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Interpretation of � spin polarization measurements
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The physics interpretation of the recent measurements of the spin polarization of � hyperons produced in
relativistic heavy-ion collisions is discussed. We suggest that the polarization measured in the � rest frame
should be projected along the direction of the total angular momentum that is first transformed to the same frame,
and only then averaged over �’s with different momenta in the center-of-mass frame. While this procedure does
not affect the current measurements done in a broad transverse-momentum range, it may become important
(representing a correction of about 10%) for the most energetic hyperons under study (with transverse momenta
reaching 4–5 GeV/c). The proposed treatment is generally more appropriate for relativistic �’s. Throughout the
paper, we deliver explicit expressions for various boosts, rotations, and transformations of angular distributions,
which may help to compare model predictions with the experimental results.
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I. INTRODUCTION

For a few decades now the phenomenon of spin polar-
ization of the � hyperons produced in proton-proton and
heavy-ion collisions has been an intriguing topic of both ex-
perimental and theoretical investigations [1–4]. For example,
the longitudinal polarization of the �̄ hyperons was discussed
in the 1980s as a possible signal of the quark-gluon plasma
formation [5]. However, the first heavy-ion experiments that
measured the � spin polarization in Dubna [6] and at CERN
[7] reported negative results. More recently, several theoreti-
cal predictions of the global spin polarization signal in A + A
collisions were given in Refs. [8–10]. These works predicted
a rather substantial experimental signal, of the order of 10%,
and were not confirmed by the STAR data of 2007 [11]. The
idea of a nonvanishing global polarization reappeared in the
context of statistical physics and equilibration of spin degrees
of freedom [12–16]. The much smaller predictions of this
approach [17–20] were eventually observed by STAR [21,22]
and independently by ALICE [23]. This has triggered a vast
theoretical interest that includes several highly debated topics:
the importance of the spin-orbit coupling [24,25], global equi-
librium with a rigid rotation [26–29], hydrodynamic [30–34]
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and kinetic [35–44] models of spin dynamics, anomalous
hydrodynamics [45,46], the Lagrangian formulation of hy-
drodynamics [47,48], and hydrodynamic treatment of spin
currents in the presence of torsion [49]. For recent reviews
of the experimental and theoretical situation see, for example,
Refs. [50–54].

As the outcome of the spin polarization experiments, one
commonly cites the magnitude of the polarization along a
specific direction in the center-of-mass frame (COM). Most
preferably, the results refer to the direction that is orthogo-
nal either to the reaction plane (RP, in noncentral heavy-ion
collisions) [4] or to the production plane (in proton-proton
collisions) [1,3]. In the case of heavy ions, the direction trans-
verse to the reaction plane agrees with the direction of the total
angular momentum of the system L (with the orientation of L
opposite to the y axis; see Fig. 1).

To determine the magnitude of the polarization in different
directions, however, one first studies distributions of various
three-momentum components of protons emitted in the weak
decay � → p + π−, which are measured in the � rest frame.
As the COM frame and the � rest frame are connected by the
Lorentz transformation depending on the three-momentum of
�, the spatial directions in these two frames are linked by a
nontrivial relation. Consequently, relating the results obtained
in the � rest frame to the global angular momentum direction
of the system requires that an appropriate Lorentz transforma-
tion be done before one describes such results in terms of the
COM variables.

The STAR measurements [21–23] indicate that the pro-
ton distributions in the � rest frame are not isotropic and,
consequently, unambiguously lead to the conclusion about
the nonzero � spin polarization. In our opinion, however,
the interpretation of those results in the context of specific
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FIG. 1. The center-of-mass (COM) frame for noncentral heavy-
ion collisions. In this case both the reaction and production planes
can be defined.

correlations between the spin direction of �’s and various
directions in COM (in particular, the direction of the total
orbital angular momentum L) requires further clarifications
for at least two reasons. First, typically only one component of
the polarization vector is measured: the y component in the �

rest frame. Second, the y direction in the � rest frame is differ-
ent from the y direction in COM.1 Consequently, a complete
understanding of the relation between the � spin direction and
the direction of the total orbital angular momentum in COM
calls for a more detailed study of the effect connected with the
boost to the � rest frame.

This is especially important if one interprets the result of
the � polarization measurements as an analog of the Einstein–
de Haas or the Barnett effect [55,56]. In this case, we suggest
to first measure the projection of the spin polarization along
the orbital angular momentum direction that is “seen” by a
� in its rest frame, and only then to average over �’s with
different momenta in COM. Such a method guarantees that
the same physical direction is used for all �’s. We do not
expect that such a procedure may change any qualitative con-
clusions about the global spin polarization but, in our opinion,
it is more appropriate to establish the right magnitude of the
polarization and its energy dependence.

We note that an alternative method for measurements of
the global polarization of �’s has been proposed in Ref. [57],
which demonstrates that the measurements can use quanti-
ties defined in the laboratory frame (instead of the quantities
defined in the �’s rest frame). However, that work does not
discuss the effects connected with a change of the orbital
angular momentum direction due to the boosts, which is the
main topic of the present analysis.

In this work, we give several explicit expressions for
boosts, rotations, and transformations of angular distributions
that can be useful whenever model predictions are compared
with the experimental results. In particular, we give an expres-
sion for the form of the angular momentum in the � rest frame

1This effect has been neglected in the experimental analyses of the
spin polarization of �’s, with a nonrelativistic assumption that these
two directions are the same.

that can be used to consistently project the polarization of �’s
measured in their rest frames.

