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Factorial cumulants from short-range correlations and global baryon number conservation
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We calculate the baryon factorial cumulants assuming arbitrary short-range correlations and the global
baryon number conservation. The general factorial cumulant generating function is derived. Various re-
lations between factorial cumulants subjected to baryon number conservation and the factorial cumulants
without this constraint are presented. We observe that for nth factorial cumulant the short-range cor-
relations of more than n particles are suppressed with increasing number of particles. The recently
published [V. Vovchenko et al., Phys. Lett. B 811, 135868 (2020)] relations between the cumu-
lants in a finite acceptance with global baryon conservation and the grand-canonical susceptibilities are
reproduced.
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I. INTRODUCTION

The search for the predicted first-order phase transition
and the corresponding critical end point between hadronic
matter and quark-gluon plasma is one of the most important
challenges in high-energy physics [1–4]. Since fluctuations
of observables such as baryon number, electric charge, or
strangeness number are sensitive to the phase transitions, they
are broadly studied both theoretically and experimentally in
relativistic heavy-ion collisions [1,5–24].

Higher-order cumulants, κn, are commonly used to de-
scribe such fluctuations [10,25–32]. Nevertheless, the cumu-
lants mix the correlation functions of different orders and
also they may be dominated by the trivial average number
of particles. On the other hand, the factorial cumulants, Ĉn,
represent the integrated multiparticle correlation functions
[4,33–35] and their applications can be seen, e.g., in
Refs. [35–41]. However, one should be careful because var-
ious effects such as the impact parameter fluctuation or the
conservation laws may be reflected in the anomalies of facto-
rial cumulants or cumulants [26,30,39,41–49].

In our previous paper [50] we calculated the proton, an-
tiproton, and mixed proton-antiproton factorial cumulants,
assuming that the global baryon number conservation is the
only source of correlations. We assumed that the acceptance is
governed by the binomial distribution, which is correct if there
are no other sources of correlations. Recently, in Ref. [51], it
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was argued that applying the binomial acceptance is not cor-
rect if, e.g., short-range correlations are present in the system.
Instead of the binomial acceptance, the subensemble accep-
tance method (SAM) was proposed. Using this approach, the
relation between cumulants in a finite acceptance with global
baryon conservation and the grand-canonical susceptibilities
(cumulants), measured, e.g., on the lattice, was derived. The
calculation presented in [51] assumes that the subvolume, in
which cumulants are calculated, is large enough to be close to
the thermodynamic limit.

In this paper we use SAM to study the factorial cumu-
lants for one species of particles subjected to short-range
correlations and the global baryon number conservation. In
particular, we derive the general factorial cumulant generating
function and various relations between factorial cumulants
subjected to baryon number conservation and cumulants with-
out this constraint. We also observe that for nth factorial
cumulant the short-range correlations of more than n parti-
cles are suppressed with increasing total number of particles.
Finally, we reproduce the main results of Ref. [51].

In the next section, we present our derivation of the fac-
torial cumulant generating function. In Sec. III we discuss in
detail the case of two-particle short-range correlations, pro-
viding analytical formulas for the factorial cumulants up to the
sixth order. We analyze their dependencies on the correlation
strength and acceptance and propose certain approximations.
Then, in Sec. IV, we move to multiparticle correlations. This
is followed by a comparison of the cumulants obtained in
our computation with the outcome of Ref. [51]. Finally, we
present our comments and summary.

II. FACTORIAL CUMULANT GENERATING FUNCTION

Consider a system of a fixed volume and some number of
baryons of one species only, say protons. We divide it into
two subsystems which can exchange particles; see Fig. 1.
Let P1(n1) be the probability that there are n1 baryons in the
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FIG. 1. The system divided into two subsystems with n1 particles
in the first subvolume and n2 particles in the second one. n1 is inside
and n2 is outside of our acceptance.

first subsystem and P2(n2) be the probability that there are n2

baryons in the second one. Then, the probability that there are
n1 particles in the first part and n2 particles in the second one
is given by

P(n1, n2) = P1(n1)P2(n2), (1)

if there are no correlations between the two subsystems. This
equation is also approximately true for the case of short-range
correlations, that is, if the correlation length is much shorter
than the system size. In this paper we assume that this is ex-
actly the case. We note that this is also one of the assumptions
of the analysis of Ref. [51].

