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Pion photoproduction in chiral perturbation theory with explicit treatment
of the �(1232) resonance
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We study the reaction of pion photoproduction on the nucleon in the framework of chiral perturbation theory
with explicit �(1232) degrees of freedom. In the covariant approach, we give results up to order ε3 in the small
scale expansion scheme. Furthermore, we provide �-less and �-full results obtained in the heavy-baryon scheme
to analyze the differences from the covariant approach. Low-energy constants are fitted to multipole amplitudes
using theoretical truncation errors estimated by a Bayesian approach. We also compare our findings to data of
neutral pion production cross sections and polarization asymmetries. The description of the reaction is clearly
improved by the explicit treatment of the �(1232) resonance.
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I. INTRODUCTION

In this work, we study the process of pion photoproduction
on the nucleon, i.e., γ + N → π + N , in the framework of
chiral perturbation theory (χPT) with explicit � degrees of
freedom. Studying this reaction is motivated by several rea-
sons. First, it is the photoproduction of the lightest hadron.
From the theoretical point of view, it is one of the simplest
processes involving three different particles, and it thus serves
as a test field for more complex reactions. From the experi-
mental point of view, this reaction is quite easily accessible
close to threshold and there can be no other hadronic final
states due to energy conservation. Therefore, a lot of exper-
imental data on pion photoproduction are available. As an
additional motivation, pion photoproduction contributes as a
subprocess to more complicated reactions, e.g., in radiative
pion photoproduction, γ + N → γ + π + N , providing an
access to the magnetic moment of the � resonance [1], or in
the interaction of nuclei with electromagnetic probes [2–7].

Pion photoproduction has been a research topic for many
years, with the first model-independent approach proposed
by Kroll and Ruderman in the 1950s [8]. Based on general
principles, such as Lorentz and gauge invariance, they derived
a low-energy theorem for the matrix element of charged pion
photoproduction at threshold, which expressed the production
amplitudes in terms of a series in the parameter μ = Mπ/mN ,
where Mπ and mN refer to pion and nucleon masses, respec-
tively. Later on, these predictions were improved [9,10] by
including the so-called partially conserved axial-vector cur-
rent hypothesis [11–13] and current algebra [14–16]. Until
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the 1980s, there was little doubt about the validity of the
low-energy predictions. Particularly for the charged produc-
tion channels, which are dominated by the Kroll-Ruderman
term, the results from the theorem matched the available data
well. However, new data for the neutral production channel
at threshold [17,18] showed a non-negligible disagreement
with the theoretical predictions for the s-wave electric dipole
amplitude E0+. A first important success for χPT was the
study by Bernard, Kaiser, Gasser, and Meißner [19,20] on
pion photoproduction, which corrected the low-energy the-
orems by terms arising from pion loop diagrams. However,
these corrections, generated by infrared singularities of the
loop integrals even worsened the agreement with data, which
is due to the slow convergence of the chiral expansion in the
neutral pion production channel. Therefore, renewed interest
in pion photoproduction was awakened in the following years,
and multiple experimental groups remeasured pion photo-
and electroproduction reactions (see, e.g., Refs. [21–40]). In
parallel, Bernard et al. worked out all the theoretical details in
the different reaction channels within the framework of heavy-
baryon chiral perturbation theory (HBχPT) [20,41–49]. An
improvement of the convergence of the chiral expansion has
been achieved by extending the pure χPT approach by means
of dispersion-relation techniques [50].

The new approaches of the so-called infrared renor-
malization [51] and the extended-on-mass-shell (EOMS)
scheme [52] enabled the treatment of scattering processes
in the pion-nucleon sector in a manifestly covariant frame-
work. Consequently, covariant calculations of γ + N → π +
N were completed up to the leading loop order O(Q3) in
Ref. [53] using the infrared renormalization scheme, followed
by an analysis of the full one-loop order O(Q4) by Hilt et al.
[54,55] in the EOMS scheme.

After it was worked out how to include the � reso-
nance as an explicit degree of freedom into χPT within the
so-called small scale expansion (SSE) scheme [56,57], the
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photoproduction of pions has also been considered in this
extended framework. An explicit treatment of the � is of
great interest, because the small gap between the pion pro-
duction threshold and the � mass suggests that effects of
the � may become important close above threshold. For
example, the M1+ multipole receives dominant effects from
the � resonance for energies close to the � mass. In SSE,
the �-nucleon mass splitting � ≡ m� − mN is considered to
be of the same order as the pion mass, i.e., � ∼ Mπ ∼ ε.
The first calculation of pion photoproduction with explicit �

degrees of freedom was completed in HBχPT [56], focusing
on the neutral production channel close to threshold, which
showed only moderate effects of the explicit � treatment. A
subsequent HBχPT study [58] found a more distinct improve-
ment of the description in the HB framework. In the covariant
approach, studies of pion photoproduction at threshold were
done in Refs. [59–62], finding a substantial improvement in
the description of the data compared to the HB approach
with explicit �’s. However, in these works a different power
counting [63] is used, the so-called δ scheme, in which the
�-nucleon mass splitting � is considered to be of one order
lower than the pion mass: � ∼ δ, Mπ ∼ δ2. The motivation
for such a counting is given by numerical arguments. Since
there is no clear evidence for a faster convergence or better
efficiency of one of the two schemes, it is desirable to consider
pion photoproduction in the SSE for comparison purposes.
Note, however, that the low-energy constants (LECs) of the
two approaches cannot be compared directly, because their
numerical values are scheme dependent. Comparing the re-
sults in two counting schemes can be done only in terms of
quality of the data description.

We study pion photoproduction in both heavy-baryon and
covariant formalisms of chiral effective field theory. We also
analyze the effects of explicit � degrees of freedom by tak-
ing into account their leading-order and next-to-leading-order
contributions in the covariant formalism of χPT within the
EOMS scheme. To estimate theoretical uncertainties of ob-
servables and LECs, we use a Bayesian model [64–66].

First, we study the �-less case up to order Q3, which has
been considered before [53–55]. Recent studies were mainly
focused on the covariant approach, so we provide a detailed
comparison of the two formalisms in order to analyze the
difference in convergence and data description. In particular,
we compare the obtained LECs in terms of the effects gen-
erated by the infrared regular (IR) parts of the integrals. The
extraction of the heavy-baryon LECs is very important for use
in few-body applications such as calculation of the nuclear
electroweak currents. That is why we choose to work in the
so-called NN counting used in the few-nucleon calculations,
although it can make the heavy-baryon expansion in pion
photoproduction even less efficient.

Next, we upgrade the covariant calculation to leading-order
� tree contributions employing the SSE, which has been used
for studies of other reactions such as pion-nucleon scattering
and Compton scattering (see, e.g., Refs. [67–69]). We also
discuss the differences to the �-less case in terms of reso-
nance saturation. Moreover, we provide results for the reaction
γ + N → π + N up to leading �-full loop order for the first
time. In comparison to the study of Ref. [60], we take into

account loop diagrams including up to three � propagators,
which give rise to significant contributions to the amplitude
while maintaining gauge invariance. Furthermore, we give an
estimate for the subleading γ N� coupling constant h1. A
qualitative comparison to the aforementioned studies in the δ

scheme is given. Furthermore, we compare some of our results
to recent high-precision data in the neutral pion production
channel [38,39,70].

Our paper is structured as follows. In Sec. II, we introduce
the basic formalism, such as kinematics, isospin and spin
decomposition of the matrix elements, and calculation of mul-
tipole amplitudes and observables. In Sec. III, we list all terms
of the effective Lagrangian relevant for our calculation and
discuss the employed power-counting scheme. Subsequently,
we discuss renormalization in Sec. IV. We present our results
in Sec. V and conclude with a short summary in Sec. VI.

II. FORMALISM

In this section, we briefly introduce our notation for
kinematics, isospin and spin decomposition, as well as the
calculation of multipole amplitudes and observables. Pion
photoproduction,

γ (λ, k) + Ni(s, p) → πc(q) + Nj (s
′, p′), (1)

is a reaction where a pion is produced by absorption of a
photon from a nucleon. Here, p (p′), s (s′), and i ( j) are
momentum, helicity, and isospin index of the incoming (out-
going) nucleon, k and λ are momentum and helicity of the
photon, and q and c are momentum and isospin index of the
pion, respectively. The kinematics of the reaction is uniquely
defined by two Lorentz-invariant Mandelstam variables:

s = (p + k)2 = (p′ + q)2, t = (p − p′)2 = (k − q)2. (2)

The energies of the photon ω and the pion Eπ in the center-
of-mass (c.m.) frame expressed in terms of the Mandelstam
variables read

ω = s − m2
N

2
√

s
, Eπ = s + M2

π − m2
N

2
√

s
. (3)

In the laboratory frame, the photon energy can be calculated
from the total c.m. energy using

ωlab = s − m2
N

2mN
. (4)

Furthermore, we define the scattering angle θ via
|k| |q| cos(θ ) = k · q, such that

t = M2
π − 2(ωEπ − |k| |q| cos(θ )). (5)

The pion production threshold lies at the c.m. energy of
√

s =
mN + Mπ . In the HB formalism, an explicit 1/mN expansion
of the amplitude is performed. Expanding Eq. (3) in terms of
1/mN , we can derive an approximate relation between photon
and pion c.m. energy:

ω = Eπ − M2
π

2mN
+ O

(
1

m2
N

)
. (6)

Thus, in the HB formalism, we express all kinematic quanti-
ties in terms of the pion energy Eπ .
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In the isospin space, the matrix elements of pion photo-
production can be parametrized in terms of three independent
structures,

T c
γ N→πN = δc3 T (+)

γ N + τc T (0)
γ N + iεc3a τa T (−)

γ N , (7)

where τ i are the Pauli matrices in the isospin space. In Eq. (7),
T can refer to the pion photoproduction amplitude in any
representation including the photoproduction multipoles.

The matrix elements for the four physical pion photopro-
duction reaction channels

γ p → π0 p, γ p → π+n, γ n → π0n, γ n → π− p,
(8)

can be obtained from the three isospin structures by using the
following relations:

Tγ p→π0 p = T (+)
γ N + T (0)

γ N , Tγ p→π+n =
√

2
(
T (0)

γ N + T (−)
γ N

)
,

Tγ n→π0n = T (+)
γ N − T (0)

γ N , Tγ n→π− p =
√

2
(
T (0)

γ N − T (−)
γ N

)
.

(9)

Another commonly used decomposition of the pion photopro-
duction amplitude is the so-called isospin parametrization in

terms of the three amplitudes T
( 3

2 )
γ N , T

( 1
2 )

γ p , and T
( 1

2 )
γ n , where the

production amplitudes T (I )
γ N are related to the T (0,±)

γ N via

T
( 3

2 )
γ N = T

( 3
2 )

γ p = T
( 3

2 )
γ n = T (+)

γ N − T (−)
γ N ,

T
( 1

2 )
γ p = T (0)

γ N + 1

3
T (+)

γ N + 2

3
T (−)

γ N , (10)

T
( 1

2 )
γ n = T (0)

γ N − 1

3
T (+)

γ N − 2

3
T (−)

γ N .

The isospin parametrization is a natural choice when working
in the isospin symmetric case of χPT; thus we perform the fits
in this work using this basis. For comparison with experimen-
tal results, decomposition (9) in terms of the physical reaction
channels is required.