The paper is organized as follows: In the next section,
we define the center-of-mass (COM) frame for heavy-ion
and proton-proton collisions. In Sec. III we introduce the
canonical boost from COM to the � rest frame and introduce
the transformation of the total angular three-momentum from
COM to the � rest frame. Yet another � rest frame, where
the � polarization is aligned with the z axis, is introduced in
Sec. IV. The weak decay law for the process � → p + π− is
introduced in Sec. V. Finally, in Sec. VI we discuss our main
point regarding the projection of the measured polarization
on the total angular momentum in COM. We summarize and
conclude in Sec. VIII. Several useful properties of the canon-
ical boost and transformations of the angular distributions of
protons are discussed in the two appendices.

Conventions and notation. Throughout the paper we use
natural units with h̄ = c = 1 and the metric tensor with the
signature (+ − −−). Three- and four-vectors are defined by
their components; however, for three-vectors we often use
bold font, for example, pμ = (E , p1, p2, p3) = (E , p), where
E =

√
m2 + p2 denotes the particle energy. For the length of a

three-vector we use the regular font, p = |p|. Scalar products
of three-vectors are denoted by a dot, aμbμ = a0b0 − a · b.
The unit three-vectors are denoted by a hat so that p = p p̂.

II. CENTER-OF-MASS (COM) FRAME

In the analyzes of spin polarization of relativistic particles,
it is important to define precisely the reference frames where
the specific physical quantities are defined and measured.
In this work, we define altogether three different reference
frames that are linked by Lorentz boosts and rotations: the
center-of-mass frame of the total system, COM, and two rest
frames of �’s with a given momentum in COM. The last two
frames differ by rotation.

We assume that the main reference frame corresponds to
the center-of-mass frame of the colliding system. In the case
of noncentral heavy-ion collisions, the axes of the COM frame
are defined by the beam axis (ẑ), the impact vector (x̂), and
the direction that is perpendicular to the reaction plane (ŷ)
spanned by x̂ and ẑ; see Fig. 1.2 We note that the orientation
of the three-vector describing the orbital angular momentum
L is opposite to the y axis.

In the case of proton-proton collisions, the z axis corre-
sponds to the direction of the initial protons, the y axis is
defined to be perpendicular to the plane determined by ẑ and
the momentum of the emitted � hyperon, p�, i.e., to the
production plane, while x̂ is perpendicular to both ŷ and ẑ;
see Fig. 2. The Cartesian coordinate system x, y, z is taken
in the two cases to be right handed. We note that in the case

2Here we tacitly assume that the reaction plane angle in the labora-
tory (LAB) frame can be well determined by calculating the event
plane flow vector [58], hence, the COM frame is rotated by this
angle around the beam axis in LAB. The problem that the reaction
plane angle is in fact not directly measured is discussed in detail in
Sec. VI C.
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FIG. 2. The center-of-mass (COM) frame for p + p collisions.

of proton-proton collisions one may also use a rotated frame
where the z axis coincides with the direction of p�. In Fig. 2
the axes of this frame are denoted by xr , yr , and zr .

III. THE REST FRAME S′(p�)

In the following, we define two frames where the � hy-
peron with the momentum p� in the COM frame is at rest.
The first one is defined by the canonical boost from the COM
frame. The second one differs from the first by an additional
rotation that aligns the polarization vector with the z axis.

A. The canonical boost

We define the rest frame S′(p�) of �’s with the COM
frame three-momentum p� = (p1

�, p2
�, p3

�) by the canonical
boost [59,60]

Lμ
ν (−v�)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E�

m�
− p1

�

m�
− p2

�

m�
− p3

�

m�

− p1
�

m�
1 + αp1

� p1
� αp1

� p2
� αp1

� p3
�

− p2
�

m�
αp2

� p1
� 1 + αp2

� p2
� αp2

� p3
�

− p3
�

m�
αp3

� p1
� αp3

� p2
� 1 + αp3

� p3
�

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(1)

FIG. 3. Direction of the total angular momentum of the system
transformed from COM to the S′(p�) frame (red arrows) for �

particles at midrapidity (v̂z = 0) with the momentum p� = 1 GeV
(left panel) and p� = 4 GeV (right panel) for various orientations
of the velocity in transverse plane. Black arrows denote the same
quantity as seen in COM.

Here E� and v� = p�/E� are the energy and three-velocity
of � in COM, respectively, while m� is the � mass and
α ≡ 1/[m�(E� + m�)]. We stress that the frame S′(p�) de-
pends on p�; in practice one should select an ensemble of
events that include �’s with the COM three-momentum in a
small bin placed around a given value of p�. The components
of the four-vectors in S′(p�) and COM are related by the
transformation

p′μ = Lμ
ν (−v�)pν . (2)

In particular, by construction we obtain p′μ
� = (m�, 0, 0, 0).