Now we impose the global baryon number conservation
with a fixed total baryon number B. In this case

PB(n1, n2) = A P1(n1)P2(n2)δn1+n2,B, (2)

where A is the normalization constant and δn1+n2,B is the
Kronecker delta responsible for the conservation law, that is
n1 + n2 = B. The probability that there are n1 particles in the
first subvolume reads

PB(n1) =
∞∑

n2=0

PB(n1, n2), (3)

where the subscript B indicates that the quantity is influenced
by the conservation law.

The probability generating function corresponding to
PB(n1) is

H(1,B)(z) =
∞∑

n1=0

PB(n1)zn1 , (4)

where, here and in the following, the subscript (1, B) indicates
that the quantity from the first bin is influenced by the global

baryon number conservation. Using the integral representa-
tion of the Kronecker delta,

δp,r = 1

2π i

∮
|x|=1

dx

x
xp−r, (5)

where x is a complex variable, we obtain

H(1,B)(z) = A

2π i

∮
|x|=1

dx

xB+1
H1(xz)H2(x), (6)

where

Hi(z) =
∞∑

ni=0

Pi(ni )z
ni , i = 1, 2, (7)

is the probability generating function for the multiplicity
distribution Pi(ni ), i = 1, 2, free of the baryon number con-
servation.

The factorial cumulant generating function is given by (see,
e.g., [4]):

G(z) = ln[H (z)], (8)

thus,

G(1,B)(z) = ln[H(1,B)(z)] = ln

[
A

2π i

∮
|x|=1

dx

xB+1
eG1(xz)eG2(x)

]
,

(9)
where G1 and G2 are the factorial cumulant generating func-
tions free of the baryon number conservation.

Using Cauchy’s differentiation formula,∮
|x|=1

dx
f (x)

xB+1
= 2π i

B!

dB f (x)

dxB

∣∣∣∣
x=0

, (10)

we obtain

G(1,B)(z) = ln

[
A

B!

dB

dxB

(
eG1(xz)eG2(x)

)∣∣∣∣
x=0

]
. (11)

We can express the factorial cumulant generating functions
Gi by the series of their factorial cumulants Ĉ(i)

k (i = 1, 2
denoting the subvolume number). For example1

G2(x) =
∞∑

k=1

(x − 1)k

k!
Ĉ(2)

k . (12)

This leads to

G(1,B)(z) = ln

[
A

B!

dB

dxB
exp

( ∞∑
k=1

(xz − 1)kĈ(1)
k + (x − 1)kĈ(2)

k

k!

)∣∣∣∣∣
x=0

]
. (13)

1So that we have Ĉ (2)
k = dk

dxk G2(x)|x=1.

Note that Ĉ(1)
k , Ĉ(2)

k are respectively the factorial cumulants
in the first and the second subsystems for the multiplicity
distributions free of the global baryon conservation. As ex-
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plained earlier, these factorial cumulants are sensitive to the
short-range correlations only.

Finally, using Faá di Bruno’s formula (for details see Ap-
pendix A) we obtain

G(1,B)(z) = ln

[
A′

B!
BellB

( ∞∑
k=0

(−1)k

k!

[
Ĉ(1)

k+1z + Ĉ(2)
k+1

]
,

∞∑
k=0

(−1)k

k!

[
Ĉ(1)

k+2z2 + Ĉ(2)
k+2

]
,

. . . ,

∞∑
k=0

(−1)k

k!

[
Ĉ(1)

k+BzB + Ĉ(2)
k+B

])]
, (14)

where A′ is a constant not relevant for further calculations, and
BellB is the Bth complete exponential Bell polynomial:

BellB(x1, x2, . . . , xB) =
B∑

i=1

BellB,i(x1, x2, . . . , xB−i+1),

(15)
with BellB,i(x1, x2, . . . , xB−i+1) being the partial exponential
Bell polynomials.

The goal of this paper is to relate the factorial cumulants
Ĉ(1,B)

k of PB(n1),

Ĉ(1,B)
k = dk

dzk
G(1,B)(z)

∣∣∣∣
z=1

, (16)

through the factorial cumulants Ĉ(1)
k , Ĉ(2)

k of the probability
distributions P1(n1) and P2(n2), respectively.