The pion photoproduction amplitude M = εμMμ, where
εμ is the polarization vector of the photon, can be
parametrized in terms of the so-called Ball amplitudes [71]1

Mμ =
8∑

i=1

ū(p′)BiV
μ

i u(p). (11)

Here the coefficients Bi are scalar functions of the Man-
delstam variables, and the basis structures V μ

i comprise all
independent matrices that can be formed using γ matrices and
the polarization vector; they read

V μ
1 = γ μγ5, V μ

2 = γ5Pμ, V μ
3 = γ5qμ, V μ

4 = γ5kμ,

V μ

5 = γ μ/kγ5, V μ
6 = /kγ5Pμ, V μ

7 = /kγ5qμ, V μ
8 = /kγ5kμ,

(12)

where P = 1/2 (p + p′). Note that the set of amplitudes (11)
and (12) is not minimal. Imposing transversality kμMμ = 0

1We work with Hilt’s convention, given in Ref. [54], which is
slightly different from Ball’s original one.

leads to the following conditions:

B1 + B6 k · P + B7 k · q + B8 k2 = 0,

B2 k · P + B3 k · q + B4 k2 + B5 k2 = 0. (13)

Thus, current conservation reduces the number of basis
structures to six. Only four structures remain for real pion pho-
toproduction due to the additional constraints ε · k = 0 and
k2 = 0, which can be chosen in the form of Chew-Goldberger-
Low-Nambu (CGLN) amplitudes [72]:

Mμ =
4∑

i=1

ū(p′)AiM
μ
i u(p),

Mμ
1 = − i

2
γ5(γ μ/k − /kγ μ),

Mμ
2 = 2iγ5

(
Pμk ·

(
q − 1

2
k

)
−

(
qμ − 1

2
kμ

)
k · P

)
,

Mμ
3 = −iγ5(γ μk · q − /kqμ),

Mμ
4 = −2iγ5(γ μk · P − /kPμ) − 2mN Mμ

1 . (14)

In the c.m. frame, one can conveniently introduce another set
of amplitudes in the gauge ε0 = 0 [72]:

εμū(p′)

(
4∑

i=1

AiM
μ
i

)
u(p) = 4π

√
s

mN
χ

†
f F χi, (15)

with

F = i σ · εF1 + σ · q σ · (k × ε)

|q| |k| F2

+ i
σ · k q · ε

|q| |k| F3 + i
σ · q q · ε

|q|2 F4, (16)

where σ are the Pauli matrices in spin space and χi (χ†
f ) is the

Pauli spinor of the initial (final) nucleon.
The Fi’s can be expanded in a multipole series [71,72]:

F1 =
∞∑

l=0

{[l Ml+ + El+]P′
l+1(x)

+ [(l + 1)Ml− + El−]P′
l−1(x)},

F2 =
∞∑

l=1

[(l + 1)Ml+ + lMl−]P′
l (x),

F3 =
∞∑

l=1

{[El+ − Ml+]P′′
l+1(x) + [El− + Ml−]P′′

l−1(x)},

F4 =
∞∑

l=2

[Ml+ − El+ − Ml− − El−]P′′
l (x), (17)

where x = cos(θ ), Pl (x) is a Legendre polynomial of degree
l , P′

l (x) = dPl
dx (x) is its first derivative, P′′

l (x) is the second
derivative with respect to x, and l is the orbital angular
momentum of the outgoing pion-nucleon system. The sub-
script ± denotes the total angular momentum j = l ± 1/2.
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Equation (17) can be inverted:

El+ =
∫ 1

−1

dx

2(l + 1)

[
PlF1 − Pl+1F2 + l

2l + 1

× (Pl−1 − Pl+1)F3 + l + 1

2l + 3
(Pl − Pl+2)F4

]
,

El− =
∫ 1

−1

dx

2l

[
PlF1 − Pl−1F2 − l + 1

2l + 1

× (Pl−1 − Pl+1)F3 + l

2l − 1
(Pl − Pl−2)F4

]
,

Ml+ =
∫ 1

−1

dx

2(l + 1)

[
PlF1 − Pl+1F2

− 1

2l + 1
(Pl−1 − Pl+1)F3

]
,

Ml− =
∫ 1

−1

dx

2l

[
−PlF1 + Pl−1F2 + 1

2l + 1
(Pl−1 − Pl+1)F3

]
.

(18)

Here, we suppress the x dependence of the Legendre polyno-
mials Pl for the sake of brevity.

To calculate multipole amplitudes, we proceed as follows:
First, we express the pion photoproduction amplitude in terms
of the Ball amplitudes [Eq. (11)]. Then, we rewrite the Bi’s in
terms of Ai’s to obtain the representation of the amplitude in
the minimal basis [Eq. (14)]. Finally, we use the coefficients
Ai to calculate F1 − F4. The relations between these repre-
sentations are given in Appendix A.

Next, we provide the expressions for the unpolarized dif-
ferential cross section and linear polarization asymmetry. The
differential cross section for pion photoproduction is given by

dσ

d�
= 1

64π2s

|q|
|k| |M|2, (19)

with the unpolarized squared matrix element |M|2,

|M|2 = 1

4

1∑
λ=−1

1∑
s,s′=−1

|εμ(k, λ)Mμ(k, p, s, p′, s′, q)|2, (20)

where again λ is the helicity of the photon, s (s′) is the spin
of the incoming (outgoing) nucleon, and the factor of 1/4
arises from averaging over helicity and spin of the incoming
particles. The linearly polarized photon asymmetry � is given
by

� = dσ⊥ − dσ‖
dσ⊥ + dσ‖

, (21)

where dσ⊥ and dσ‖ refer to the differential cross section for
photon polarizations perpendicular and parallel to the reaction
plane, respectively.

III. EFFECTIVE LAGRANGIAN AND POWER COUNTING

The calculation of observables in chiral perturbation theory
is based on Feynman rules derived from the effective La-
grangian. In general, it contains an infinite number of terms
with a rising number of derivatives and/or pion masses. At the
maximal order we are working with, the terms of the effective
Lagrangian relevant for the calculation of pion photoproduc-
tion read

Leff =L(2)
ππ + L(4)

ππ + L(1)
πN + L(2)

πN + L(3)
πN + L(1)

πN�

+ L(2)
πN� + L(3)

πN� + L(1)
π� + L(2)

π�, (22)

where we do not distinguish between HB and covariant nota-
tion at this point.

In the mesonic sector, the building blocks are the pion field
U = u2 with

U (x) = 1 + i
τ · π

F
− π2

2F 2
− iα

π2 τ · π

F 3

+
(
α − 1

8

)
π4

F 4
+ O(π5), (23)

where F is the pion decay constant in the chiral limit and α is
an arbitrary unphysical parameter from the parametrization of
the pion field. The covariant derivative acting on the pion field
∇μ is defined as

∇μU = ∂μU − irμU + iUlμ,

lμ = vμ − aμ, rμ = vμ + aμ, (24)

where vμ = −eQN Aμ = −e 11+τ3
2 Aμ is the vector source with

the electric charge e ≈ 0.303 and the electromagnetic field
Aμ, and aμ is the axial source. Furthermore, we introduce
χ = diag(M2, M2) and M is the pion mass to leading order
in quark masses. We also introduce the field combinations

χ± = u†χu† ± uχ†u, Fμν
L = ∂μlν − ∂ν lμ − i[lμ, lν],

Fμν
R = ∂μrν − ∂νrμ − i[rμ, rν]. (25)

The relevant parts of the leading and next-to-leading pionic
Lagrangian read [73]

L(2)
ππ = F 2

4
tr(∇μU∇μU †) + F 2

4
tr(χ+),

L(4)
ππ = l3

16
tr(χ+)2 + l4

16
(2tr(∇μU (∇μU )†)tr(χ+)

+ tr(2((χU †)2 + (Uχ†)2) − 4χ†χ − χ2
−))

+ i
l6
2

tr(FR,μν∇μU (∇νU )† + FL,μν (∇μU )†∇νU ). (26)

Introducing nucleons, we give the definitions of

Dμ = ∂μ − �μ, �μ = 1

2
{u†(∂μ − irμ)u + u(∂μ − ilμ)u†},

uμ = i(u†(∂μ − irμ)u − u(∂μ − ilμ)u†),

F±
μν = u†F R

μνu ± uF L
μνu†, F̃±

μν = F±
μν − 1

2
Tr(F±

μν ). (27)
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The leading-order pion-nucleon Lagrangian in the covariant approach is given by

L(1)
πN = �̄N

(
i /D − m + g

2
/uγ5

)
�N , (28)

where m and g are the bare nucleon mass and axial coupling constant. Other relevant parts of the covariant πN Lagrangian read
(see, e.g., Ref. [74])

L(2)
πN = �̄N

{
c1tr(χ+) + c6

8mN
F+

μνσ
μν + c7

8mN
tr(F+

μν )σμν

}
�N ,

L(3)
πN = �̄N

{
d6

2mN
(i[Dμ, F̃+

μν]Dν + H.c.) + d7

2mN
(i[Dμ, tr(F+

μν )]Dν + H.c.) + d8

2mN
(iεμναβ tr(F̃+

μνuα )Dβ + H.c.)

+ d9

2mN
(iεμναβ tr(F+

μν )uαDβ + H.c.) + d16

2
γ μγ5tr(χ+)uμ + i

d18

2
γ μγ5[Dμ, χ−]

− d20

8m2
N

(iγ μγ5[F̃+
μν, uα]Dαν + H.c.) + i

d21

2
γ μγ5[F̃+

μν, uν] + d22

2
γ μγ5[Dν, F−

μν]

}
�N ,

with σμν = i
2 [γ μ, γ ν]. We use the convention ε0123 = −1.

In the heavy-baryon formalism, the nucleon momentum is split according to

pμ = mNvμ + Pμ, (29)

where the first part is a large piece close to the on-shell kinematics and the second part Pμ is a soft residual contribution
v · P � mN . The vector vμ is the four-velocity of the nucleon with the properties v2 = 1, v0 � 1 and can be conveniently chosen
as v = (1, 0, 0, 0). The nucleon field �N is split into the so-called light and heavy fields,

Nv (x) = eimN v·x P+
v �N (x) and hv (x) = eimN v·x P−

v �N (x), (30)

which are eigenstates of /v, with the projectors

P±
v = 1

2 (1 ± /v). (31)

In the heavy-baryon formalism, any bilinear �̄�� with � ∈ {1, γ5, γμ, γ5γμ, σμν} can be expressed in terms of the velocity vμ

and the Pauli-Lubanski spin vector:

Sμ = i

2
γ5σμνv

ν . (32)

The relevant terms of the Lagrangians up to third order read [74]

L̂(1)
πN = N̄ (iv · D + gS · u)N,

L̂(2)
πN = N̄

(
c1tr(χ+) − i

4mN
[ĉ6[Sμ, Sν]F+

μν + ĉ7[Sμ, Sν]tr(F+
μν )]

)
N,

L̂(3)
πN = N̄

(
d̂6[Dμ, F̃+

μν]vν + d̂7[Dμ, tr(F+
μν )]vν + d̂8tr(F̃+

μνuα )εμναβvβ + d̂9tr(F+
μν )uαεμναβvβ

+d̂16 S · utr(χ+) + id̂18[S · D, χ−] + id̂20Sμvν[F̃+
μν, v · u] + id̂21Sμ[F̃+

μν, uν] + d̂22Sμ[Dν, F−
μν]

)
N

+ 1

2mN
N̄ ((v · D)2 − D2 − ig{S · D, v · u})N. (33)

The prefactor of 1/mN in the ci parts in L̂(2)
πN should not be interpreted as a 1/mN correction; it originates from the definition of

the constants ĉ6 and ĉ7, which are dimensionless when defined this way. Unlike the usual treatment of the single nucleon sector
in the literature, we from now on consider the 1/mN corrections as 1/mN ∼ 1/�2, where � is the hard scale (see below), so that
they start to appear at the third instead of the second order. The 1/m2

N are, therefore, shifted beyond the order with which we are
working. This is a common practice in studies of the nuclear forces [75] and is referred to as NN counting in this work. Also,
note that the heavy-baryon LECs ĉ6 and ĉ7 are not the same as the covariant constants, but they absorb 1/mN shifts from the
leading-order Lagrangian via ĉ6 = c6 + 1, ĉ7 = c7.

The � resonance is introduced as an explicit degree of freedom by an isospin-3/2 Rarita-Schwinger spinor �̄
μ
�,i, which

satisfies τi�
i
�,μ = 0 [57]. Given the definitions

Di j
μ = ∂μδi j + �i j

μ , �i j
μ = δi j�μ − iεi jk tr(τk�

μ), ui j
μ = ξ ik

3/2 uμ ξ
k j
3/2, (34)
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with the isospin projectors

ξ
3/2
i j = 2

3
δi j − i

3
εi jkτk, ξ

1/2
i j = 1

3
δi j + i

3
εi jkτk, (35)

the leading covariant π� Lagrangian reads [57,76]

L(1)
π� = − �̄

μ
�,i

{
(i /Di j − m̊�δi j )gμν − i

(
γμDi j

ν + γνDi j
μ

) + iγμ /Di j
γν + m̊�γμγνδ

i j

+ g̊1

2
gμν/u

i jγ5 + g̊2

2

(
γμui j

ν + ui j
μγν

)
γ5 + g̊3

2
γμ/ui jγ5γν

}
�ν

�, j, (36)

where m̊� is the bare � mass and g̊1, g̊2, g̊3 are the bare leading-order coupling constants. For pion photoproduction, only g̊1 is
relevant, whereas the constants g̊2 and g̊3 are off-shell parameters, which do not contribute if the � particle is on shell and result
only in shifts of LECs.