It is well known [60] that the canonical boost can be repre-
sented as a superposition of three transformations: the rotation
R� that brings the three-vector p� to the form (0, 0, p�), the
boost L3 along the third axis with the velocity −v�, and the
inverse rotation R−1

� , namely

L = R−1
� (φ�, θ�)L3(−v�)R�(φ�, θ�). (3)

The rotation R� can be written as the product of
two rotations. If we use the parametrization p� =
p� (sin θ� cos φ�, sin θ� sin φ�, cos θ�) in COM, then
R� = R2(θ�)R3(φ�), where

R3(φ�) =

⎡
⎢⎢⎢⎣

1 0 0 0

0 cos φ� sin φ� 0

0 − sin φ� cos φ� 0

0 0 0 1

⎤
⎥⎥⎥⎦ (4)

and

R2(θ�) =

⎡
⎢⎢⎢⎣

1 0 0 0

0 cos θ� 0 − sin θ�

0 0 1 0

0 sin θ� 0 cos θ�

⎤
⎥⎥⎥⎦. (5)

The boost L3(−v�) is defined by the expression

L3(−v�) =

⎡
⎢⎢⎢⎣

γ� 0 0 −γ�v�

0 1 0 0

0 0 1 0

−γ�v� 0 0 γ�

⎤
⎥⎥⎥⎦, (6)

where γ� = E�/m� is the Lorentz factor. Further useful prop-
erties of the canonical boost are discussed in Appendix A.

B. Transformation of the system’s angular momentum

The crucial role in the discussion and interpretation of the
spin-polarization measurements is played by the total angu-
lar momentum of the system described by the tensor Jμν .
It can be decomposed into the orbital and spin parts, Jμν =
Lμν + Sμν . In noncentral heavy-ion collisions, a substantial
nonzero orbital part Lμν is generated at the initial stage [13].
One expects that during the system’s evolution some part of
Lμν is transferred to the spin part Sμν , of course with the total
angular momentum Jμν being conserved. The generation of a
nonzero spin part Sμν may be reflected just by the measured
spin polarization of the produced particles. We note that the
spin part may be also generated at the very early stages of the
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FIG. 4. Three-dimensional visualization of the vectors L′ defined by Eqs. (8) and (12).

collision, but one expects anyway that the values of Sμν are
negligible compared to Lμν .

If one works in the COM frame, only the spatial com-
ponents of Lμν are different from zero.3 They determine the
orbital angular momentum of the system through the relation

Lk = − 1
2εki jLi j . (7)

With the standard orientation of the axes in COM, one expects
that the direction of the vector L is opposite to the y axis; see
Fig. 1. The components of L transform like the components of
the magnetic field since they represent spatial components of
an antisymmetric tensor Lμν . Hence, in the frame S′(p�) they
are given by the formula [59]

L′ = γ�L − γ 2
�

γ� + 1
v�(v� · L). (8)

From Eq. (8) we find the ratio of the lengths of the vectors L′

and L, namely

L′

L
= γ�(1 − (v� · L̂)2)1/2. (9)

Let us note that for relativistic �’s the directions of L and
L′ (measured in their appropriate reference frames) may be
significantly different. In general, only for the case v� · L = 0
are they the same. For nonrelativistic systems, the second
term on the right-hand side of Eq. (8) represents a relativistic
correction of the order (v�/c)2 and can be neglected; how-
ever, for relativistic systems the second term may be equally
important as the first one. Consequently, comparisons of the
measured polarization direction should refer to the direction

3The conserved quantities J0i corresponding to Lorentz boosts
are of the form J0i = ERi − tPi, where Ri = (1/E )

∫
d3x xi T 00 and

E = ∫
d3x T 00, with T 00 being the energy density. In the center-

of-momentum frame Pi = 0. Moreover, if the center-of-momentum
frame is also the center-of-mass frame (strictly speaking, the center-
of-energy for relativistic systems) then we also have Ri = 0.

of L′ rather than to the direction of L. For this purpose, we
introduce two unit vectors

L̂ = L
L

, L̂
′ = L′

L′ . (10)

Taking into account Eq. (9) we may write

L̂
′ = (1 − (v� · L̂)2)−1/2

(
L̂ − γ�

γ� + 1
v�(v� · L̂)

)
. (11)

This vector is expressed only by the three-momentum of �

and the direction of the angular momentum in COM. We note
that with our choice of COM,

L̂ = (0,−1, 0), (12)

we obtain

L̂′ 1 = (
1 − (

v2
�

)2)−1/2 γ�

γ� + 1
v1

�v2
�,

L̂′ 2 = (
1 − (

v2
�

)2)−1/2
(

γ�

γ� + 1
v2

�v2
� − 1

)
,

L̂′ 3 = (
1 − (

v2
�

)2)−1/2 γ�

γ� + 1
v3

�v2
�. (13)

The visualization of those components for the case v3
� = 0 as

well as arbitrary v3
� is shown in Figs. 3 and 4, respectively.

For the sake of completeness, let us consider the transfor-
mation law for the component Ki = −L0i that behaves like an
electriclike component of Lμν . As we have mentioned above,
K = 0 in COM. However, after making the canonical boost
and using Eq. (12) we obtain

K ′ = γ�

(
v3

�, 0,−v1
�

)
L (14)

or, after normalization,

K̂
′ =

(
v3

�, 0,−v1
�

)
√(

v1
�

)2 + (
v3

�

)2
. (15)
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FIG. 5. The � rest frame. The momentum distribution of protons
produced in the weak decay � → p + π− depends on cos θ∗, where
θ∗ is the angle between the polarization vector P′ and the proton
momentum direction p̂′

p.

