L can be defined for transverse (T) or longitudinal (L)

photons via the cross sections σ A
T,L:

F A
2 = Q2

4π2α
σ A

tot = Q2

4π2α

(
σ A

T + σ A
L

)
, (1)

F A
L = Q2

4π2α
σ A

L . (2)

The dipole picture belongs to s-channel models. It is for-
mulated in impact parameter space [46]. This picture is an
alternative approach to investigate low-x DIS and, as men-
tioned earlier, it includes two main subprocesses: First, the
virtual photon fluctuates in a quark-antiquark pair (dipole) and
then the latter interacts with the nucleus.

In this picture, the known expression for DIS cross sec-
tions reads as follows [47]:

σ
γ ∗P
T,L =

∫ 1

0
dz

∫
d2r|�L,T(z, r)|2σ (x, r2). (3)

Q2, z, and 1 − z are the photon virtuality and the fraction of
the longitudinal momentum carried by the quark and the an-
tiquark in the light cone frame, respectively. �L,T are photon

wave functions calculable in perturbation theory:

|�L,T|2 = 6α

4π2

∑
q

e2
q

×
{

[z2 + (1 − z)2]ε2K2
1 (εr) + m2

qK2
0 (εr) (T),

4Q2z2(1 − z)2K2
0 (εr) (L),

(4)

where ε2 = z(1 − z)Q2 + m2
q. The dominant contribution in

Eq. (4) is obtained for εr < 1 in which limit, McDonald
functions K0(εr) ≈ θ (1 − εr) and K1(εr) ≈ θ (1−εr)/εr with the
Heaviside step function θ . Summation is performed over
quark flavors, with the charge eq and the mass mq.

The dipole cross section σ (x, r2) is the total cross sec-
tion of the interaction between the qq̄ pair and the target. This
quantity, which includes the nonlinear effects of interaction,
is a function of relative transverse pair separation r and x
(x = xB j for light quarks and x = xB j (1 + m2

Q/Q2) for heavy
quarks [48]). The dipole cross section can be calculated by
having a gluon distribution function [49]:

σ (x, r2) ≈ π2

3
r2αs(r)xg

(
x,

1

r2

)
. (5)

Kharzeev, Levin, and Nardi proposed a simple satura-
tion model [15] by considering the cross section of the
probe partons (σ ≈ αs/Q2) and the density of partons (ρA ≈
xgA(x,Q2 )/πR2

A) in a transverse plane in which the hard probe
interacts with the nucleus within the target area. Two regimes,
σρA � 1 and σρA � 1, describe a dilute parton system and
a dense parton system, respectively, and σρA ≈ 1 determines
the critical line that discriminates between linear and nonlin-
ear regions at the saturation scale of Q = Qs:

αs

Q2
s

xgA
(
x, Q2

s

)
πR2

A

≈ 1. (6)

In this way, the KLN form of the gluon distribution func-
tion is

xgp
(
x, p2

t

) =
{

κ0
αs (Q2

s ) Sp2
t (1 − x)4, pt � Qs(x),

κ0
αs (Q2

s ) SQ2
s (x)(1 − x)4, pt > Qs(x),

(7)

where (1 − x)4 factors ensure a low gluon density at the high-
x values. The normalization coefficient κ0 can be determined
by comparing the results of substituting the KLN gluon dis-
tribution, Eq. (7), and different parametrizations of the gluon
density like GRV98 [50] in the momentum sum rule condition.
S is the area of the target. The running coupling αs at the
leading order approximation with the number of active quark
flavors Nf and � = 0.224 GeV is

αs = 4π

1
3 (33 − 2Nf ) ln Q2

�2

(8)

and the saturation scale Qs is given by [25,51]

Q2
s = Q2

0

(x0

x

)λ

, (9)
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FIG. 1. Total proton cross sections as a function of Q2 (a) for
different W and (b) as a function of W 2 for different Q2 based on
our analysis. Solid points show H1 and ZEUS data. (a) σtot in Q2 for
different W (b) σtot in W 2 for different Q2.

where x0, Q0, and λ are three constants that have been
obtained from the experimental data and parameter fitting
procedures for DIS of γ ∗ p.