The only term from the second-order π� Lagrangian relevant for our calculation is

L(2)
π� = −ic�

1 Ψ̄ i
�,μ Tr (χ+)σμνΨ i

�,ν, (37)

which enters barely the renormalization of the � mass.
We also need to take into account the nucleon-to-� transition Lagrangian LπN� up to third order. Again, we only give the

relevant terms for pion photoproduction up to our working order [57,77]:

L(1)
πN� = h

(
�̄

μ
�,i�μν (z0)wν

i �N + �̄Nwν†
i �νμ(z0)�μ

�,i

)
,

L(2)
πN� = i

b1

2
�̄

μ
�,i�μν (z1)F+,να

i γαγ5�N + ib3�̄
μ
�,i�μν (z3)wνα

i γα�N − b6

m
�̄

μ
�,i�μν (z6)wνα

i Dα�N + · · · + H.c.,

L(3)
πN� = h1

m
�̄

μ
�,i�μν (y1)F+,να

i γ5Dα�N − i
h15

2
�̄

μ
�,i�μν (y15) Tr([Dα, F+,νβ]τ i )σαβγ5�N

+ i
h16

2m
�̄

μ
�,i�μν (y16) Tr([Dα, F+,νβ ]τ i )γβγ5Dα�N + · · · + H.c., (38)

where h, bi, and hi are LECs and

w
μ
i = 1

2
Tr(τiu

μ), w
μν
i = 1

2
Tr(τi[D

μ, uν]), F±
i,μν = 1

2
Tr(τiF

±
μν ), �μν (z) = gμν + zγμγν. (39)

�μν (z) is an off-shell function with the off-shell parameter z. It was shown in Ref. [78] that the dependence on the off-shell
parameters can be eliminated by a redefinition of the LECs up to higher-order corrections. Thus, we set them to zero in our
calculations. The � propagator [79] derived from the Lagrangian (36) reads

Gμν
�,i j (p) = − i(/p + m̊�)

p2 − m̊2
�

(
gμν − 1

d − 1
γ μγ ν + 1

d − 1

pμγ ν − pνγ μ

m̊�

+ d − 2

d − 1

pμ pν

m̊2
�

)
ξ

3/2
i j (40)

with the isospin projector

ξ
3/2
i j = 2

3
δi j − i

3
εi jkτk . (41)

We also give our power-counting scheme. In the �-less
case, we employ

Q = q

�
∈

{
Mπ

�
,

k

�

}
with � ∈ {�b, 4πFπ }, (42)

where k is an arbitrary three-momentum (of a meson or a
baryon), Fπ is the pion decay constant, and �b is the break-
down scale of the chiral expansion. In the �-full theory, we
introduce the �-nucleon-mass splitting � = m� − mN , which
we count as an additional small parameter of order O(Mπ ),
but which does not vanish in the chiral limit. In the �-full
case, we use the SSE counting scheme [57]

ε ∈
{

Mπ

�
,

k

�
,
�

�

}
with � ∈ {�b, 4πFπ }, (43)

with ε as the new expansion parameter in the �-full case in
contrast to Q in the �-less theory.

The order D of any Feynman diagram can be computed
according to the formula [80]

D = 1 + 2L +
∑

n

(2n − 2)V M
2n +

∑
d

(d − 1)V B
d , (44)

where L is the number of loops, V M
2n is the number of purely

mesonic vertices of order 2n, and V B
d is the number of vertices

involving baryons of order d .
According to Eq. (44), up to order O(Q3) in the �-less

scheme, a number of tree-level and loop contributions have to
be taken into account. At order O(ε2) [O(ε3)], the leading
(subleading) tree-level diagrams with � are included. The
corresponding sets of diagrams can be found in Appendix B
of Ref. [1].

The one-loop diagrams with � that appear at order O(ε3)
are given in Appendix B of the present paper.
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At this point, it is instructive to compare the SSE scheme
with the δ counting. In the δ-counting scheme, the leading
tree-level diagrams with � are of order O(δ5) ≡ O(p5/2).
Therefore, calculations at order O(δ6) ≡ O(p3) (see, e.g.,
Refs. [60–62]) correspond to order O(Q3 + ε2) in the SSE.

Next, one-loop diagrams with a single � line are counted
as O(δ7) ≡ O(p7/2) (see, e.g., Ref. [59]), whereas in the SSE
they appear at order O(ε3) together with the loop graphs
involving two and three � lines. Note that the diagrams with
a single � line do not form a gauge-invariant set so that the
result depends on a prescription one follows to restore gauge
invariance. However, even if we consider the gauge-invariant
set of diagrams containing all one-loop graphs with one �

line as a subset (diagrams in Figs. 9, 10, and 12), i.e., the
contribution proportional to h2

AgA, there will remain diagrams
proportional to h2

Ag1 (diagrams in Figs. 11 and 13) that are of
order O(ε3) according to the SSE.

In the � region, power counting has to be modified as com-
pared to the threshold region as was first shown in Ref. [63],
where the δ counting for nucleon Compton scattering was
considered. For pion photoproduction, such a modification
was discussed in Ref. [81] for the case of the δ counting and
in Ref. [1] for the case of the SSE. The modification is caused
by the enhancement of the � pole diagrams near the pole by
a factor

γ = �

|Im(m�)| . (45)

In the present work, we do not apply this modification and
follow the power counting given by Eq. (44) because in our
case, the � region constitutes only a small part of the whole
analyzed energy domain. Since the � pole contributions are
taken into account anyway, the effect of not promoting them
to lower orders may only result in a slight increase of the
theoretical errors.

As mentioned above, the 1/mN corrections in the heavy-
baryon scheme are treated following the NN counting, so that

q
mN

∼ O(Q2).

IV. RENORMALIZATION

In this section, we discuss the subtleties of renormalization,
i.e., all steps necessary to remove unphysical infinities and
possible power-counting breaking terms from the theory.

A. Renormalization of subprocesses

To relate the bare constants of the effective Lagrangian to
their physical counterparts, we must consider various subpro-
cesses of pion photoproduction. We take care of the appearing
integrals and their ultraviolet (UV) divergences by dimen-
sional regularization. Also, we choose to renormalize the
masses, wave functions, and coupling constants using the
on-shell renormalization. Our renormalization scheme and
the renormalization conditions for the pion, nucleon, and �

self-energies, pion decay constant, πNN , πN�, and π��

coupling constants, the nucleon magnetic moments, and the
electromagnetic N� transition form factor were described
in detail in Ref. [1]. For completeness, we provide the ex-
pressions for all counterterms needed in our calculation in
Appendix C. Note that loops with internal � lines appearing

at order ε3 were not included in Ref. [1]. The corresponding
additional contribution to the counterterms are indicated by
the superscript �, e.g., δm(3,�)

N .
Since a part of the � region is included in our analysis, the

� width has to be taken into account. Note that in contrast
to the energy-dependent � width obtained by a resummation
of the � self-energy graphs typically used in the δ-counting
scheme, we introduce the energy-independent � width on the
level of the effective Lagrangian using the so-called complex
mass scheme [82–85]. This allows us to stay within the pertur-
bation theory framework. The �-mass renormalization within
the complex mass scheme is performed in exactly the same
manner as in Ref. [1].

B. Renormalization of the photoproduction LECs

Additionally to the UV divergences removed by on-shell
renormalization of the subprocesses, it is necessary to perform
a renormalization of the photoproduction LECs to absorb the
remaining divergences and (possibly) power-counting break-
ing terms. In the covariant approach, we employ the EOMS
renormalization scheme [52]. The LEC shifts are defined as

di = d̄i + βdi

λ̄

F 2
π

(46)

in the covariant approach and as

d̂i = d̂ r
i + βd̂i

λ̄

F 2
π

(47)

in the HB approach, where

λ̄ = 1

16π2

[
1

d − 4
+ 1

2
(−1 + γE − ln 4π )

]
, (48)

and d is the space-time dimension. The renormalized LECs
are denoted by the superscript “r” in the HB approach and by
the bar in the covariant case. Note that, in this work, we use a
more standard definition of d̄i as compared to Ref. [1].

The renormalization scale μ in all integrals (see Ap-
pendix C 1) is set to μ = mN (μ = Mπ ) for the covariant
(heavy-baryon) scheme to be consistent with traditional
choices in the literature.

In the �-less HB sector, the β functions were given in
Ref. [86]:

βd̂8
= 0, βd̂9

= 0, βd̂20
= gA + g3

A,

βd̂21
= −g3

A, βd̂22
= 0. (49)

In the covariant approach, they can easily be derived by
expanding the UV divergent piece of the whole scattering
amplitude in the small scales up to the working order. In the
�-less approach, they are found to vanish,

βd8 = βd9 = βd20 = βd21 = βd22 = 0, (50)

but for the full ε3 amplitude, they read

βd8 = 19
54 gAh2

A − 55
729 g1h2

A, βd9 = − 97
324 gAh2

A + 55
1458 g1h2

A,

βd20 = 47
162 gAh2

A − 2555
1458 g1h2

A,

βd21 = − 823
162 gAh2

A + 10
27 g1h2

A, βd22 = 40
27 gAh2

A − 425
243 g1h2

A.

(51)
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TABLE I. Particle masses (in MeV) and leading-order coupling constants used in this work. Unless specified, the values are taken from
the Particle Data Group (PDG) [91].

Mπ mN m� (fit) e Fπ (MeV) gA hA g1

138.03 938.27 1219.3 − 53.7 i 0.303 92.1 1.289 [92] 1.43 [85,93] −1.21 [85]

Here and in what follows, gA and hA are the nucleon axial
coupling and the πN� coupling constant, respectively. In the
EOMS scheme, the power-counting violating terms must be
subtracted by shifting the LECs. Up to the order with which
we are working, it can easily be argued that power-counting
violating terms cannot occur, since the symmetry constraints
allow contact interactions in the photoproduction sector start-
ing only from order Q3. We explicitly checked the absence
of power-counting violating terms by replacing all occurring
integrals in the Q3 amplitude by their infrared regular part and
performing an explicit expansion in the small scales. We veri-
fied that all power-counting violating terms cancel out, which
provides a valuable consistency check, because nontrivial can-
cellations are analytically fulfilled. In the �-full approach at
order ε3, we refrained from repeating this exercise, since the
same argument as in the �-less case holds and performing the
comparable test would require considerably more effort. We
conclude that for our study, the EOMS scheme is effectively
equivalent to the M̃S scheme [52,73].

As explained in Ref. [1], the constants b3, b6, h15, and
h16 are redundant at our working order. The shifts to absorb
these LECs in the covariant order-ε3 amplitude through a
redefinition of hA, b1, and h1 are given by di → di + δdi with

δd8 = δd20 = −δd21 = −b1(b3 + b6) + 2hA(h15 + h16)

9
,

δd9 = δd22 = 0. (52)

V. RESULTS AND DISCUSSION

In this section, we present the results of our calculation.
We used our own code written in Mathematica [87], FORM

[88], and FORTRAN and relied on LoopTools [89] and on the X
package [90] for the numerical evaluation of loop integrals.

A. Low-energy constants

In the �-less theory, there are four independent param-
eters to be determined, which are d8, d9, d20, and d21;22 =
d21 − d22/2. Note that while the numerical values of LECs
are, in general, different in the HB and covariant approaches,

the fitting procedure is similar. Thus, when we discuss points
applicable to both formalisms in the �-less fits, we simply
use di for referring to both renormalized parameters d̄i and
d̂ r

i . Note that one cannot assess the constants d21 and d22

individually in real pion photoproduction; we can determine
only the combination d21;22. When including the leading-order
� tree diagrams of order ε2, the additional constant b1 enters
the amplitude. b1 corresponds to the leading-order γ N� cou-
pling constant. At order ε3, the additional coupling h1, the
subleading γ N� coupling is introduced. The values of the
constants taken from other sources are collected in Table I.
The value of the � mass was determined from a fit to the
order-ε2 amplitude as described in Ref. [1].

The numerical values of LECs in the covariant and in the
heavy-baryon approaches are, in general, not directly compa-
rable. First, the values are related by 1/mN corrections, which
originate from the construction of the HB Lagrangian, where
a strict expansion in terms of the inverse nucleon mass is
done, such that the dependence on mN is shifted to a series of
additional contact interactions suppressed by powers in 1/mN .
Note that the corrections are only relevant if the working
order is beyond the order at which the LECs appear first. For
example, the values of b1 in both frameworks can be compared
directly if only the leading � tree contributions (order ε2) are
included, because the difference starts to arise from 1/mN cor-
rections, which, however, are beyond the working order. For
LECs appearing at the loop level, an extra shift generated by
the infrared regular (IR) part of the loop integrals must be con-
sidered (the way of calculating the IR part of a loop integral
is described in, e.g., Ref. [52]). In the covariant framework,
the IR part gives rise to additional numerical contributions,
which affect the fitted values of the LECs. Because these parts
are absent in the HB approach, the covariant LECs cannot be
compared with the HB values, even if inverse nucleon mass
corrections are irrelevant. However, the contributions of the IR
part to the covariant LECs can be calculated analytically and
switched off in order to restore the same meaning of the LECs
in the HB and covariant approaches. We determined these IR
shifts by replacing the integrals of the covariant amplitude
by their corresponding IR term and adjusting the constants in
such a way that the obtained expression vanishes. The shifts
we found for the relevant di’s are given by

�d IR
8 = d̄8 − d̂8 = gA

128F 2
π π2

(
3 + g2

A

)
,

�d IR
9 = d̄9 − d̂9 = gA

128F 2
π π2

( − 1 + g2
A

)
,

�d IR
20 = d̄20 − d̂20 = gA

96F 2
π π2

[
6 + 11g2

A + 3
(
1 + g2

A

)(
1 − γE + ln(4π ) + ln

(
M2

π/m2
N

))]
,

�d IR
21;22 = d̄21;22 − d̂21;22 = − gA

96F 2
π π2

[
3 + 8g2

A + 3g2
A

(
1 − γE + ln(4π ) + ln

(
M2

π/m2
N

))]
, (53)
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where we recall that the constants with the hat refer to HB
parameters.