IV. THE � REST FRAME S∗(p�)

In the � rest frame S′(p�), the � polarization is charac-
terized by the polarization three-vector P′; see Fig. 5. It can
be defined by the magnitude P′ and the unit vector P̂

′
that

specifies the polarization direction, namely, P′ = P′P̂′
. The

vector P̂
′

can be expressed by the two angles 
′ and �′ with
the help of the standard parametrization

P̂
′ = (sin �′ cos 
′, sin �′ sin 
′, cos �′). (16)

In the following, it will be useful to consider also the frame
where only the third component of P̂

′
is different from zero.

FIG. 6. The frame S∗(p�) is obtained from the frame S′(p�) by
a rotation that brings P′ along the new z axis.

This is achieved by the subsequent action of the two rotations

Rz′ (
′) =

⎡
⎢⎣

cos 
′ sin 
′ 0

− sin 
′ cos 
′ 0

0 0 1

⎤
⎥⎦ (17)

and

Ry′ (�′) =

⎡
⎢⎣

cos �′ 0 − sin �′

0 1 0

sin �′ 0 cos �′

⎤
⎥⎦. (18)

The resulting frame will be called S∗(p�). It is trivial to see
that

P̂
∗ = Ry′ (�′)Rz′ (
′)P̂′ = (0, 0, 1), (19)

see Fig. 6.
Let us now consider the three-momentum of the proton

emitted in the weak decay of �. Similarly to the case of the
polarization vector, we express it as p′

p = p′
p p̂′

p, where

p̂′
p = (sin θ ′

p cos φ′
p, sin θ ′

p sin φ′
p, cos θ ′

p). (20)

In the frame S∗(p�) we have

p̂∗
p,x = cos(
′ − φ′

p) sin θ ′
p cos �′ − cos θ ′

p sin �′

≡ sin θ∗ cos φ∗,

p̂∗
p,y = − sin(
′ − φ′

p) sin θ ′
p ≡ sin θ∗ sin φ∗,

p̂∗
p,z = cos(
′ − φ′

p) sin θ ′
p sin �′ + cos θ ′

p cos �′ ≡ cos θ∗.

(21)

From the last line, we find4

P̂
′ · p̂′

p = P̂
∗ · p̂∗

p = cos θ∗. (22)

The angular distributions of protons emitted in the frames
S′(p�) and S∗(p�) satisfy an obvious constraint∫

dNp

d�′ sin θ ′
pdθ ′

pdφ′
p =

∫
dNp

d�∗ sin θ∗
p dθ∗

p dφ∗
p, (23)

where the functions dNp/d� behave like scalar functions of
the azimuthal and polar angles. Consequently, if the distribu-
tion dNp/d�∗ is a function of cos θ∗ only, for example,

dNp

d�∗ = F (cos θ∗), (24)

where F (x) is an arbitrary function of x, then

dNp

d�′ = F ( cos(
′ − φ′
p) sin θ ′

p sin �′ + cos θ ′
p cos �′). (25)

At the end of this section let us note that the three-
vector P′ can be interpreted as a spatial part of the

4This is of course a trivial result. The main reason for introducing
the frame S∗(p�) is that we find it useful in the following to consider
the angular distributions expressed by the angles (θ ′

p, φ
′
p) or, equiva-

lently, by the angles (θ∗, φ∗).
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four-vector [61],

P′ μ = (0, P′). (26)

In general, we have

−1 � P′ · P′ � 0. (27)

The case P′ · P′ = −1 corresponds to a pure state in which the
spin projection is 1/2 in the direction of P̂

′
. The values larger

than −1 describe a mixed spin state, and eventually the value
P′ · P′ = 0 means that the system is unpolarized.

V. THE WEAK DECAY LAW

In the frame S∗(p�), the � weak decay � → p + π− is
described by the following law that describes the angular
distribution of emitted protons:

dNpol
p

d�∗ = 1

4π
(1 + α�P∗ · p̂∗

p). (28)

Here α� = 0.732 is the � decay constant. Equation (28)
implies that in S′(p�) the proton angular distribution has the
form

dNpol
p

d�′ = 1

4π
[1 + α�P′(cos(
′ − φ′

p) sin θ ′
p sin �′ + cos θ ′

p cos �′)]. (29)

The averaged values of the three-momentum components in S′(p�) can be obtained by straightforward integration:

〈p̂′
p,x〉 =

∫ (
dNpol

p

d�′

)
(sin θ ′

p)2 cos φ′
p dθ ′

p dφ′
p = 1

3
P′α� sin �′ cos 
′,

〈p̂′
p,y〉 =

∫ (
dNpol

p

d�′

)
(sin θ ′

p)2 sin φ′
p dθ ′

p dφ′
p = 1

3
P′α� sin �′ sin 
′,

〈p̂′
p,z〉 =

∫ (
dNpol

p

d�′

)
sin θ ′

p cos θ ′
p dθ ′

p dφ′
p = 1

3
P′α� cos �′. (30)

Here we have introduced angular brackets to denote angular averaging of the proton variables in the � rest frame S′(p�). The
last result indicates that the magnitude and direction of the polarization can be directly obtained from the averaged values of the
three-momentum components measured in S′(p�):