In this paper we allow for the short-range correlations
only (besides the global baryon conservation which results
in the long-range correlation) and consequently the factorial
cumulants Ĉ(i)

k (without baryon number conservation) of any
order k are proportional to the mean number of particles; see,
e.g., [4]. We have

Ĉ(1)
k = 〈n1〉αk = f 〈N〉αk,

Ĉ(2)
k = 〈n2〉αk = (1 − f )〈N〉αk,

(17)

where 〈N〉 = 〈n1〉 + 〈n2〉 is the mean total number of particles
in the system, f is a fraction of particles in the first subvolume,
and αk describes the strength of k-particle short-range corre-
lation (α1 = 1). If there are no short-range correlations in the
system, then αk = 0 for k > 1. We note that 〈n1〉 is the mean
number of particles of P1(n1), the distribution not affected by
the global baryon conservation (and analogously for 〈n2〉).

In the following we will usually assume that 〈N〉 = B.
Introducing the global baryon number conservation further
requires that the total number of particles in every event equals
B. That is why the average number of baryons with the baryon
number conservation included also equals B.

III. TWO-PARTICLE CORRELATIONS

Here we consider two-particle short-range correlations
only, that is, α2 �= 0 and αk = 0 for k � 3.

A. An analytic approach using Faá di Bruno’s formula and Bell
polynomials

We apply Eqs. (17) to Eq. (14) with αk = 0 for k � 3, and
use some properties of the exponential Bell polynomials. The
detailed calculation is presented in Appendix B. The factorial
cumulant generating function reads

G(1,B)(z) = ln

[
A′ [B(1 − α2)( f z + f̄ )]2B0−B

[
1
2 Bα2( f z2 + f̄ )

]B−B0

(B − B0)!

× 2F2

(
1, B0 − B; B0 − B

2
+ 1

2
, B0 − B

2
+ 1; −B(1 − α2)2( f z + f̄ )2

2α2( f z2 + f̄ )

)]
, (18)

where

B0 =
⌈B

2

⌉
≡
{B

2 for B even,
B+1

2 for B odd,
(19)

f̄ = 1 − f , and 2F2(· · · ) is the generalized hypergeometric
function defined as

2F2(a1, a2; b1, b2; z) =
∞∑

n=0

(a1)(n)(a2)(n)

(b1)(n)(b2)(n)

zn

n!
(20)

with

(x)(n) =
{∏n−1

k=0(x + k) if n = 1, 2, 3, . . . ,
1 if n = 0

(21)

being the rising factorial (Pochhammer symbol).

Note that for even B the fourth argument of 2F2 becomes 1
whereas for odd B the third argument becomes 1. Therefore,
2F2 is in either case reduced to 1F1 (the confluent hyperge-
ometric function). Moreover, (B0 − B), the second argument
of 2F2 is a negative integer, so (B0 − B)(n) = 0 starting from
n = B − B0 + 1. Therefore, the sum in 2F2 is in fact finite
from n = 0 to B − B0.2

2It is straightforward to show that, for the special case of α2 = 0
(no short-range correlations, making the global baryon number con-
servation the only source of correlations), the factorial cumulant
generating function, Eq. (18), becomes G(1,B)(z) = C̃ + B ln( f z +
f̄ ), where C̃ = ln( A

B! BB) − B. Obviously the same result is obtained
assuming αk = 0 for k � 2 already in Eq. (13). The resulting facto-
rial cumulants are Ĉ (1,B)

n = (−1)n−1(n − 1)! f nB, consistent with the
approach presented in Ref. [50] but applied to one kind of particles.
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The factorial cumulants obtained from Eq. (18), see Eq. (16), read:

Ĉ(1,B)
1 = f B, (22)

Ĉ(1,B)
2 = − f 2B + 2 f β − f βγ

α2
R1, (23)

Ĉ(1,B)
3 = 2 f 3B − 12 f 2β + 6

f 2βγ

α2
R1, (24)

Ĉ(1,B)
4 = −3! f 4B − 12 f 2(1 − 7 f )β − 3

f 2βγ

α2
2

[
βγ R2

1 − 4(1 − 4 f )α2R1 − 2 f̄ γ (B − B0 − 1)R2
]
, (25)