The KLN model could be generalized to include differ-
ent nuclei by substituting the photon virtuality Q2 instead of
p2

t , S → SA = A2/3S, Q2
s → Q2

s,A = A1/3Q2
s , and R2

s = 1
Q2

s
in

Eq. (7):

xgA(x, Q2) =
⎧⎨
⎩

A κ0
αs (A1/3Q2

s ) S
1

R2
s
(1 − x)4, r2 � R2

s
A1/3 ,

A2/3 κ0
αs (A1/3Q2

s ) S
1
r2 (1 − x)4, r2 >

R2
s

A1/3 .
(10)

The reasons for these changes are the atomic mass depen-
dency of the nuclear charge radius (R ∝ A1/3) and the relation
between the saturation scale and the atomic mass (Q2

s ∝ A
1
3 ).

So, the nuclear dipole cross section is obtained by
inserting Eqs. (10) and (8) into Eq. (5) and making some
simplifications:

σ A(x, r2) = π2

3
(κ0S)proton (1 − x)4

×
{

A r2

R2
s

ln R2
s �

2−ln A1/3

ln �2r2 , r2 � R2
s

A1/3 ,

A2/3 ln R2
s �

2−ln A1/3

ln �2r2 , r2 >
R2

s
A1/3 .

(11)

Equation (11) is a modified form of the KLN model that
can be used to study the behavior of the dipole cross section in
linear and nonlinear regions for different nuclei.

III. RESULTS

In the following, we present the nuclear cross sections, the
structure functions, and the ratio RF2 diagrams for the lightest
nuclear target (hydrogen nucleus) and the heavier ones using
Eqs. (1), (3), and (11). These quantities give us a real insight
into the small-x behaviors of the nuclei. The nuclear target can
be adjusted by setting the atomic mass number (A) in Eq. (11).

Figure 1 shows the total cross sections of a hydrogen nu-
cleus by taking the average value of 0.14 GeV for the light
quark masses. The lines are in agreement with H1 [52,53] and
ZEUS [54] data [Figs. 1(a) and 1(b)].

In Fig. 1(a), the dashed oblique line shows the transition
between linear and nonlinear regions in Q2 = Q2

s . The total
γ ∗ p cross section increases with decreasing Q2 for definite

FIG. 2. Hydrogen target’s structure functions based on our anal-
ysis. F2 as a function of x (a) and Q2 (b). F2 and FL vs Q2 in a frame
at different values of W (c) and FL vs small x (d). Solid points show
H1 and ZEUS data.

W . For the small transverse momentum of the gluon, gluon
recombination causes the saturation effect to be visible as
solid lines appear to reduce their slope by turning partly to a
horizontal line in the small-Q2 region. Our analysis is compat-
ible with the experimental data in both regions. We expected
to see linear and saturation differences because the foundation
of Eq. (11) includes both of them. The factors 1, 4, 16, and
64 are just to make some separation between the lines in the
small-Q2 region.

In Fig. 1(b), we have shown the γ ∗ p total cross section as
a function of large W 2 at different values of Q2 = 0.65, 0.40,
0.30, and 0.25 GeV2 for which x is very small.

In Fig. 2, we have depicted the structure functions of F2

and FL for electron scattering off the hydrogen nucleus by
using Eqs. (1) and (2). F2 versus x and F2 vs Q2 are shown
in Figs. 2(a) and 2(b), respectively. Fixed Q2 = 2 and 12
GeV2 and x = 8 × 10−4 and 8 × 10−5 are plotted there to
investigate both small-x and low-Q2 regions. Our calculated
F2 values reproduce the HERA data [55,56]. F2 takes larger
values in small x and increases with Q2.

Figure 2(c) shows both F2 and FL together for A = 1 to
make their comparison easier. According to our analysis, FL

accounts for 21% of F2 in Q2 = 14 GeV2 and x ≈ 10−4, which
is near 19% of HERA data as reported in Refs. [56,57].