P′ = P′(sin �′ cos 
′, sin �′ sin 
′, cos �′) = 3

α�

(〈p̂′
p,x〉, 〈p̂′

p,y〉, 〈p̂′
p,z〉). (31)

One can also find

〈cos φ′
p〉 =

∫ (
dNpol

p

d�′

)
sin θ ′

p cos φ′
p dθ ′

p dφ′
p = πα�

8
P′ sin �′ cos 
′, (32)

〈sin φ′
p〉 =

∫ (
dNpol

p

d�′

)
sin θ ′

p sin φ′
p dθ ′

p dφ′
p = πα�

8
P′ sin �′ sin 
′. (33)

The last expression, rewritten in the form

PH = 8

πα�

〈sin φ′
p〉, (34)

serves as the main experimental tool used to determine the
spin polarization.5 Two comments are in order now:

(i) The quantity PH is the y component of the polarization
three-vector measured in the � rest frame, namely,
PH = P′ sin �′ sin 
′. Strictly speaking, it is not the
component of the polarization along the total angular
momentum vector, as the y directions in COM and the

5The STAR experiment uses the COM frame with the x axis not
aligned with the impact vector. In this case, instead of 〈sin φ′

p〉 one
studies the mean value of 〈sin(φ′

p − 
RP )〉, where 
RP denotes the
azimuthal angle of the reaction plane; see our discussion in Sec. VI C.

� rest frame are different (although the differences for
slowly moving �’s might be quite small).

(ii) In addition to the measurement of the mean 〈sin φ′
p〉 it

is tempting to measure, using the same experimental
techniques, the mean 〈cos φ′

p〉. Such a measurement
would complete the analysis of the three components
of the polarization vector in the � rest frame, as the
longitudinal component has been already measured.
The ratio of such measurements would give us directly
the information about the angle 
′.

At this point, it is convenient to discuss the effect of the
detector magnetic field on the spin polarization. If the �

hyperons move in a magnetic field, their spins undergo preces-
sion with the frequency ω′ = g� (μN/h̄) B′. Here g� = 0.613
is the magnitude of the Landé g factor for �’s, μN is the
nuclear magneton, and B′ is the magnitude of the magnetic
field in the � rest frame. If �’s move perpendicularly to
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the magnetic field, the field in the rest frame equals B′ =
γ�B = γ� x T , where we have expressed the value of the
magnetic field in COM in units of tesla, B = x T . The mean
angle by which the spin direction changes equals �
prec =
ω′�t ′, where �t ′ = 2.63 × 10−10 s is the mean � lifetime
in its rest frame. This altogether gives �
prec = 0.0077 x γ�.
In our opinion, this value represents the systematic error for
the experimental estimates of the angles �′ and 
′. We note
that the present STAR estimate of �
prec is somewhat larger;
namely, it gives 0.022 for x = 0.5 and γ� ≈ 2. Nevertheless,
this value is used to argue that the effect of the spin precession
on the global polarization measurements is negligible. From
the point of our analysis, the effects of spin precession require
more detailed studies where the impact of precession on the
estimates of the angles �′ and 
′ can be clarified.

VI. CORRELATION WITH TOTAL ANGULAR
MOMENTUM

A. Improved formula for the projection

We have discussed above how the magnitude and direction
of the spin polarization can be determined in the frame where
�’s are at rest. More precisely, we have considered the rest
frame of �’s with three-momentum p�, which is obtained
by the canonical boost from COM. A natural question at this
stage appears, how the direction of the measured polarization
is related to the axes of the COM coordinate system.

Equation (31) gives the prescription how to measure three
independent components of the � polarization in its (canon-
ical) rest frame. Assuming that the measurement of the
averages 〈p̂′

p,x〉, 〈p̂′
p,y〉, and 〈p̂′

p,z〉 is indeed possible, we may
define the projection of the polarization along the direction of
the total angular momentum by the expression

L̂
′ · P′ = (1 − (v� · L̂)2)−1/2

(
L̂ · P′ − γ�

γ�+1
v� · P′v� · L̂

)
.

(35)
The direction represented by a unit vector L̂

′
is the direction

of the total angular momentum that is “seen” by the spin of
the decaying � that has three-momentum p� in COM. By
construction |L̂′ · P′| � P′ � 1.

The measurement of the � spin polarization is very often
interpreted as an analog of the Einstein–de Haas and/or the
Barnett effect [55,56]. Except for the fact that these two phe-
nomena describe the behavior of a different physical system,
one important difference is that for these two effects there
exists always a reference frame where all particles are at rest.6

In the case of spin polarization of �’s, such a frame does not
exist, since the analyzed �’s have usually different momenta
in COM.

So far, our discussion has been concentrated on �’s with
a given momentum in COM. For a given colliding system,
beam energy, and centrality class, such �’s can be treated
as produced in the same physical environment (even if they

6Although it is typically a noninertial rotating frame, the non-
relativistic treatment allows for simple addition of polarizations of
different particles.

are “taken” from different events) so it makes sense to obtain
L̂ · P′ or L̂

′ · P′ from the proton distributions in S′(p�). The
advantage of the expression (35) compared to the estimate of
just L̂ · P′ is that the spin polarization of each �, irrespectively
of its three-momentum p� in COM, is projected on the same
physical axis corresponding to L in COM. Hence, Eq. (35) is
in our opinion the proper object that can be used to study the
relation between the polarization of all �’s with L. To do so,
one has to simply average Eq. (35) over all �’s with different
p�.