Ĉ(1,B)
5 = 4! f 5B + 240 f 3(1 − 3 f )β + 60

f 3βγ

α2
2

[
βγ R2

1 − 4(1 − 2 f )α2R1 − 2 f̄ γ (B − B0 − 1)R2
]
, (26)

Ĉ(1,B)
6 = −5! f 6B + 60

f 3β

α2

[− f̄ 2γ + 4(31 f 2 − 17 f + 1)α2
] − 15

f 3βγ

α3
2

[
2β2γ 2R3

1 − 6 f̄ βγ 2(B − B0 − 1)R1R2

− 12βγ (1 − 6 f )α2R2
1 + 2α2

2

[
191 f 2 − 142 f + 11 − B0(3 + 2B0) f̄ 2

]
R1

+ α2 f̄ 2B
[(

2α2
2 − 5α2 + 2

)
B − 2

(
α2

2 − 4α2 + 1
)
B0 − (

4α2
2 − 11α2 + 4

)]
R1

+ 2 f̄ γ (B − B0 − 1)
[
(7 − 4B0 f̄ − 67 f )α2 − B f̄

(
1 − 4α2 + α2

2

)]
R2

]
, (27)

where the commonly appearing terms are defined as follows:

β = (B − B0) f̄ , (28)

γ = B(1 − α2)2, (29)

Rn = 2F̃2
(
1 + n, B0 − B + n; B0 − B

2 + 1
2 + n, B0 − B

2 + 1 + n; −B(1−α2 )2

2α2

)
2F̃2

(
1, B0 − B; B0 − B

2 + 1
2 , B0 − B

2 + 1; −B(1−α2 )2

2α2

) , (30)

with

2F̃2(a1, a2; b1, b2, z) = 2F2(a1, a2; b1, b2, z)

�(b1)�(b2)
(31)

being the regularized generalized hypergeometric function.

B. An approximate approach using the general Leibnitz formula

In the case of two-particle short-range correlations only, Eq. (13) reads

G(1,B)(z) = ln

[
A

B!

dB

dxB

[
exp((xz − 1) f 〈N〉 + (x − 1) f̄ 〈N〉) exp

(
1

2
(xz − 1)2 f 〈N〉α2 + 1

2
(x − 1)2 f̄ 〈N〉α2

)]∣∣∣∣
x=0

]
, (32)

where α2 is defined in Eq. (17).
Assuming α2 to be small, we expand the second exponent in Eq. (32) into a series. Then, we calculate the Bth derivative of a

product of two functions using the general Leibnitz formula. For details see Appendix C, where the relevant factorial cumulant
generating function is given.

Using Eq. (16) we calculate Ĉ(1,B)
n and expand them into the Taylor series in α2. We obtain

Ĉ(1,B)
1 = f B, (33)

Ĉ(1,B)
2 = − f 2B + f̄ f (B − 1) α2 + 3 f̄ f

B − 1

B
α2

2 − 5 f̄ f
(B − 1)(B − 3)

B2
α3

2 + f̄ f
(B − 1)(7B2 − 65B + 105)

B3
α4

2 + · · · ,

(34)

Ĉ(1,B)
3 = 2 f 3B − 6 f̄ f 2(B − 1) α2 − 18 f̄ f 2 B − 1

B
α2

2 + 30 f̄ f 2 (B − 1)(B − 3)

B2
α3

2

− 6 f̄ f 2 (B − 1)(7B2 − 65B + 105)

B3
α4

2 + · · · , (35)
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Ĉ(1,B)
4 = −3! f 4B+36 f̄ f 3(B − 1) α2 − 6 f̄ f 2(B − 1)

2 f̄ B − 15 f − 3

B
α2

2 + 12 f̄ f 2(B − 1)
f̄ B2 − B(4 f + 11) + 15(1 + 2 f )

B2
α3

2

− 6 f̄ f 2(B − 1)
2 f̄ B3 − 21B2(3 − f ) + 15B(19 + 7 f ) − 315(1 + f )

B3
α4

2 + · · · , (36)

Ĉ(1,B)
5 = 4! f 5B − 240 f̄ f 4(B − 1) α2 + 120 f̄ f 3(B − 1)