The numerical differences between LECs determined in a
�-less and a �-full framework are expected to be qualitatively
described in terms of resonance saturation by calculating the
dominating leading-order contributions of the � to specific
LECs, as stated in the decoupling theorem [94]. In our case,
this is accomplished by expanding the order-ε2 �-full tree
diagrams in inverse powers of � ≡ m� − mN and matching
the obtained expressions with the contact term structures of
the �-less theory. This procedure yields

δd8(�) = −δd21;22(�) = −hAb1

9�
, δd9(�) = δd20(�) = 0,

(54)

with δdi(�) = d̄ /�
i − d̄�

i denoting the difference between the
constant d̄i in the �-less (superscript /�) and �-full (super-
script �) approaches.

B. Fitting procedure and Bayesian uncertainties

Ideally, one would fit the LECs to the whole set of avail-
able pion photoproduction data in the relevant energy range.
However, analyzing all the data requires a lot of effort and
is an art of its own, since there is a lot of data available on
the photoproduction process. This is why we choose to fit
to the multipoles of the partial-wave analysis (PWA) from
Mainz, the MAID2007 model [95], which is a more pragmatic
approach. Furthermore, we only fit to the real part of the
multipoles, because the imaginary part follows from unitarity
as stated by Watson’s theorem [96] and does not provide new
information. We fit to the multipoles in the isospin channels,
which is a natural choice because isospin-breaking effects
are not considered in this work. The four physical reaction
channels are linear combinations of the isospin channels. In
the following, we remark on several points relevant for the fits.

1. Uncertainties and fitting procedure

The main disadvantage of using the MAID PWA is that
uncertainties are not provided. We thus assign a relative 5%
error to every multipole, which is a common approach (see,
e.g., Ref. [97] for a similar procedure in the analysis of pion-
nucleon elastic scattering), such that the uncertainty of the
observables reads for our case

δOi =
√(

0.05 Oexpt
i

)2 + (
δO(n)

i

)2
(55)

with Oexpt
i the given value of the observable and δO(n)

i the
truncation error at order n. To estimate the uncertainties
originating from the truncation of the chiral expansion we
follow the Bayesian approach described in Ref. [1], which
is based on the previous developments in the literature (see
Refs. [64–66]). Below, we reproduce the main ingredients of
this procedure.

We assume the following expansion with dimensionless
coefficients ci for an analyzed observable O:

O = O(1) + �O(2) + �O(3) + · · ·
= Oref (c1Q + c2Q2 + c3Q3 + · · · ), (56)

where �O(i) = O(i) − O(i−1) and the superscript i stands
for the order in the small-scale expansion. As compared to
Ref. [1], we adopt a definition more appropriate in the various
considered energy regions of the small parameter Q, following
Ref. [66]:

Q = max

(
Eπ

�b
,

Meff
π

�b

)
, (57)

with Meff
π = 200 MeV, instead of Q = Eπ/�b. The reference

value Oref is chosen to be

Oref = max

( |O(1)|
Q

,
|�O(2)|

Q2
,

|�O(3)|
Q3

)
. (58)

The coefficient cm, where m is the number of a maximal
argument in the max function in Eq. (58), defines the overall
scale, cm = 1, whereas the remaining coefficients are assumed
to be distributed according to the Gaussian prior pr(ci|c̄):

pr(ci|c̄) = 1√
2π c̄

e−c2
i /(2c̄2 ). (59)

The parameter c̄ is assumed to obey a log-uniform probability
distribution

pr(c̄) = 1

ln(c̄>/c̄<)

1

c̄
θ (c̄ − c̄<) θ (c̄> − c̄), (60)

with the cutoffs c̄< = 0.5, c̄> = 10 reflecting the naturalness
assumption.

The truncation error δO(k) is determined by the probability
distribution prC

h (�) of the dimensionless quantity

�k =
∞∑

n=k+1

cnQn ≈
k+h∑

n=k+1

cnQn, (61)

where we choose h = 10. The 1σ error corresponds to the
confidence level 0.68.

We have checked that the choice of the relative “experi-
mental” error has negligible effects on the fit result by varying
its size between 2% and 15%. Of course, our choice affects the
fit quality, but we found that these effects are relatively small,
because the uncertainties are dominated by the Bayesian trun-
cation errors. To obtain the central values of the fit parameters,
we minimize the χ2 function,

χ2 =
∑

i

(
Oexpt

i − O(n)
i

δOi

)2

, (62)

where the sum runs over all energy points from every multi-
pole we incorporate in the configuration.

After obtaining the central values of the fit parameters,
the corresponding uncertainties are determined from the co-
variance matrix, which is approximated by the inverse of the
Hessian:

δyi =
√

Cov(yi, yi ), Cov(yi, y j ) = H−1
i j ,

Hi j = 1

2

∂2χ2

∂yi∂y j

∣∣∣∣
y=ȳ

. (63)

Here, the vector y refers to the set of all fitting parameters, and
ȳ is the vector of best fit values.
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2. Energy range

The energy range in which χPT is applicable is limited
by the lowest-lying not included resonance, which is in the
�-less formulation the � particle. Thus, the � energy re-
gion should be excluded completely in the �-less fit, so that
we choose to restrict the upper energy boundary to

√
s =

1200 MeV. By construction, we expect the range of conver-
gence of HBχPT to be smaller than in the covariant case.
Also, in previous studies, it was shown that the HB approach
yields good agreement with the neutral pion production data
only up to 20 MeV above threshold [98]. Furthermore, we
exclude the region very close to the pion production threshold.
Since we work in the isospin-symmetric limit, which leads to
equal pion masses, our calculation cannot account for effects
generated by the mass difference of the pions. The reaction
threshold lies at

√
s ≈ 1076 MeV, so we restrict the lower

energy boundary of our fits to
√

s = 1090 MeV. We choose
energy steps of 2 MeV, so we have 56 data points per observ-
able in the �-less case. Briefly stated, we use the energy range
1090 � √

s � 1200 MeV in the �-less fit.
In the �-full case, we extend the upper energy boundary to√

s = 1250 MeV to partially take into account the � region.
By construction of the complex-mass approach, unitarity is
strongly violated very close to threshold due to the constant
imaginary part of the � mass in the � pole diagrams. How-
ever, unitarity will be restored perturbatively when including
higher orders. As long as we first include only the � tree
diagrams, we expect the description of the data to be worse
near threshold compared to the �-less approach. However,
these effects should be dominant in the imaginary parts of the
multipoles, which we do not fit. Therefore, we still choose to
include the threshold region in our fitting range and comment
on the description of the threshold region in the next section.
Stated briefly, we fit in the range 1090 � √

s � 1250 MeV.
In our ε3 study, we have again modified the energy range.

In principle, the same arguments as in the case of Q3 + ε2

hold, but we found that the data in the threshold region sig-
nificantly affect the subleading γ N� coupling constant h1,
while having little impact on the other LECs. Because we are
interested in a precise determination of the γ N� couplings,
we removed the threshold region in the ε3 fits and take into
account only the data for the range 1150 � √

s � 1250 MeV.

3. Data configuration

We restrict ourselves to the analysis of s- and p-wave mul-
tipoles, because they contain by far the largest contributions
to the photoproduction cross sections. Moreover, in higher
partial waves, the unknown LECs contribute only as 1/mN

corrections. In Fig. 1, the results of the MAID analysis are de-
picted [95]. Furthermore, the results of the energy-dependent
[99,100] and energy-independent [101] GWU-SAID multi-
pole amplitudes are shown in order to illustrate differences
between various partial-wave analyses. The agreement be-
tween the three sets of data is excellent for the M3/2

1+ multipole,
which corresponds to the magnetic excitation of the � reso-
nance in the s channel, and reasonably good for the E0+ and
M1− multipoles.

In the �-less case, we are interested in choosing a fit
configuration sensitive to the values of the LECs d8, d9,
d20, and d21;22. Therefore, it is instructive to analyze the
contributions of the parameters to the various amplitudes.
The three multipoles E0+, M1+, and M1− all receive leading-
order contributions of one or several LECs with respect to
the 1/mN expansion, i.e., O(m0

N ). The multipole E1+ gets
only next-to-leading-order 1/mN contributions from all four
parameters; therefore, we exclude E1+ completely from the
�-less fit. We choose to fit the I = 3/2 channel first, which
is motivated by the agreement of the data sets, the order
of magnitude of the multipoles, and bearing in mind that
we are interested in analyzing the differences to the �-full
theory, which is expected to bring dominant contributions
to the I = 3/2 channel. Altogether, we first fit to the three
multipole amplitudes E3/2

0+ , M3/2
1+ , and M3/2

1− , which determines
the parameters d8, d20, and d21;22. The constant d9 does not
contribute to the I = 3/2 channel and is fitted to the I = 1/2
channels subsequently. We anticipate that the constants d8,
d20, and d21;22 are sufficiently constrained from the I = 3/2
fit to serve as an input for the I = 1/2 fit. At leading order in
1/mN , d9 contributes to both proton and neutron channels of
M1/2

1+ and M1/2
1− . However, while performing the fit, we found

that there is no value of d9 which results in an acceptable
description of M1/2

1− . This is caused by large loop contributions
to these multipoles. We expect that this problem is resolved if
higher-order contributions are taken into account. Thus, we
decided to exclude M1/2

1− from the second fit and determine d9

only from M1/2
1+ . When removing M1−, the central value of d9

only changes very slightly, which supports our strategy, but
of course the fit quality is affected. The uncertainty of d9 is
determined analogously to Eq. (63) by

δd9 =
(

1

2

∂2χ2
I=1/2

∂d2
9

)1/2

. (64)

This procedure neglects the fact that δd9 also receives con-
tributions from the uncertainties of the previously determined
LECs. We have checked that these effects indeed have a small
impact, so that it is legitimate to ignore them. This insight also
supports our idea that d8, d20, and d21;22 are sufficiently well
constrained by the first fit.

In the case of including the �-full ε2 tree diagrams, the
additional constant b1 is introduced. In the s channel, b1

contributes at leading order in 1/mN only to M1+, which is
already part of our fitting configuration. As b1 contributes
to the I = 3/2 channel, we obtain its central value as well
as d̄8, d̄20, and d̄21;22 from the I = 3/2 fit. Subsequently, we
determine d̄9 from the I = 1/2 channel as before. Note that at
this working order, it is not necessary to distinguish between
covariant or HB b1, because 1/mN corrections and renormal-
ization counterterms are beyond the working order.

At order ε3, one includes the leading �-full loops and the
tree diagrams with the additional constant h̄1. The s-channel
�-pole graphs with h̄1 give essential contributions to the
electric � multipole E1+. Therefore, we slightly modify our
fitting procedure and include E1+ in the I = 3/2 fit, which
determines in the following the covariant LECs d̄8, d̄20, d̄21;22,
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FIG. 1. Order-Q3 fits obtained in the heavy-baryon approach to the real parts of the s- and p-wave photoproduction multipoles. The solid,
dashed, and dotted lines denote the Q3, Q2, and Q1 results, respectively. The darker (lighter) shaded bands show the estimated truncation errors
at order Q3 with 1σ (2σ ) confidence. The solid circles show the results of the MAID PWA from Ref. [95], and the squares (diamonds) are the
results of the energy-dependent (energy-independent) SAID analysis from Refs. [99,100] (Ref. [101]).

b̄1, and h̄1. Subsequently, we fit d̄9 to the I = 1/2 channel
as before. At this working order, we find it to be especially
important to consider I = 3/2 separately in order to access
h̄1. Because h̄1 starts to contribute from one order higher in
the 1/mN series, we assume that our fits are rather insensitive
to this constant. The relation between the bare LEC h1 and the
renormalized LEC h̄1 was given in Sec. IV (the same applies
to b1 and b̄1).