In Fig. 2(d), FL versus x is specially drawn for the low-x
region and low values of Q2. Experimental data with error bars
are from H1 data [58].

Now, let us discuss the electron scattering of heavier nu-
clei. Deuteron, carbon, calcium, iron, tin, xenon, and lead are
frequently used as nuclear targets in accelerators. We should
consider that the experimental data for high-energy electron-
nuclei collision in the small-x region is usually proposed as
“RF2 data” [59–65]. We use the existing data in different
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FIG. 3. σtot versus Q2 for different energies and atomic masses of
targets [panels (a) and (b)]. F2 versus Q2 for Sn and Pb nuclei [panels
(c) and (d)] and lead’s FL as calculated in our analysis [panel (d)].

graphs for comparison. Also, we present some predictions
about cross sections and structure functions for heavier nuclei
in the saturation region and the low-x region.

In Fig. 3, the total cross sections and the structure functions
are depicted for heavier nuclei. We see that for a certain target
and definite Q2, the nuclear cross section is increased by
taking a larger value of W energy. The dashed oblique line
in Fig. 3(a) shows the critical line (Q = Qs). Besides this,
the following two results are attained by looking at Fig. 3(b)
drawn for fixed W = 95 GeV. First, heavier nuclei have larger
cross sections for fixed Q and W . Second, transitions of the
linear region to the saturation region, shown as solid points,
are shifted to higher values of Q2 for heavier nuclei.

Figures 3(c) and 3(d) illustrate the Q2 dependence of F A
2

for nuclear targets of Sn and Pb. F A
2 is increased by taking

larger values of W and A. F A
L is calculated in Fig. 3(d), which

accounts for 23% of F2 for different energies of W in Q2 = 50
GeV2 for the lead nucleus.

According to Fig. 3, applying the heavier nuclei as targets
can separate linear and nonlinear regions more explicitly even
at larger Q2 values. This important property is an excellent
motivation to study the saturation physics for heavier nuclei
in future accelerators.

Now, we compare our calculated RF2 in electron-nuclei
collisions with the results of New Muon Collaboration (NMC)
experiments at CERN [59–63] and E665 Collaboration ex-
periments at FermiLab [64,65]. Carbon and deuteron are
frequently chosen as reference nuclei in the RF2 quantity:

RA
F2

= Aref F A
2

AF Aref

2

. (12)

In Fig. 4, we have calculated the R ratio for different
targets at x < 0.1 by taking deuterons [Figs. 4(a)–4(c)] and

FIG. 4. RF2 vs x. The nuclear target is determined in each frame.

carbon [Fig. 4(d)] as reference nuclei. The diagrams suggest
the RA

F2
values rise by increasing x. In Fig. 4, data of the NMC

and E665 Collaborations have Q2 values between 0.5 and 26
GeV2 and 0.01 and 22.5 GeV2, respectively. This experimen-
tal range is between 3.4 and 35.3 GeV2 for Fig. 4(d).

In Fig. 5, we expanded our study on the RF2 ratio at low x.
Having a glance at Fig. 5(a), we can conclude that heavier
nuclei take lower values of RF2 at definite Q2. The effect
of Q2 on R is considered in Fig. 5(b). It shows that R is
increased with Q2, but the different choices of Q2 change R
insignificantly for a definite nucleus at low x. We note that
it is reasonable as the result of geometric scaling explained in
the Introduction. It means that Q2 dependency by itself cannot
control the cross section at small x. The line of Q2 = 10 GeV2

is higher than that of Q2 = 1.69 GeV2, although they come
closer together at very low x (x < 10−4).