2 f̄ B − 3 f − 3

B
α2

2 − 240 f̄ f 3(B − 1)
f̄ B2 − B(11 − 6 f ) + 15

B2
α3

2

+ 120 f̄ f 3(B − 1)
2 f̄ B3 − 7B2(9 − 7 f ) + 5B(57 − 31 f ) − 105(3 − f )

B3
α4

2 + · · · , (37)

Ĉ(1,B)
6 = −5! f 6B + 1800 f̄ f 5(B − 1) α2 − 1800 f̄ f 4(B − 1)

2 f̄ B − 3

B
α2

2

− 120 f̄ f 3(B − 1)
−5 f̄ (5 f + 1)B2 + (−238 f 2 + 296 f + 17)B + 15(14 f 2 − 28 f − 1)

B2
α3

2 − 360 f̄ f 3(B − 1)

× 2 f̄ (2 + 3 f )B3 + 5B2(47 f 2 − 45 f − 9) − 25B(39 f 2 − 47 f − 5) + 105(9 f 2 − 13 f − 1)

B3
α4

2 + · · · . (38)

Here we expand up to α4
2 , but higher orders can be easily obtained.3

Having factorial cumulants, one can easily calculate cumulants κn.4 For example,

κ
(1,B)
1 = f B, (39)

κ
(1,B)
2 = f̄ f

[
B + (B − 1) α2 + 3

B − 1

B
α2

2 − 5
(B − 1)(B − 3)

B2
α3

2 + (B − 1)(7B2 − 65B + 105)

B3
α4

2 + · · ·
]
, (40)

κ
(1,B)
3 = f̄ f (1 − 2 f )

[
B + 3(B − 1) α2 + 9

B − 1

B
α2

2 − 15
(B − 1)(B − 3)

B2
α3

2 + 3
(B − 1)(7B2 − 65B + 105)

B3
α4

2 + · · ·
]
,

(41)

κ
(1,B)
4 = f̄ f

[
B(1 − 6 f̄ f ) + (B − 1)[7 − 36 f̄ f ]α2 + 3

B − 1

B
[7 − 2 f̄ f (2B + 15)]α2

2 − B − 1

B2
[35(B − 3)

− 12 f̄ f (B2 + 4B − 30)]α3
2 + B − 1

B3
[7(7B2 − 65B + 105) − 6 f̄ f (2B3 − 21(B2 + 5B − 15))]α4

2 + · · ·
]
. (42)

C. Examples

To illustrate our results, in Fig. 2 we plot the factorial
cumulants for B = 300 and f = 0.2 as a function of α2. We
verified that the analytic results obtained using Faá di Bruno’s
formula and Bell polynomials, Eqs. (22)–(27), are equivalent
to the exact computation obtained differentiating Eq. (32)
B = 300 times. We compared them with approximate results
obtained using the general Leibnitz formula, Eqs. (33)–(38).
As seen in Fig. 2, Ĉ(1,B)

2 and Ĉ(1,B)
3 are very well approximated

already by a linear expansion in α2. This is not surprising. It
is clear from Eqs. (34) and (35) that higher powers of α2 are
suppressed for large B. Quartic expansions of Ĉ(1,B)

4 and Ĉ(1,B)
5

are in good agreement with exact results in the whole inves-
tigated range −0.5 � α2 � 0.5, whereas quartic expansion of
Ĉ(1,B)

6 works in a narrower range of −0.3 � α2 � 0.3, which
is acceptable since α2 was assumed to be rather small.

3Obviously, in order to calculate more terms, one needs to take larger mmax in Eq. (C3), see Appendix C.
4Relations between cumulants and factorial cumulants read κ2 = 〈n〉 + Ĉ2, κ3 = 〈n〉 + 3Ĉ2 + Ĉ3, κ4 = 〈n〉 + 7Ĉ2 + 6Ĉ3 + Ĉ4, κ5 = 〈n〉 +

15Ĉ2 + 25Ĉ3 + 10Ĉ4 + Ĉ5, κ6 = 〈n〉 + 31Ĉ2 + 90Ĉ3 + 65Ĉ4 + 15Ĉ5 + Ĉ6, where mean 〈n〉 = Ĉ1 = κ1. Details can be found, e.g., in Ap-
pendix A of Ref. [4].