Note that in the studies based on the δ counting (e.g.,
in Refs. [59–62,102]), a different convention for the γ N�

structures in the effective Lagrangian is adopted in terms of
the constants gM and gE . The on-shell matching leads to the
following relation among the two sets of constants [1]:

b̄1 = 3
m�

mN (mN + m�)
gM , h̄1 = 3

2

1

mN + m�

(gE + gM ).

(65)

Nevertheless, a direct comparison of the numerical values of
the γ N� constants obtained in different schemes would be

misleading because they are not observable. A better strategy
is to compare with empirical quantities, such as the ratio of
the electric and magnetic � multipoles in the � region as we
do below.

C. Order Q3 results

In Table II, we show our fit results for the HB LECs
including uncertainties. For the I = 3/2 (I = 1/2) fit, we used
168 (112) data points, so that the reduced χ2/n is equal to 0.9

TABLE II. Low-energy constants obtained from a �-less order-
Q3 fit in the HB approach to the real parts of s- and p-wave
photoproduction multipoles of the MAID model from Ref. [95]. All
LECs are given in units of GeV−2.

d̂ r
8 d̂ r

9 d̂ r
20 d̂ r

21;22

HB order-Q3 fit value −7.7(3) 0.03(2) −17.2(5) 14.3(5)
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TABLE III. Low-energy constants obtained from a �-less order-
Q3 covariant fit to the real parts of s- and p-wave photoproduction
multipoles of the MAID model from Ref. [95]. All LECs are given
in units of GeV−2.

d̄8 d̄9 d̄20 d̄21;22

Covariant order-Q3 fit value −4.9(2) 0.01(1) −8.5(3) 9.4(4)

(1.8), where n stands for the number of data points minus the
number of fitted LECs. Table III collects the corresponding
results of the covariant approach, where we emphasize again
that the fits are fully comparable in terms of data configuration
and energy range. In the covariant formalism, we obtain for
the reduced χ2/n 0.3 (0.2) for the I = 3/2 (I = 1/2) fit.

The HB (covariant) fit results are shown in Figs. 1 (2),
respectively, where the plotted energy range corresponds to
our fitting range. At this point, we remind that in the I = 3/2
channel, E3/2

1+ has not been used in the fit. In both I = 1/2

channels, only M1/2
1+ was used for the fit; all other multipoles

are predictions. We also remind that we used the 1σ confi-

dence interval for the determination of the truncation errors,
but our figures also show the 2σ band. Also, we adopted
a rather conservative value of the breakdown scale of the
chiral expansion �b = 650 MeV motivated by recent studies
in the few-nucleon sector [66,103]. Notice, however, that this
estimation of �b in the few-nucleon sector [64,103,104] does
not necessarily apply to the case at hand. In particular, for
reactions where the � resonance plays an important role, e.g.,
pion-nucleon scattering at intermediate energies, the break-
down scale of the �-less χPT is considerably lower (see, e.g.,
Ref. [67]).

In the I = 3/2 channel, we find both HB and covariant
descriptions satisfactory with the exception of the electric �

multipole E3/2
1+ , which is not well reproduced. The latter fact

is probably due to the missing � contributions. We expect the
description of this amplitude to improve when including them,
which will be discussed in Sec. V D. Note that the shape of
the M3/2

1+ multipole is not well reproduced for c.m. energies
above

√
s = 1150 MeV, which is also due to missing � dy-

namics. We expect that the inclusion of the � contributions
will correct this behavior significantly (see also Sec. V D). The
E3/2

0+ and M3/2
1− multipoles are better described in the covariant

FIG. 2. Order-Q3 fits obtained in the covariant approach to the real parts of the s- and p-wave photoproduction multipoles. The notation is
as in Fig. 1.
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TABLE IV. Low-energy constants obtained from an order-(Q3 + ε2) covariant fit to the real parts of s- and p-wave photoproduction
multipoles of the MAID model from Ref. [95]. All LECs are given in units of GeV−2; b1 is given in m−1

N .

d̄8 d̄9 d̄20 d̄21;22 b1

Covariant order-(Q3 + ε2) fit value 0.72(3) 0.02(1) −2.1(1) −0.1(1) 5.6(1)

case, which explains the differences in the fit quality. The
smaller value of χ2/n in the covariant approach may indicate
that the Bayesian truncation uncertainties are overestimated
or that the fit range is not broad enough to constrain the LECs
sufficiently. At this point we emphasize that n should not be
equated with the number of degrees of freedom, because our
choice of the number of data points is in some way arbi-
trary. Varying the energy steps results in different values of
the reduced χ2/n; therefore, one cannot associate a perfect
fit with a value of χ2/n = 1. The values of χ2/n should,
therefore, not be directly interpreted as a statistical measure of
the fit quality but used to compare the relative quality of fits
obtained with the same preconditions. Generally, one expects
the values of the multipoles at neighboring energy points to be
correlated, so that the actual number of degrees of freedom is
presumably much smaller than n. Moreover, we also neglect
possible correlations among the theoretical errors at different
energies, which makes our error estimates more conservative.
For a detailed discussion of the effects of such correlations,
we refer the reader to Ref. [105]. For these reasons, good fits
of the empirical data are expected to have χ2/n considerably
smaller than 1.

In the I = 1/2 channels, the difference between HB and
covariant approaches is more pronounced. The description of
E1/2

0+ of the MAID analysis is clearly better in the covariant

approach, and also the description of M1/2
1+ is better, which is

reflected in the fit quality. Clearly, the value of χ2/n = 1.8 in
the HB case shows that the data cannot be well described. On
the other hand, the small value of χ2/n = 0.2 obtained in the
covariant approach indicates that more data might be required
to constrain d9 better.

With the obtained fit values in both approaches, we now
analyze the numerical differences between HB and covariant
constants as discussed in Sec. V A. Substituting the employed
values of gA and Fπ into the right-hand sides of Eqs. (53), the
numerical values of the predicted shifts read

�d IR
8 = 0.6 GeV−2, �d IR

9 = 0.08 GeV−2,

�d IR
20 = 2.8 / GeV2, �d IR

21;22 = −1.9 GeV−2, (66)

whereas we find for the actual differences from Tables II and
III

d̄8 − d̂ r
8 = 2.8 GeV−2, d̄9 − d̂ r

9 = −0.02 GeV−2,

d̄20 − d̂ r
20 = 8.7 GeV−2, d̄21;22 − d̂ r

21;22 = −4.9 GeV−2.

(67)

These results show that the IR shifts can, at best, only qual-
itatively explain the differences between HB and covariant
approaches. In particular, the agreement for d9 is excellent,

while for d8, d20, and d21;22, the differences have the same
sign as the IR shift. The remaining gap between the two sets
of fit parameters is probably due to the poorer fit quality in the
HB approach. We also find that the values of the covariant
LECs are more natural as in the HB approach. Here, the
term “natural” refers to the naive estimate that the di’s should
roughly be of order 1 in the units of �−2

b :

di ∼ 1

�2
b

≈ 2.5 GeV−2 with �b = 650 MeV. (68)

D. Order-(Q3 + ε2) results

In Table IV, we show our fit results for the LECs in the
covariant approach at order Q3 + ε2. The reduced χ2/n is
equal to 0.5 (1.0) in the I = 3/2 (I = 1/2) channel.

In Fig. 3, we show the results. The most outstanding dif-
ference from the �-less case is the significantly improved
description of the M3/2

1+ multipole. In comparison to the �-less
approach, the region beyond

√
s = 1150 MeV is reproduced

excellently both in magnitude and in shape. The leading �

tree diagrams suffice to correct the Q3 description of M3/2
1+ .

However, the description of E3/2
1+ is unsatisfactory. We pre-

sume that including ε3 terms will improve the description,
because the subleading γ N� coupling constant h1 contributes
at its leading order in 1/mN to E3/2

1+ . In the I = 1/2 channels,
for all s and p waves, the data description is not worse than in
the �-less case. Only M1/2

1+ was fitted for comparability with
the �-less approach; all other multipoles are reproduced to
a good extent. Here, M1/2

1− must be accentuated, which was
overshot dramatically in the �-less theory.

For the sake of completeness, we mention that we also
performed fully comparable fits in the HB approach, using a
consistent value of the � mass fitted to the HB order-ε2 am-
plitude of m� = (1196.1 − 45.2 i) MeV. In Fig. 4, we show
E0+ and M1+ in the I = 1/2 channel in order to illustrate
that the HB results are, however, by far not as satisfying as
the covariant results, which we observe for all multipoles. We
conclude that, as expected, the heavy-baryon (nonrelativistic)
expansion is not quite efficient if one wants to extend the
scheme to the � region. Therefore, we do not give the full
set of results here; however, we found that the resulting value
of b1 = 5.5(1)m−1

N is still very close to the covariant one. This
is a nice indication of the stability of this constant.

Next, we take a look at the differences between the �-
less and �-full fit values of the LECs from the point of �

resonance saturation, as explained in Sec. V A. Numerically,
the expected differences read, using the covariant fit value of
b1,

δd8(�) = −δd21;22(�) = −3.4 GeV−2, (69)
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FIG. 3. Order-(Q3 + ε2) fits obtained in the covariant approach to the real parts of the s- and p-wave photoproduction multipoles. The solid,
dashed, and dotted lines denote the Q3 + ε2, ε2, and ε1 results, respectively. The darker (lighter) shaded bands show the estimated truncation
errors at order Q3 with 1σ (2σ ) confidence. The solid circles show the results of the MAID PWA from Ref. [95], and the squares (diamonds)
are the results of the energy-dependent (energy-independent) SAID analysis from Refs. [99,100] (Ref. [101]).

and for the actual differences

d̄ /�
8 − d̄�

8 = −5.6 GeV−2, d̄ /�
9 − d̄�

9 = −0.01 GeV−2,

d̄ /�
20 − d̄�

20 = −6.4 GeV−2, d̄ /�
21;22 − d̄�

21;22 = 9.5 GeV−2.

(70)

As one can see, the differences between �-less and �-full
parameters are only very qualitatively explained by the reso-
nance saturation.

In the following, we compare our covariant order-(Q3 +
ε2) results with data of the neutral pion production channel
γ p → π0 p. Of the four physical reaction channels given in
Eq. (8), this channel is the most interesting for our purposes.
The amplitudes for the two charged pion production channels
γ p → π+n and γ n → π− p are dominated by the leading-
order Kroll-Ruderman terms, such that subleading terms give
only very small corrections. The remaining neutral channel
γ n → π0n is difficult to measure in experiments since this
requires a neutron target. Therefore, little data are available
for this channel.

The recent experiment at the Mainz Microtron (MAMI)
provided high-precision data for the differential cross sec-
tion dσ

d�
and the linearly polarized photon asymmetry �

[38,39,70]. We compare our findings with these data and em-
phasize that our results for both observables were calculated
as discussed in Sec. II; in particular we do not use the s- and
p-wave approximation. In Figs. 5 and 6, we depict our results
obtained from the covariant order-(Q3 + ε2) fit, where the de-
picted error bars show the combined statistical and systematic
error:

δOi =
√(

δOstat
i

)2 + (
δOsys

i

)2
. (71)

The systematic uncertainties are 4% for dσ
d�

and 5%
for �.

In the analysis of the s- and p-wave multipole amplitudes,
we found that the order-(Q3 + ε2) covariant fits give an overall
accurate reproduction in our considered energy region. By
comparison with the differential cross section and polariza-
tion asymmetry, we find our observation confirmed. Both
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FIG. 4. Selected plots of order-(Q3 + ε2) fits obtained in the heavy-baryon approach to the real parts of the s- and p-wave photoproduction
multipoles. The notation is as in Fig. 3.

observables are reproduced rather accurately up to the �

region as expected from the quality of the fit to the multipoles.
The apparent underestimation of the theoretical errors for
some energies is due to a worse convergence of the chiral
expansion for the neutral channels. In particular, the order-Q1

contribution is absent in these channels, which makes the
number of considered orders insufficient for a reliable trun-
cation error estimation in the Bayesian approach.