B. Numerical estimate of the relativistic effects

To make a numerical estimate of the effects discussed
above, we consider the case where P′ = P′L̂ and

L̂
′ · P′ = P′(1 − v2

2

)−1/2
(

1 − v2
2

1 + √
1 − v2

)
≡ P′FP(v),

(36)
where (v1, v2, v3) are the components of the � velocity in

COM and v =
√

v2
1 + v2

2 + v2
3 (to simplify the notation we

skip here the subscript �). We further assume that the velocity
distribution of �’s is thermal and described by the Fermi-
Dirac distribution

FT (v) = N

[
exp

(
mλ

Teff

√
1 − v2

)
+ 1

]−1

. (37)

Here Teff is an effective temperature and N is the normaliza-
tion constant that is irrelevant for our study. The average value
of L̂

′ · P′ for �’s with the momentum in the range between m
GeV and n GeV is defined as the ratio

〈L̂′ · P′〉m−n = P′
∫ v(n)

v(m)
dv

∫
d� FP(v)FT (v)∫ v(n)

v(m)
dv

∫
d� FT (v)

, (38)

where

v(n) = tanh

[
sinh−1

(
n GeV

m�

)]
. (39)

The numerical calculations performed with Teff = 150 MeV
give 〈L̂′ · P′〉2−3 = 0.97 P′, 〈L̂′ · P′〉3−4 = 0.94 P′,
〈L̂′ · P′〉4−5 = 0.92 P′, and 〈L̂′ · P′〉5−6 = 0.90 P′. Conse-
quently, the relativistic effects studied in this work may reach
10% for the most energetic �’s studied at STAR. However,
in the case of momentum-averaged results in the range
0.5–6 GeV/c studied in Ref. [21] one obtains a negligible
correction 〈L̂′ · P′〉0.5–6 = 0.997P′.

C. Replacing the reaction plane angle by the experimentally
determined event plane angle

Equation (35) is an algebraic equation involving L̂, which
makes the experimental determination of L̂

′ · P′ more difficult
than the measurement of L̂ · P′ alone. This is due to the fact
that in the general case the reaction plane is characterized by
the angle 
RP that is not necessarily equal to zero, and the
direction of the orbital angular momentum is defined by the
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vector

L̂ = −( cos (
RP + π/2), sin (
RP + π/2), 0). (40)

We note that for 
RP = 0 this formula is reduced to Eq. (12)
that has been used so far.

To measure L̂ · P′ in the case 
RP 
= 0 we first perform
averaging over the angles of the emitted protons and get

L̂ · P′ = − 8

πα�

〈sin(φ′
p − 
RP)〉

= − 8

πα�

∫ (
dNpol

p

d�′

)
sin(φ′

p − 
RP) d�′. (41)

This equation introduces an explicit dependence of our re-
sults on the reaction plane angle 
RP which is not directly
measured. To overcome this difficulty, the STAR experiment
measures the azimuthal angle of the event plane, 


(1)
EP , deter-

mined by the directed flow. Consequently, one considers the
observable〈

sin
(
φ′

p − 

(1)
EP

)〉
ev.

= 〈
sin

(
φ′

p − 
RP − (



(1)
EP − 
RP

))〉
ev.

= 〈sin(φ′
p − 
RP)〉ev.〈cos �
〉ev.

≡ 〈sin(φ′
p − 
RP)〉ev.R

(1)
EP , (42)

where we introduced �
 ≡ 

(1)
EP − 
RP. Equation (42) as-

sumes that φ′
p and 


(1)
EP are correlated only with the reaction

plane angle 
RP and uses the property 〈sin �
〉ev. = 0. The
notation 〈· · · 〉ev. means that one first averages over different
protons in one event and then averages over a sample of
events. The last equation in (42) defines the reaction plane
resolution factor R(1)

EP . Using Eq. (42) we find the formula

〈L̂ · P′〉ev. = − 8

πα�

〈sin(φ′
p − 
RP)〉ev.

= − 8

πα�

〈
sin

(
φ′

p − 

(1)
EP

)〉
ev.

R(1)
EP

, (43)

which is the basis of the experimental approach (for example,
see Eq. (19) in Ref. [51]).

The method used for the measurement of L̂ · P′ suggests a
treatment of Eq. (35). Since the expected modifications are at
the level of 10% we can make an expansion of the right-hand
side of Eq. (35) in powers of v�/c. Up to quadratic terms we
obtain

L̂
′ · P′ = L̂ · P′ − γ�

γ� + 1
v� · P′ v� · L̂ + 1

2
(v� · L̂)2L̂ · P′.

(44)
Consequently, our task is reduced to the determination of the
two additional averages: 〈v� · P′ v� · L̂〉ev. and 〈(v� · L̂)2L̂ ·
P′〉ev..

For the � hyperons produced at midrapidity (i.e., for θ� =
π/2) we may use the property

〈v� · P′ v� · L̂〉ev. = 8

πα�

〈cos(φ� − φ′
p) sin(φ� − 
RP)〉ev..

(45)

To replace the dependence on 
RP by the dependence on 

(1)
EP ,

we use the equation

〈cos(φ� − φ′
p) sin(φ� − 
RP)〉ev.