It is also useful to plot these factorial cumulants as func-
tions of f for fixed B and α2 (we choose B = 300 and α2 =
0.25); see Fig. 3. For Ĉ(1,B)

2 , Ĉ(1,B)
3 , and Ĉ(1,B)

4 already a linear
expansion in α2 is in good agreement with the exact results.
In the case of Ĉ(1,B)

5 and Ĉ(1,B)
6 significant deviations between

the linear α2 expansion and the exact function are observed.
Including higher order terms up to α4

2 is sufficient to reproduce
the exact results.

IV. MULTIPARTICLE CORRELATIONS

In this section we calculate the factorial cumulants, taking
into account the multiparticle short-range correlations. The
generating function, Eq. (13), can be written as

024904-5
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i
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FIG. 2. Factorial cumulants Ĉ (1,B)
n (n = 2, 3, . . . , 6, assuming B = 300, f = 0.2, and αk = 0 for k � 3) as a function of the two-particle

correlation strength, α2. The “exact” line in each plot represents the analytic result, Eqs. (22)–(27). Other lines represent approximate power
series expansions, Eqs. (33)–(38). For Ĉ (1,B)

2 and Ĉ (1,B)
3 only linear terms are presented because higher powers of α2 give practically identical

results.

G(1,B)(z) = ln

{
A

B!

dB

dxB

[
exp[(xz − 1) f 〈N〉 + (x − 1) f̄ 〈N〉]

( ∞∑
m=0

V m

m!

)]∣∣∣∣∣
x=0

}
, (43)

where

V =
5∑

k=2

(
(xz − 1)k

k!
f 〈N〉αk + (x − 1)k

k!
f̄ 〈N〉αk

)
. (44)

Here we assumed that αk �= 0 for k � 5.
Considering αk to be small, we can limit our expansion to a linear term in V :

G(1,B)(z) ≈ ln

[
A

B!

dB

dxB
{exp[(xz − 1) f 〈N〉 + (x − 1) f̄ 〈N〉](1 + V )}∣∣

x=0

]
. (45)

By evaluating the derivatives using the general Leibnitz formula, we obtain:

G(1,B)(z) ≈ ln(A) − ln(B!) − 〈N〉 + B ln(〈N〉Y1) + ln

[
1 + 〈N〉

5∑
k=2

Akαk

]
, (46)
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FIG. 3. Factorial cumulants Ĉ (1,B)
n (n = 2, 3, . . . , 6, assuming B = 300, α2 = 0.25, and αk = 0 for k � 3) as a function of a fraction of

particles in the first of the two subsystems, f . In each figure we show the “exact” line representing analytic results, Eqs. (22)–(27), and
approximate expansions from Eqs. (33)–(38). For readability, we present only linear and quartic functions.
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where

Ak = 1

k!

k∑
j=0

(−1)k− j

(
k

j

)
B!

(B − j)!

Xj

〈N〉 j
, (47)

Xk = Yk/(Y1)k , and Yk = f zk + f̄ .
The factorial cumulants are given by (here 〈N〉 = B and the calculated factorial cumulants are expanded in small αk)

Ĉ(1,B)
1 = f B, (48)

Ĉ(1,B)
2 = − f 2B + f̄ f (B − 1)

[
α2 − 2

1

B
α3 − 1

2

B − 6

B2
α4 + 4

3

B − 3

B3
α5

]
+ · · · , (49)

Ĉ(1,B)
3 = 2 f 3B − f̄ f (B − 1)

[
6 f α2 + (2 f − 1)B + 2(1 − 8 f )

B
α3 − 3

(3 f − 1)B + 2(1 − 5 f )

B2
α4

+ 1

2

(1 − 2 f )B2 + 2(22 f − 7)B + 24(1 − 4 f )

B3
α5

]
+ · · · , (50)

Ĉ(1,B)
4 = −6 f 4B + f̄ f (B − 1)

[
36 f 2 α2 + 12 f

(2 f − 1)B + 2(1 − 5 f )

B
α3

+ B2(3 f 2 − 3 f + 1) − B(105 f 2 − 51 f + 5) + 6(45 f 2 − 15 f + 1)

B2
α4

− 2
B2(12 f 2 − 9 f + 2) − 2B(69 f 2 − 36 f + 5) + 12(21 f 2 − 9 f + 1)

B3
α5

]
+ · · · , (51)

Note that the α2 terms are in agreement with the linear part of Eqs. (33)–(36). The higher order factorial cumulants can be also
readily derived.