E. Order ε3 results

Finally, we give our results for the LECs determined from
the covariant fit at order ε3 in Table V. In the I = 3/2 fit, the
number of used data points is 204 due to the inclusion of the
E1+ multipole and 102 in the I = 1/2 channel. The reduced
χ2/n is equal to 0.2 (2.2) in the I = 3/2 (I = 1/2) channel.
The corresponding results for the multipoles are depicted in
Fig. 7. As we can see from Fig. 7, the reproduction of the
I = 3/2 channel has improved compared to the covariant
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FIG. 5. Covariant order-(Q3 + ε2) result of the unpolarized differential cross section in the channel γ + p → π0 + p. The solid lines denote
the Q3 + ε2 results, and the darker (lighter) shaded bands show the estimated truncation errors at order Q3 + ε2 with 1σ (2σ ) confidence. The
data are from Refs. [38,70]; error bars correspond to the combined statistical and systematical error.
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FIG. 6. Covariant order-(Q3 + ε2) result of the linearly polarized photon asymmetry in the channel γ + p → π0 + p. The solid lines denote
the Q3 + ε2 results, and the darker (lighter) shaded bands show the estimated truncation errors at order Q3 + ε2 with 1σ (2σ ) confidence. The
data are from Refs. [38,39,70]; error bars correspond to the combined statistical and systematical error.

Q3 + ε2 fit. In particular, E1+ is now matched significantly
better due to the inclusion of the subleading γ N� coupling
constant h̄1. In the I = 1/2 channels, however, the description
is distinctly worse compared to the Q3 + ε2 case. In particular,
the reproduction of the E1/2

0+ multipoles fails, which has a
substantial effect on the reproduction of cross sections, for
example. Also, the fit quality in the I = 1/2 channels of
χ2/n = 2.2 is significantly worse compared to the Q3 + ε2

fit, where we found χ2/n = 1.0. We also remark that M1/2
1−

is overshot again, but not as badly as in the �-less case (see
Fig. 2). These observations indicate a slow convergence of the
scheme in the I = 1/2 channels, and one needs to extend the
calculation to higher orders (such as Q4 + ε3 or ε4) to obtain
a better description of the data.

To check that our determined value of the � mass in the
covariant scheme is consistent with the � contribution to the
πN elastic channel, we plot the imaginary part of E3/2

1+ and

M3/2
1+ in Fig. 8. Because the phase of the pion photoproduction

amplitude is determined by the elastic πN phase shifts, a sat-
isfying reproduction of the imaginary parts is important. We
find the agreement reasonable, with the deviation in Im{M3/2

1+ }
close to threshold originating from the usage of the constant
imaginary part of the � mass in the �-pole diagrams. Further-
more, the E2/M1 ratio

REM = Im
{
E3/2

1+
}

Im
{
M3/2

1+
}∣∣∣∣∣√

s=1232 MeV

≈ −0.033 ± 0.014 (72)

is consistent with the PDG value −0.030 � REM � −0.020
[91], whereas at order Q3 + ε2, we found REM ≈ −0.071 ±
0.014.

Finally, to analyze the efficiency of the SSE and the δ

expansion, we have compared the terms in the amplitude
proportional to h2

AgA and to h2
Ag1. The former contribution is

generated by one-loop diagrams with one and two � lines,
whereas the latter one originates from one-loop graphs with
two and three � lines. While this is not exactly the separation
encountered in the δ expansion, these two types of contribu-
tions are individually gauge invariant as explained in Sec. III,
which makes their comparison model independent.

It turns out that the h2
Ag1 terms are typically smaller than

the h2
AgA terms. Their maximal contribution (relative to the

h2
AgA terms) is observed in the multipoles M1+ and M1− for

all isospin channels and amounts to 30–50%. This ratio is
consistent with the expectations based on the δ counting,
namely, δ = Mπ/� ≈ 0.5. However, the description of the
data in the I = 1/2 channel is worse at order ε3 than at order
Q3 + ε2, which might be an indication that some higher-order
contributions are important. Therefore, the comparison seems
rather inconclusive at this point. To draw a clearer conclusion,
it would be desirable to extend the scheme to higher orders
and look at relative importance of terms of order O(Q4) and
O(ε4).

VI. SUMMARY AND CONCLUSIONS

We have studied pion photoproduction in chiral effective
field theory with explicit � degrees of freedom. Starting from
the �-less approach, we considered the reaction up to the
leading loop order in the heavy-baryon and in the manifestly
covariant schemes. In particular, we analyzed the difference
between the obtained HB and covariant results for low-energy
constants in terms of the infrared regular shifts. We extended

TABLE V. Low-energy constants obtained from an order-ε3 covariant fit to the real parts of s- and p-wave photoproduction multipoles of
the MAID model from Ref. [95]. All LECs are given in units of GeV−2; b̄1 and h̄1 are given in m−1

N .

d̄8 d̄9 d̄20 d̄21;22 b̄1 h̄1

Covariant order-ε3 fit value −0.25(4) −0.73(2) 2.2(1) −6.8(1) 5.3(1) 0.9(1)
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FIG. 7. Order-ε3 fits obtained in the covariant approach to the real parts of the s- and p-wave photoproduction multipoles. The solid,
dashed, and dotted lines denote the ε3, ε2, and ε1 results, respectively. The darker (lighter) shaded bands show the estimated truncation errors
at order Q3 with 1σ (2σ ) confidence. The solid circles show the results of the MAID PWA from Ref. [95]; the squares (diamonds) are the
results of the energy-dependent (energy-independent) SAID analysis from Refs. [99,100] (Ref. [101]).

our calculations to the leading � contributions employing the
complex-mass approach using a fitted � mass and studied the
effects of resonance saturation to the LECs. Moreover, we for
the first time provide results for pion photoproduction at order
ε3 in the small scale expansion scheme, where the leading
�-full loop order is taken into account. The results for the
LECs d̄8, d̄9, d̄20, d̄21;22, b̄1, and h̄1 are obtained by fits to

FIG. 8. Imaginary parts of E 3/2
1+ and M3/2

1+ using the covariant
order-ε3 fit results. The notation is as in Fig. 7.

the MAID partial-wave analysis using a Bayesian approach
to theoretical uncertainties.

The main conclusions of our analysis of pion photoproduc-
tion can be summarized as follows:

(i) In the �-less approach, the description of pion photo-
production is satisfying only in a very limited energy
range above threshold and fails approaching the �

region. Especially for the magnetic multipole M3/2
1+ ,

the description agrees with the data only up to ap-
proximately

√
s = 1150 MeV. Studying the reaction

in the covariant framework yields a better agreement
with the data than the heavy-baryon approach. The
results of our calculations are very relevant for on-
going investigations of few-nucleon electromagnetic
reactions (see Ref. [106] for a review article). While
the two-nucleon charge density operator at the lead-
ing one-loop order does not involve LECs from L(3)

πN
[3,107], which allowed us to perform high-accuracy
calculation of the deuteron charge and quadrupole
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form factors [108,109], the corresponding current op-
erator depends on the LECs d8, d9, d21, and d22 [3].
In particular, the LEC d9 governs the long-range two-
nucleon contribution to the deuteron magnetic form
factor [4].

(ii) Incorporating the leading � tree contributions sig-
nificantly extends the energy range in which a good
agreement with the s- and p-wave multipoles can be
achieved. We found that the leading γ N� coupling
constant b1 is stable with respect to variation of the
energy range, assigned relative error to the data, and
combination of I = 3/2 and I = 1/2 fit. The dif-
ference between the numerical values of the LECs
obtained in a �-less and �-full approach can, at least
very qualitatively, be explained in terms of resonance
saturation. The results from the covariant order-
(Q3 + ε2) calculation are found to reproduce the
high-precision data of cross sections and polarization
asymmetries from Refs. [38,39,70] remarkably well.
However, the order-(Q3 + ε2) calculation performed
within the heavy-baryon scheme demonstrates a much
worse description of the data. This is an indication of
the fact that the 1/mN expansion is not efficient in the
� region.

(iii) The next-to-leading � contributions give rise to sur-
prisingly large corrections to the scattering amplitude.
However, these corrections are important to achieve
a reasonable description of E3/2

1+ . At the same time,
the description of the I = 1/2 channel gets worsened
significantly. The overall reproduction of the s- and
p-wave multipoles is worse than in the Q3 + ε2 ap-
proach. However, the given estimate of the leading
and subleading γ N� coupling constants b1 and h1

can be taken as reliable, because the isospin-3/2 chan-
nel is very well described. Also, the values agree with
our findings from Ref. [1]. Notice further that while
the explicit treatment of the � resonance in χPT
helps to avoid the unnecessary lowering of the break-
down scale �b, the expansion parameter in the �-full
scheme becomes ∝ �. It is, therefore, not a priori
clear that the framework with explicit � degrees of
freedom features a smaller expansion parameter. For
example, the 1/mN expansion of the nucleon polariz-
abilities was found to converge considerably slower
upon the explicit inclusion of the � resonance [69].
Thus, the most efficient scheme can only be deter-
mined upon performing explicit calculations.

Based on the conclusions of our analysis of pion photopro-
duction, we find that it would be very interesting to extend
the analysis in the following points. In our work, we have
focused on calculating the s- and p-wave multipoles, because
they give by far the largest contributions to cross sections.
However, in Refs. [110,111], the importance of d waves to
observables was pointed out. Therefore, it would be worth-
while to extend the analysis to higher partial waves or to the
analysis of observables directly. Also, further insight could
be gained from extending the covariant analysis to higher
orders (Q4 + ε3 or ε4) given the fairly slow convergence of the

small scale expansion scheme. A �-less Q4 calculation was
already provided by Hilt et al. [54], but the improvement in
the description was only moderate, especially in the � region.
Since our analysis revealed significant improvement in the
description of I = 3/2 multipole amplitudes in the � region,
but a worse description of the I = 1/2 channels, the effects
of the Q4 (ε4) terms in combination with the order-ε3 terms
would be most interesting to study. This will also allow one to
draw a clearer conclusion about the efficiency of the SSE and
the δ-counting schemes.
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APPENDIX A: RELATING DIFFERENT SETS
OF AMPLITUDES

The relation between the coefficients Ai and Bi of Eq. (11)
and Eq. (14) can be found by equating the two representations:

8∑
i=1

BiV
μ

i =
4∑

i=1

AiMμ
i . (A1)

Remembering that V4 and V8 are not needed for real photons
(ε · k = 0, k2 = 0) and using the two relations obtained by
current conservation of the matrix element (13), the coeffi-
cients Ai can be obtained from Bi as follows:

A1 = i(B5 + mN B6), A2 = i
B3

k · p + k · p′ ,

A3 = iB7, A4 = i

2
B6. (A2)

The relations between the invariant amplitudes Ai and the
amplitudes Fi read

F1 = −W − mN

8πW

√
(Ep + mN )(Ep′ + mN )

×
[

A1 + (W − mN )A4 − 2ν

W − mN
(A3 − A4)

]
,

F2 = −W + mN

8πW
|q|

√
Ep − mN

Ep′ + mN

×
[
−A1 + (W + mN )A4 − 2ν

W + mN
(A3 − A4)

]
,

F3 = −W + mN

8πW
|q| √(Ep − mN )(Ep′ + mN )

×
[

W 2 − m2
N

W + mN
A2 + A3 − A4

]
,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 9. First set of �-full loop diagrams.

F4 = −W − mN

8πW
|q|2

√
Ep + mN

Ep′ + mN

×
[
−W 2 − m2

N

W − mN
A2 + A3 − A4

]
, (A3)

where we have used ν = − 1
2 k · q and W = √

s is the c.m.
energy.

APPENDIX B: FEYNMAN DIAGRAMS

In Figs. 9–13, we present the Feynman loop diagrams for
pion photoproduction that appear at order ε3. We cluster them
in five gauge-invariant sets. The lower-order diagrams were
already shown in Ref. [1].

APPENDIX C: COUNTER TERMS

In this Appendix, we present the expressions for the renor-
malized quantities and the counter terms.

1. Loop integrals

The loop integral functions are defined as

A0(m2) = 1

i

∫
dd l

(2π )d

μ4−d

l2 − m2
,

B0
(
p2, m2

0, m2
1

) = 1

i

∫
dd l

(2π )d

μ4−d(
l2 − m2

0

)(
(l + p)2 − m2

1

) ,

J0(ω) = 1

i

∫
dd l

(2π )d

μ4−d(
l2 − M2

π

)
(v · l + ω)

,

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 10. Second set of �-full loop diagrams.

C0
(
p2, (p − q)2, q2, m2

0, m2
1, m2

2

)
= 1

i

∫
dd l

(2π )d

μ4−d(
l2 − m2

0

)(
(l + p)2 − m2

1

)(
(l + q)2 − m2

2

) .