=
〈
cos(φ� − φ′

p) sin
(
φ� − 


(1)
EP

)〉
ev.

〈cos(φ� − φ′
p) cos �
〉ev.

, (46)

where we used the assumptions that 〈cos(φ� −
φ′

p) sin �
〉ev. = 0. The denominator in the last equation can
be treated as another resolution parameter. In the case of the
term 〈(v� · L̂)2L̂ · P′〉ev. we use the following property:

〈(v� · L̂)2L̂ · P′〉ev.

= − 8

πα�

〈sin2(φ� − 
RP) sin(φ′
p − 
RP)〉ev.. (47)

Following the same steps as above (i.e., assuming that the
averages of the odd functions of �
 vanish) we may construct
two observables,〈

sin2
(
φ� − 


(1)
EP

)
sin

(
φ′

p − 

(1)
EP

)〉
ev.

= M1〈cos �
 cos(2�
 )〉ev.

+ (M2 + M3)〈cos �
 sin2 �
〉ev. (48)

and 〈
sin

(
2
(
φ� − 


(1)
EP

))
cos

(
φ′

p − 

(1)
EP

)〉
ev.

= (M2 + 2(M3 − 2M1))〈cos �
 cos(2�
 )〉ev.

− 2(M3 − 2M1)〈cos3 �
〉ev., (49)

where

M1 = 〈sin2(φ� − 
RP) sin(φ′
p − 
RP)〉ev.,

M2 = 〈sin (2(φ� − 
RP)) cos(φ′
p − 
RP)〉ev.,

M3 = 〈sin(φ′
p − 
RP)〉ev.. (50)

Since the quantity M3 can be measured [see our analysis of
Eq. (42)], Eqs. (48) and (49) allow for the determination of the
quantities M1 and M2, provided the left-hand sides of Eqs. (48)
and (49), as well as 〈cos3�
〉ev., are measurable.7 Since the
quantity 〈(v� · L̂)2L̂ · P′〉ev. is directly expressed by M1, it can
be also measured.

VII. PROTON-PROTON COLLISIONS

At the end of this work, let us turn to a discussion of
polarization measurement in proton-proton collisions [1,3]. If
the proton-proton COM frame corresponds to the case shown
in Fig. 2, where the variant with a rotation in the produc-
tion plane is chosen, the canonical boost is reduced to the
form (13). Then, the four-vector describing the polarization
in COM is obtained by the boost L3(+v�) acting on the
four-vector (0, P′). This leads to the expression

Pμ = P′(γ�v� cos �′, sin �′ cos 
′, sin �′ sin 
′, γ� cos �′).
(51)

7Note that 〈cos �
 cos(2(�
 ))〉ev. = −R(1)
EP + 2〈cos3 �
〉ev. and

〈cos �
 sin2 �
〉ev. = R(1)
EP − 〈cos3 �
〉ev..
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At first sight, the interpretation of the spin polarization mea-
surements in proton-proton collisions seems to be easier
compared to the heavy-ion case. As the transverse compo-
nents of P′ are not affected by the boost, one may try simply
to add them and average over different �’s. This procedure,
however, makes sense only if the x and z components of P′ are
zero. Otherwise, the results obtained for different �’s depend
on the boost and the original transition to a rotated frame.

Consequently, if the spin polarization of �’s has nonzero
x and z components it is suitable to use the frame without the
rotation. In this case, we may follow the procedure discussed
above for heavy ions, with the total angular momentum direc-
tion replaced by one of the other physical directions defined
in the nonrotated COM frame that can be measured (for ex-
ample, the direction perpendicular to the plane determined by
the beam and the fastest proton produced). Such a procedure
may be also useful in the case if more �’s are produced in one
event.

VIII. CONCLUSIONS

In this work, we have discussed the interpretation of the
recent measurements of the spin polarization of � hyperons
produced in relativistic heavy-ion collisions. We have shown
that the precise interpretation of the relation between the �

spin direction (measured in the � rest frame) and the total
angular momentum of the system (measured in the center-
of-mass frame) requires that the direction of the angular
momentum is boosted to the � rest frame. We have given the
necessary formula that, we hope, may find practical imple-
mentation in the polarization measurements. In particular, this
expression may be used to average the measured polarization
of �’s with different momenta in the center-of-mass frame.
Several explicit expressions for boosts and rotations have been
written out, which may help one to compare model predictions
with the experimental results.
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We thank Y. Bondar, M. Gaździcki, T. Niida, I. Se-
lyuzhenkov, G. Stefanek, and S. Voloshin for stimulating and
clarifying discussions. The work of W.F. and R.R. was sup-
ported in part by the Polish National Science Centre Grants
No. 2016/23/B/ST2/00717 and No. 2018/30/E/ST2/00432,
respectively.