Finally, we have compared our analysis with the other
models in Fig. 6 for the moderate, high, and low ranges of Q2.
In Fig. 6(a), the result of our calculation for RFFe/D at Q2 = 20
GeV2 is compared with experimental fitted parametrization
models of nCTEQ15 [66] (solid lines), HKN [67] (dashed
line), and EPS [68] (dotted line). These articles give a global

FIG. 5. RF2 versus x. Investigating the effect of atomic mass
corresponding to calcium, tin, and lead nuclei (a) and the effect of
Q2 (b).
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FIG. 6. Predictions of different models for RF2 versus x. Our result for RFe/D is compared to the nCTEQ15, HKN07, and EPS09
phenomenological models (a). We have compared our result for RPb/D with AKST in panel (b) and with KNPS, ACKLS, FGMS, and BGLLM
in panel (c).

analysis of nPDFs at next to leading order using the features
of the QCD improved parton model and the χ2 analyses as a
statistical tool to improve accuracy. We should emphasize that
the beginning of the shadowing effect is intended here; there-
fore, we have considered the domain of 8 × 10−3 < x < 0.1
in this diagram. Comparing them, we can see that our analysis
coincides with these fitted models, especially at low x.

Figures 6(b) and 6(c) show the RPb/D versus x for Q2 = 200
and 3 GeV2, respectively. We have presented the comparison
of our result with some theoretical and phenomenological
models, such as AKST [69], KNPS [70], ACKLS [71],
FGMS [72], and BGLLM [73].

In Fig. 6(b), it can be seen that our results are in agreement
with those of other analyses. AKST has used a model based
on the expansion of γ ∗A cross sections in multiple scattering
series by considering two unitarization schemes tagged with
Schwimmer and eikonal models.

Figure 6(c) indicates that our model takes a lower RPb/D

for small Q2. This difference becomes negligible in the low-x
region.

In Fig. 6(c), one of the models we have compared our
result with is KNPS [70], in which a numerical analysis is
carried out to study nuclear shadowing in DIS off nuclei using
the Green’s function approach and dipole picture. This model
is limited to low Q2 and x � 0.1 where the antishadowing
effect is omitted. Our computation is restricted to low x as
well. Another phenomenological model which we used to
make a comparison is that of Frankfurt et al. (FGMS) [72].
The authors of this article consider two different parametriza-
tions of PDFs to investigate the leading twist approach to
nuclear shadowing numerically. Armesto et al. [71] has stud-
ied nuclear structure functions in the x � 0.01 and Q2 � 10
GeV2 region using the relation between diffractive cross sec-
tion measured in DIS on nucleons and nuclear shadowing
based on the reggeon calculus. The last model shown in
Fig. 6(c) is that of Bartels et al. (BGLLM) [73]. They have

presented photoproduction cross sections assuming the QCD
saturation effect and have used a dipole cross section by solv-
ing the BK evolution equation approximately.

Looking at these different models and predictions in
various regions of x and Q2, we note that more precise ex-
perimental data is required.

IV. CONCLUSIONS AND SUMMARY

In this paper, we presented a dipole cross section of
Eq. (11) based on the KLN assumption about the gluon struc-
ture function of a proton. In this way, we get a total nuclear
cross section that supports all nuclei targets in the color dipole
picture that is valid for the region of x � 10−2, so it does not
include the antishadowing effect.

Starting with a hydrogen target and considering just the
light quark masses, we expanded our calculation to other nu-
clei by studying their total cross sections, structure functions,
RF2 ratios, and shadowing and saturation effects in DIS off
nuclei. We found a good agreement between our analysis and
HERA, CERN and FermiLab data by comparing our results
with existing experimental data.

As our important conclusion, we believe that the small-
x saturation is more visible in heavier nuclei collisions
[Figs. 5(a) and Fig. 4]. Besides that, the KLN model could be
a reliable method that could be expanded more to get a better
precision. Only a small number of experimental parameters
are determined in our analysis, which makes it a simpler, but
effective, method. As another conclusion, we think that, in a
very-small-x region, the RF2 ratio for a definite nucleus and
different values of Q2 are very close to each other [Fig. 5(b)].
This means that Q2 dependency is not the only effective
variable in describing total cross sections in an extra-small-x
region.

We are investigating diffractive dissociation by applying
our calculations on this process in electron-nucleus collisions
for our next work.
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