(C1)

2. Mesonic counter terms

The renormalization rules for the pion mass, field redefini-
tion, and decay constant are given below. We remind that the
parameter α is the unphysical constant from the general pion
field parametrization [Eq. (23)]:

M2 = M2
π + δM (4), δM (4) = M2

π

2F 2
π

(
A0

(
M2

π

) − 4M2
π l3

)
,

(C2)

Zπ = 1 + δZ (4)
π , δZ (4)

π = 1

F 2
π

(
A0

(
M2

π

)
(1 − 10α) − 2M2

π l4
)
,

(C3)

F = Fπ + δF (4)
π , δF (4)

π = − 1

Fπ

(
A0

(
M2

π

) + M2
π l4

)
. (C4)

3. Heavy-baryon counter terms

a. Nucleon mass and field renormalization. The HB ex-
pressions for the redefinition of the nucleon mass and field
read

m = mN + δm(2) + δm(3), δm(2) = 4c1M2
π ,

δm(3) = −3g2
AM2

π

4F 2
π

J0(0), (C5)

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 11. Third set of �-full loop diagrams.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m) (n)

(o) (p) (q) (r)

FIG. 12. Fourth set of �-full loop diagrams.

ZN = 1 + δZ (3)
N , δZ (3)

N = − 3g2
AM2

π

32 π2F 2
π

+ 9g2
A

4F 2
π

A0
(
M2

π

)
.

(C6)

b. � mass and field renormalization. The � mass and field
are renormalized as

m̊� = m� + δm(2)
� + · · · , δm(2)

� = 4c�
1 M2

π , (C7)

and

Z� = 1 + · · · , (C8)

where the ellipses refer to terms which are not relevant at the
considered order in the expansion.

c. Axial nucleon coupling. The renormalization rules for
the axial nucleon coupling constant gA in the HB sector are
given below. Note that we have already taken into account
the Goldberger-Treiman discrepancy to fully remove the re-
dundant for pion photoproduction constant d18 from the rules.
For a recent high-precision determination of the pion-nucleon

coupling constants and the Goldberger-Treiman discrepancy
from neutron-proton and proton-proton scattering data, see
Ref. [112]. Here, g is the bare and gA is the physical constant.

g = gA + δg(3),

δg(3) =
(

−4d16 + 2d18 + g3
A

16 π2F 2
π

)
M2

π

−
(
gA + 2g3

A

)
F 2

π

A0
(
M2

π

)
. (C9)

d. Electromagnetic form factors of the nucleon. The re-
placement rules for the counter terms of the constants c6

and c7 are given below, where we denote the renormalized
quantities by the bar:

c6 = c̄6 + δc(3)
6 , δc(3)

6 = −2mN g2
A

F 2
π

J0(0), (C10)

c7 = c̄7 + δc(3)
7 , δc(3)

7 = mN g2
A

F 2
π

J0(0). (C11)

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

FIG. 13. Fifth set of �-full loop diagrams.
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4. Covariant counter terms

a. Nucleon mass and field renormalization. In the following, we introduce the dimensionless parameters α = Mπ

mN
and β = m�

mN
.

The ratio of the masses α is not to be confused with the unphysical off-shell parameter α. The renormalization rules for the
nucleon mass and field redefinition are given below. For convenience, we give the contributions arising from the � resonance
separately. This means that all corrections δx(i,�) are set to zero in the �-less case:

m = mN + δm(2)
N + δm(3)

N + δm(3,�)
N , (C12)

δm(2)
N = 4M2

π c1, (C13)

δm(3)
N = −3g2

AmN

2F 2
π

(
A0

(
m2

N

) + M2
πB0

(
m2

N , M2
π , m2

N

))
, (C14)

δm(3,�)
N = − h2

Am3
N

576 π2F 2
π β2

[α4(16β + 13) − 4α2(3β + 2) + 3β4 − 12β3 − 4β2 + 4β + 2]

+ mN h2
A

6F 2
π β2

[
(α4 − α2(2β2 − 6β − 5) + (β − 1)(β + 1)3)A0

(
M2

π

)
− (α4 − 2α2(β2 + β + 1) + β4 + 2β3 − β2 + 2β + 1)A0

(
m2

�

)
− (α2 − (β − 1)2)(α2 − (β + 1)2)2m2

N B0
(
m2

N , M2
π , m2

�

)]
, (C15)

ZN = 1 + δZ (3)
N + δZ (3,�)

N , (C16)

δZ (3)
N = 3g2

A

4F 2
π (α2 − 4)

[
M2

π

4π2
+ (5α2 − 12)A0

(
M2

π

) − 4α2A0
(
m2

N

) − 4M2
π (α2 − 3)B0

(
m2

N , M2
π , m2

N

)]
, (C17)

δZ (3,�)
N = h2

A

6F 2
π β2

[
(3α4 − α2(6β2 + 4β + 9) + (β + 1)2(3β2 − 2β + 5))A0

(
M2

π

)
− (3α4 + α2(−6β2 − 4β + 2) + 3β4 + 4β3 + β2 − 8β − 5)A0

(
m2

�

)
− (3α6 − α4(9β2 + 4β + 1) − α2(−9β4 − 8β3 − 2β2 + 4β + 7)

− (β + 1)3(3β3 − 5β2 + 7β − 5))m2
N B0

(
m2

N , M2
π , m2

�

)]
. (C18)

b. � mass and field renormalization. The � mass and field are renormalized as

m̊� = m� + δm(2)
� + · · · , δm(2)

� = 4c�
1 M2

π , (C19)

and

Z� = 1 + · · · , (C20)

where the ellipses refer to terms which are not relevant at the considered order in the expansion.
c. Axial nucleon coupling. The renormalization rules for the axial nucleon coupling constant gA are given below. Note that

we use the auxiliary variables ai, bi, and ci only in this particular context for reasons of clarity and comprehensibility:

g = gA + δg(3) + δg(3,�), (C21)

δg(3) = −2(2d16 − d18)M2
π − 3g3

AM2
π

16π2F 2
π (α2 − 4)

− gA

F 2
π (α2 − 4)

[(
α2 − 4 + 2g2

A(2α2 − 5)
)
A0

(
M2

π

)
+ (

8 − (
2 + 3g2

A

)
α2

)
A0

(
m2

N

) + g2
Am2

N (α2 − 4)B0
(
M2

π , m2
N , m2

N

)
+ (

8 − 2α2 − 3g2
A(α2 − 3)

)
M2

π B0
(
m2

N , M2
π , m2

N

) + g2
AM2

πm2
N (α2 − 4)C0

(
m2

N , M2
π , m2

N , M2
π , m2

N , m2
N

)]
, (C22)

δg(3,�) = a0 + a1A0
(
M2

π

) + a2A0
(
m2

N

) + a3A0
(
m2

�

) + b1B0
(
M2

π , m2
N , m2

�

) + b2B0
(
M2

π , m2
�, m2

�

)
+ b3B0

(
m2

N , M2
π , m2

N

) + b4B0
(
m2

N , M2
π , m2

�

) + c1C0
(
m2

N , M2
π , m2

N , M2
π , m2

N , m2
�

)
+ c2C0

(
m2

N , M2
π , m2

N , M2
π , m2

�, m2
�

)
, (C23)

a0 = − gAh2
Am2

N

5184 π2F 2
π β2

[α4(24β + 325) − 4α2(3β4 − 6β3 − 8β2 + 140β + 45)

+ 12α6 − 69β4 − 384β3 + 100β2 + 248β + 158]
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− 5g1h2
Am2

N

31104 π2F 2
π β4

[3α10 − α8(3β2 + 5β + 9) − α6(3β4 − 10β2 − 30β + 60)

+α4(3β6 + 5β5 − 3β4 − 20β3 − 114β2 − 248β − 34)

− 2α2(7β6 + 59β5 − 129β4 − 59β3 − 76β2 − 68β − 2)

− 2β(17β5 − 82β4 + 18β3 + 28β2 + 42β + 20)], (C24)

a1 = − gAh2
A

54F 2
π β2

[4α6 + α4(−8β2 − 8β + 31) + α2(4β4 + 8β3 − 46β2 − 69) + 23β4 + 4β3 + 12β2 + 56β + 25]

+ 5g1h2
A

972F 2
π β4

[3α10 − α8(9β2 + 5β + 10) + α6(9β4 + 10β3 + 23β2 + 17β + 6)

−α4(3β6 + 5β5 + 27β4 + 36β3 + 55β2 + 33β − 35)

+ 2α2(7β6 + 17β5 + 17β4 − 14β3 + 44β2 + 71β + 21) − 2(β + 1)2(7β4 − 4β3 − 9β2 + 10β + 2)], (C25)

a2 = 2gAh2
A

27F 2
π α2β2

[5α6 + 3α4(2β + 9) + α2(−3β3 − 6β2 + 33β + 16) + 6(β − 1)(β + 1)2], (C26)

a3 = gAh2
A

54F 2
π α2β2

[4α8 + α6(−8β2 − 8β + 15) + α4(4β4 + 8β3 − 50β2 − 8β + 30)

+α2(23β4 + 16β3 + 13β2 − 92β − 73) − 24(β − 1)(β + 1)2]

+ 5g1h2
A

972F 2
π β4

[3α10 − α8(9β2 + 5β + 7) + α6(9β4 + 10β3 + 17β2 + 12β − 1)

−α4(3β6 + 5β5 + 24β4 + 31β3 + 42β2 − 15β − 15)

+ 2α2(7β6 + 17β5 + 10β4 − 5β3 + 18β2 − 25β − 7) − 14β6 − 20β5 + 34β4 − 20β3 + 22β2 + 28β + 4], (C27)

b1 = 2gAh2
Am2

N

9F 2
π α2β2

[α6 + α4β(7β + 3) + α2(−2β4 + β3 + β2 − 5β − 3) + 2(β − 1)2(β + 1)3], (C28)

b2 = −5g1h2
Am2

N

486F 2
π β3

[5α6 + α4(8β2 − 6β − 11) − 2α2(8β4 + 18β3 + 13β2 − 6β − 3)

+ 4β2(3β4 + 6β3 − 2β2 + 6β + 3)], (C29)

b3 = 2gAh2
Am2

N

27F 2
π α2β2

[5α8 + 2α6(3β + 7) + α4(−3β3 − 12β2 + 24β + 5)

+ 12α2(β − 1)(β + 1)2 − 6(β5 − β3 + β2 − 1)], (C30)

b4 = gAh2
Am2

N

54F 2
π α2β2

[4α10 + α8(−12β2 − 8β + 11) + α6(12β4 + 16β3 − 61β2 + 3)

+α4(−4β6 − 8β5 + 73β4 + 48β3 + 2β2 − 96β − 79) − α2(β + 1)2(23β4 − 30β3 + 26β2 + 66β − 85)

+ 24(β5 − β3 + β2 − 1)]

+ 5g1h2
Am2

N

972F 2
π β4

[3α12 − α10(12β2 + 5β + 10) + α8(18β4 + 15β3 + 30β2 + 17β + 6)

−α6(12β6 + 15β5 + 44β4 + 48β3 + 54β2 − 7β − 16)

+α4(3β8 + 5β7 + 38β6 + 65β5 + 76β4 + 51β3 + 44β2 − 73β − 29)

− 2α2(7β8 + 17β7 + 17β6 − 3β5 − 12β4 + 23β3 − 7β2 − 41β − 9)

+ 2(β + 1)3(7β5 + β4 − 17β3 + 19β2 − 8β − 2)], (C31)

c1 = 4gAh2
Am4

N

9F 2
π α2β2

[α8 + 2α6(2β2 + β − 1) − 2α4β(β3 + β + 2) + 2α2(β − 1)2(β + 1)3

− (β − 1)2(β + 1)3(β2 − β + 1)], (C32)
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c2 = −5g1h2
Am4

N

81F 2
π β3

[α8 + α6(2β2 − 2β − 3) + α4(−6β4 − 6β3 − 7β2 + 4β + 3)

+α2(β + 1)2(5β4 − 4β3 + 8β2 − 1) − 2(β − 1)2β2(β + 1)4]. (C33)

d. Electromagnetic form factors of the nucleon. The renormalization rules of the two relevant LECs c6 and c7 are given below.
We remind the reader that c̄6 and c̄7 are the renormalized quantities. Note that we use the auxiliary variables ai, bi, and ci only
in this particular context for reasons of clarity and comprehensibility:

c6 = c̄6 + δc(3)
6 + δc(3,�)

6 , (C34)

δc(3)
6 = g2

A

(α2 − 4)F 2
π

[
m2

N (4 − 3α2)

16 π2
+ (20 − 6α2)A0

(
M2

π

) − 2(8 − 3α2)A0
(
m2

N

)
+ 2m2

N (8 − 13α2 + 3α4)B0
(
m2

N , M2
π , m2

N

)]
, (C35)

δc(3,�)
6 = a0 + a1A0

(
M2

π

) + a2A0
(
m2

�

) + b1B0
(
m2

N , M2
π , m2

�

)
, (C36)

a0 = − h2
Am2

N

1296 π2F 2
π β4

[α4(−27β2 + 160β + 145) + 20α2(6β3 − 7β2 − 9β − 4) + 27β6

+ 92β5 − 281β4 − 44β3 + 75β2 + 60β + 20], (C37)

a1 = − 2h2
A

81F 2
π β4

[α4(27β2 + 20β + 15) + α2(−54β4 − 40β3 − 7β2 + 120β + 75)