APPENDIX A: PROPERTIES OF THE CANONICAL BOOST

Of course, the three-momentum of the � hyperon in its
frame is zero; however, it is possible to introduce the four-
vector in COM that defines the direction of a moving � and
has nonvanishing components in the � rest frame. The desired
object is

λ
μ

‖ = (λ0
‖,λ‖) = (0, p̂�). (A1)

After the canonical boost to S′(p�) we obtain

λ
′μ
‖ = (λ′ 0

‖ ,λ′
‖) = γ�

(
− p�

E�

, p̂�

)
. (A2)

The property λ′
‖ = γ�λ‖ is usually interpreted as the conser-

vation of the angles between the three-momentum of a moving

particle and the frame axes by the canonical boost, as one has
λ′

‖/λ
′
‖ = λ‖/λ‖. The other two important four-vectors are

λ
μ

⊥,1=(λ0
⊥,1,λ⊥,1) = 1√(

p1
�

)2+(
p2

�

)2

(
0,−p2

�, p1
�, 0

)
(A3)

and

λ
μ

⊥,2 = (λ0
⊥,2,λ⊥,2) = 1

p�

√(
p1

�

)2 + (
p2

�

)2

×
(

0,−p3
� p1

�,−p3
� p2

�,
(
p1

�

)2 + (
p2

�

)2
)
. (A4)

The four-vectors λ
μ

⊥,1 and λ
μ

⊥,2 do not change under the canon-
ical boost (1). The three-vector λ⊥,1 represents the rotation
axis for the rotation R�.

For example, for any four-vector of the form

nμ = (0, n) = (0, n1, n2, n3), (A5)

with the normalization nμnμ = −1 or, equivalently, n · n = 1,
after the canonical boost we obtain

n′μ = (n′ 0, n′) =
(

− p� · n
m�

, n + p�

p� · n
m�(E� + m�)

)
,

(A6)

where n′ · n′ = 1 + (p� · n)2/m2
�. Thus the direction n in

COM can be
One can check that

λ′
‖ · n′ = γ 2

� λ‖ · n. (A7)

Since n0 = 0 and P′ 0 = 0 we obtain

n · P = n′ · P′. (A8)

Hence, the four-vector nμ can be used to define the polariza-
tion direction in a way that is frame independent.

APPENDIX B: DISTRIBUTION OF THE PROTON
THREE-MOMENTA ALONG AN ARBITRARY DIRECTION

If the distribution of protons coming from the � decay is
given by Eq. (28), their angular distribution in S′(p�) is ob-
tained from Eq. (30). In this section, we assume that a certain
angular distribution of protons dNp/d�′ is known, and we
construct the distribution of the proton projected momentum
along an arbitrary direction in S′(p�). The obtained formula
can be used to determine polarization in a given direction
directly from the angular distribution dNp/d�′. Note that if
the distribution dNp/d�′ is isotropic, the proton projected
momentum along any direction has a flat distribution that
reflects no sign of polarization.

We start with the integral of the angular distribution and
rewrite as follows (we are now in the frame S′(p�, ) but
for clarity of notation we skip the index prime, and also the
number of protons is normalized to 1]:

1 =
∫ (

dN

d�

)
sin θpdθpdφp

=
∫ +1

−1
dc

∫ (
dN

d�

)
δ(c∗ − c) sin θpdθpdφp. (B1)
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Here δ denotes the Dirac delta function and c∗ is the cosine of
the angle between the proton direction defined by the angles
θp and φp and an arbitrary direction defined by the angles �

and 
, hence

c∗ = cos θ∗ = cos � cos θp + cos(
 − φp) sin � sin θp.

(B2)

By construction −1 � c∗ � +1.
The distribution of the proton three-momentum direction

along the direction specified by the angles � and 
 is defined
by the integral

dN

dc
=

∫ (
dN

d�

)
δ(c∗ − c) sin θpdθpdφp. (B3)

To do the integral on the right-hand side we introduce the
function

f (c,�,
, θp, φp) = c∗(�,
, θp, φp) − c (B4)

and use the properties of the Dirac delta function to write

dN

dc
=

∫ π

0
sin θpdθp

∫ 2π

0

dN

d�
(θp, φp)

×
[
δ(φp − φ+

p )

| f ′(φ+
p )| + δ(φp − φ−

p )

| f ′(φ−
p )|)

]
dφp. (B5)

Here

f ′ = sin(
 − φp) sin � sin θp (B6)

and

φ±
p = 
 ± arccos

(
c − cos � cos θp

sin � sin θp

)
(B7)

are the two solutions of the equation c∗ − c = 0. We note
that it may happen that the solutions defined by Eq. (B7) are
outside of the range (0, 2π ); however, since f ′ and dN/d�

are periodic this does not lead to problems. As a matter of fact,
this equation has solutions only if the following condition is
satisfied:

−1 � c − cos � cos θp

sin � sin θp
� +1. (B8)

This implies that the range of the integration over θp must
be limited: for given values of c and �, only those values of
θp contribute to the integral (B5) which satisfy (B8). If we
introduce the notation c = cos θ , with 0 � θ � π , then the
limits for the θp integration are

θmin
p = max(0,� − θ, θ − �) � θp

� min(π, 2π − θ − �,� + θ ) = θmax
p . (B9)

Here we assumed that the range of the angles � and θp is
between 0 and π . Consequently, the final result can be written
as

dN

dc
=

∫ θmax
p

θmin
p

[
dN

d�
(θp, φ

+
p )

1

| f ′(φ+
p )| + dN

d�
(θp, φ

−
p )

1

| f ′(φ−
p )|)

]
sin θpdθp. (B10)

If the proton distribution is given by the weak decay law discussed above, the last formula may be interpreted as the inverse of
the transformation that leads from Eq. (28) to Eq. (30). We have checked numerically that this is indeed so.
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