+ 27β6 + 20β5 − 35β4 + 6β3 + 47β2 − 20β − 15], (C38)

a2 = 2h2
A

81F 2
π β4

[α4(27β2 + 20β + 15) − 2α2(27β4 + 20β3 − 10β2 + 20β + 15) + 27β6

+ 20β5 − 62β4 − 86β3 − 62β2 + 20β + 15], (C39)

b1 = 2h2
Am2

N

81F 2
π β4

[α4(27β2 + 20β + 15) − 2α2(27β4 − 7β3 − 30β2 + 5β + 15) + 27β6

− 34β5 − 21β4 + 98β3 − 57β2 − 10β + 15](−1 + α2 − 2β − β2), (C40)

c7 = c̄7 + δc(3)
7 + δc(3,�)

7 , (C41)

δc(3)
7 = g2

A

(α2 − 4)F 2
π

[
− m2

N

2 π2
− 4A0

(
M2

π

) + 8A0
(
m2

N

) − 4m2
N (2 − α2)B0

(
m2

N , M2
π , m2

N

)]
, (C42)

δc(3,�)
7 = a0 + a1A0

(
M2

π

) + a2A0
(
m2

�

) + b1B0
(
m2

N , M2
π , m2

�

)
, (C43)

a0 = − h2
Am2

N

1296 π2F 2
π β4

[α4(32β + 29) + 2α2(12β3 − 23β2 − 18β − 8) + 4β5 − 67β4 + 2β3 + 24β2 + 12β + 4], (C44)

a1 = 2h2
A

81F 2
π β4

[α4(4β + 3) + α2(−8β3 + 4β2 + 24β + 15) + 4β5 − 7β4 − 15β3 + 4β2 − 4β − 3], (C45)

a2 = − 2h2
A

81F 2
π β4

[α4(4β + 3) − 2α2(4β3 − 2β2 + 4β + 3) + 4β5 − 7β4 − β3 − 7β2 + 4β + 3], (C46)

b1 = 2h2
Am2

N

81F 2
π β4

(1 − α2 + 2β + β2)[α4(4β + 3) − 2α2(4β3 − 6β2 + β + 3) + 4β5 − 15β4 + 25β3 − 6β2 − 2β + 3].

(C47)

e. πN� coupling. Here, we give the necessary shift of the πN� coupling hA:

h = hA + δh(2)
A , δh(2)

A = b3(mN − m�) + b6
M2

π + m2
N − m2

�

2mN
. (C48)

f. Electromagnetic transition form factors. Here, we give the shift for the coupling constants b1 and h1. Note that the auxiliary
variables ai, bi, and ci are used only in this particular context. Taking the real part of the corrections to b1 and h1 ensures that the
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bare LECs are real, which is necessary for the Lagrangian to be Hermitian:

b1 = b̄1 + δb(3)
1 , (C49)

δb(3)
1 = Re

[
a0 + a1A0(M2

π ) + a2A0
(
m2

N

) + a3A0
(
m2

�

) + b1B0
(
m2

N , M2
π , m2

N

) + b2B0
(
m2

N , M2
π , m2

�

)
+ b3B0

(
m2

�, M2
π , m2

N

) + b4B0
(
m2

�, M2
π , m2

�

) + c1C0
(
0, m2

�, m2
N , M2

π , M2
π , m2

N

) + c2C0
(
0, m2

�, m2
N , M2

π , M2
π , m2

�

)
+ c3C0(m2

N , 0, m2
�, M2

π , m2
N , m2

N ) + c4C0
(
m2

N , 0, m2
�, M2

π , m2
�, m2

�

)]
, (C50)

a0 = 2mN (β − 1)h15 + mN (β2 − 1)h16 − gAhAmN

16 π2F 2
π (β2 − 1)

[2α2 + β2 − 3β]

+ 5g1hAmN

10368 π2F 2
π β4(β2 − 1)

[α6(3β3 − 2β2 − 3β + 2)β − α4(3β6 + 3β5 + 6β4 + 117β3 + 3β2 + 8β + 4)

−α2(3β8 − 2β7 + β6 + 74β5 − 130β4 − 264β3 + 36β2 − 6) + 3β10 + 3β9 − 6β8 − 617β7 − 153β6

+ 766β5 − 84β4 − 82β3 + 26β2 + 2β − 2], (C51)

a1 = gAhA

F 2
π mN (β − 1)

+ 5g1hA

324F 2
π mNβ6(β2 − 1)

[α6β3(3β3 − 2β2 − 3β + 2)

−α4(9β8 − β7 + β6 − 7β5 − 2β4 − 2β2 + 2) + α2β2(9β8 + 4β7 + 5β5 + 43β4 + β3 − 8β2 + 22β − 4)

−β3(3β9 + 3β8 − 4β7 − β6 + 32β5 + 13β4 − 68β3 + 75β2 + 25β − 6)], (C52)

a2 = gAhA(1 − 3β )

F 2
π mN (β2 − 1)

, (C53)

a3 = − 5g1hA

324F 2
π mNβ6(β2 − 1)

[α6β3(3β3 − 2β2 − 3β + 2) − α4(9β8 − β7 − 2β6 − 5β5 + β4 − 2β3 − 2β2 + 2)

+α2β3(9β7 + 4β6 − 6β5 + 4β4 + 42β3 − 82β2 + 75β + 26)

−β3(3β9 + 3β8 − 7β7 − 4β6 + 36β5 − 62β4 − 5β3 + 21β2 + 81β + 6)], (C54)

b1 = − gAhAmN

F 2
π (β2 − 1)2

[α2(β3 − 2β2 − 2β − 1) + 2β(β2 − β + 2)], (C55)

b2 = − 5g1hAmN

324F 2
π β3(β2 − 1)2

[α8(3β − 2)(β2 − 1)2 − α6(12β6 − 3β5 − 14β4 − 2β3 + 13β − 6)β

+α4(18β8 + 3β7 − 20β6 − 3β5 + 46β4 − 47β3 − 104β2 − 41β + 4)β

+α2(−12β11 − 7β10 + 22β9 + 4β8 − 84β7 − 10β6 + 152β5 + 72β4 + 80β3 + 65β2 − 2β + 8)

+ 3β13 + 3β12 − 10β11 − 7β10 + 43β9 + 36β8 − 172β7 − 6β6 − 23β5 + 19β4 − 46β3 + 33β2 − 11β − 6], (C56)

b3 = − gAhAmNβ

F 2
π (β2 − 1)2

[α2(3β + 1) + β3 − 5β2 + β − 1], (C57)

b4 = − 5g1hAmN

162F 2
π β6(β2 − 1)2

[α6(4β5 − 3β4 − 2β2 + 1) + 2α4β2(11β5 + 11β4 + 17β3 + 4β2 − 6β − 1)

+ 2α2β4(23β5 − 23β4 − 62β3 − 21β2 + 6β + 5) + 36(3β10 − β9 − β8 + β6)], (C58)

c1 = −2gAhAm3
Nα2(α2 + β2 − 1)

F 2
π (β2 − 1)

, (C59)

c2 = − 10g1hAm3
N

9F 2
π β(β2 − 1)

[α6 − α4(β2 − β + 1) + 3α2β2(β2 − 1)], (C60)

c3 = − 2gAhAm3
Nβ

F 2
π (β2 − 1)

[α2 − β2 + β − 2], (C61)

c4 = 10g1hAm3
N

27F 2
π (β2 − 1)

[α4(β − 4) − α2(4β3 − 8β2 − β − 4) − 3(3β4 − β3 − β2 + 1)], (C62)

h1 = h̄1 + δh(3), (C63)
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δh(3) = Re
[
a0 + a1A0

(
M2

π

) + a2A0
(
m2

N

) + a3A0
(
m2

�

) + b1B0
(
m2

N , M2
π , m2

N

) + b2B0
(
m2

N , M2
π , m2

�

)
+ b3B0

(
m2

�, M2
π , m2

N

) + b4B0
(
m2

�, M2
π , m2

�

) + c1C0
(
0, m2

�, m2
N , M2

π , M2
π , m2

N

) + c2C0
(
0, m2

�, m2
N , M2

π , M2
π , m2

�

)
+ c3C0

(
m2

N , 0, m2
�, M2

π , m2
N , m2

N

) + c4C0
(
m2

N , 0, m2
�, M2

π , m2
�, m2

�

)]
, (C64)

a0 = 2mN h15 − gAhAmN (α2 − β )

4 π2F 2
π (β − 1)2(β + 1)

+ 5g1hAmN

10368 π2 F 2
π β4(β − 1)2(β + 1)

[3α6(β − 1)2(β + 1)β − α4(3β6 + 2β5 + 7β4 + 275β3 + 2β2 − 5β + 4)

−α2(3β8 − 3β7 + β6 − 45β5 − 222β4 − 376β3 + 56β2 + 16β − 6)

+ 3β10 + 2β9 − 5β8 − 587β7 + 74β6 + 717β5 − 386β4 − 138β3 + 28β2 + 6β − 2], (C65)

a1 = 2gAhA

F 2
π mN (β − 1)2

+ 5g1hA

324F 2
π mN β6(β − 1)2(β + 1)

[3α6(β − 1)2β3(β + 1)

−α4(9β8 − 4β7 + 2β6 − 12β5 − 3β4 + 10β3 − 2β2 − 2β + 2)

+α2β2(9β8 + β7 + 2β6 + β5 + 48β4 + 36β3 + 45β2 + 30β − 28)

−β3(3β9 + 2β8 − 3β7 + β6 + 35β5 + 83β4 − 51β3 + 37β2 + 40β − 3)], (C66)

a2 = − 4gAhAβ

F 2
π mN (β − 12)(β + 1)

, (C67)

a3 = − 5g1hA

324F 2
π mN β6(β − 1)2(β + 1)

[3α6(β − 1)2β3(β + 1) − α4(9β8 − 4β7 − β6 − 9β5 + 7β3 − 2β2 − 2β + 2)

+α2β2(9β8 + β7 − 4β6 + 2β5 + 46β4 − 44β3 + 129β2 + 29β − 24)

−β3(3β9 + 2β8 − 6β7 − β6 + 38β5 + 132β4 + β3 − 136β2 + 108β + 3)], (C68)

b1 = − 2gAhAmN

F 2
π (β − 1)3(β + 1)2

[α2(β3 − 2β2 − 2β − 1) + β(β2 + 3)], (C69)

b2 = − 5g1hAmN

324F 2
π β3(β − 1)3(β + 1)2

[3α8(β − 1)3(β + 1)2 − α6(12β6 − 7β5 − 13β4 − 2β3 − 2β2 + 17β − 5)β

+α4(18β9 − 3β8 − 17β7 − 5β6 + 47β5 − 115β4 − 143β3 − 79β2 + 3β + 6)

−α2(12β10 + 3β9 − 19β8 + 88β6 − 70β5 − 262β4 − 120β3 − 80β2 − 125β − 3)β

+ 3β13 + 2β12 − 9β11 − 3β10 + 44β9 + 5β8 − 262β7 − 98β6 + 15β5 + 84β4 − 65β3 + 13β2 − 14β − 3], (C70)

b3 = − 2gAhAmNβ

F 2
π (β − 1)3(β + 1)2

[α2(3β + 1) − 3β2 − 1], (C71)

b4 = 5g1hAmN

162F 2
π β6(β − 1)3(β + 1)2

[α6(β5 + 3β4 − 6β3 + 2β2 + β − 1)

− 2α4β2(43β5 + 33β4 + 13β3 − 15β2 − 7β + 5)

+ 2α2β4(23β5 + 69β4 + 43β3 − 4β2 + 12β + 1) − 12β6(2β5 + 13β4 − 4β2 − 2β + 3)], (C72)

c1 = −2gAhAm3
Nα3(2α2 + β2 − 1)

F 2
π (β − 1)2(β + 1)

, (C73)

c2 = − 10g1hAm3
Nα2

9F 2
π β(β − 1)2(β + 1)

[2α4 + α2(−β2 + β − 2) + β(2β3 − β2 − 2β + 1)], (C74)

c3 = − 2gAhAm3
N

F 2
π (β − 1)2(β + 1)

[α2(β + 1) − β(β2 + 3)], (C75)

c4 = − 10g1hAm3
N

27F 2
π (β − 1)2(β + 1)

[2α4(β + 2) − α2(4β3 + 11β2 − β + 4) + 2β5 + 13β4 − 4β2 − 2β + 3]. (C76)
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