In the limit of large B (and small αk) the factorial cumulants read5

Ĉ(1,B)
1 = f B, (52)

Ĉ(1,B)
2 ≈ f B[− f + f̄ α2], (53)

Ĉ(1,B)
3 ≈ f B[2 f 2 − 6 f̄ f α2 + f̄ (1 − 2 f )α3], (54)

Ĉ(1,B)
4 ≈ f B [−3! f 3 + 36 f̄ f 2α2 − 12 f̄ f (1 − 2 f )α3 + f̄ (1 − 3 f̄ f )α4], (55)

Ĉ(1,B)
5 ≈ f B[4! f 4 − 240 f 3 f̄ α2 + 120 f 2 f̄ (1 − 2 f )α3 − 20 f f̄ (1 − 3 f f̄ )α4 + f̄ (1 − 2 f )(1 − 2 f f̄ )α5], (56)

Ĉ(1,B)
6 ≈ f B[−5! f 5 + 1800 f 4 f̄ α2 − 1200 f 3 f̄ (1 − 2 f )α3 + 300 f 2 f̄ (1 − 3 f f̄ )α4 − 30 f f̄ (1 − 2 f )(1 − 2 f f̄ )α5

+ f̄ (1 − 5 f f̄ (1 − f f̄ ))α6]. (57)

One can observe that, for large B, Ĉ(1,B)
n is not influenced by

αk with k > n. For example, in Ĉ(1,B)
3 only two- and three-

particle short-range correlations, represented by α2 and α3,
are significant, and the higher-ordered ones are suppressed.
In this calculation we assumed that αk is small enough to
include in Eq. (43) only the linear term in V . It was checked
that our conclusion about the suppression of higher order αk

is also true if higher powers of V are taken into account. To
demonstrate this point, in Appendix D we present results with
(1 + V + V 2/2) instead of (1 + V ) in Eq. (45).

5Here we present results up to Ĉ (1,B)
6 and thus we take αk �= 0 for k � 7.

V. AGREEMENT WITH REF. [51]

It would be interesting to test our technique and reproduce
the results presented in Ref. [51]. We take Eqs. (52)–(55),
valid for large B, and known relations between cumulants and
factorial cumulants, and calculate the cumulants in the first
subsystem with short-range correlations and baryon number
conservation. We obtain

κ
(1,B)
2 ≈ f̄ f B(α2 + 1), (58)

κ
(1,B)
3 ≈ f̄ f (1 − 2 f )B(1 + 3α2 + α3), (59)

κ
(1,B)
4 ≈ f̄ f B[(1 + 7α2 + 6α3 + α4)

− 3 f̄ f (2 + 12α2 + 8α3 + α4)]. (60)

024904-8



FACTORIAL CUMULANTS FROM SHORT-RANGE … PHYSICAL REVIEW C 106, 024904 (2022)

The global factorial cumulants, for both subsystems of
Fig. 1 combined, are given by Ĉ(G)

n = Bαn. These factorial
cumulants are defined before baryon number conserva-
tion is included [compare with Eq. (17)]. Using again
the relations between cumulants and factorial cumulants,
we obtain

κ
(1,B)
2 ≈ f̄ f κ (G)

2 , (61)

κ
(1,B)
3 ≈ f̄ f (1 − 2 f )κ (G)

3 , (62)

κ
(1,B)
4 ≈ f̄ f

[
κ

(G)
4 − 3 f̄ f

(
κ

(G)
4 + 2κ

(G)
3 − κ

(G)
2

)]
, (63)

where κ (G)
n is the nth global cumulant in the whole system

originating from the short-range correlations but without the
conservation of baryon number. κ (1,B)

n are the cumulants in
one subsystem with all sources of correlations.

Equations for κ
(1,B)
2 and κ

(1,B)
3 reproduce the relations

obtained in Ref. [51]. We note here that in deriving Eqs. (61)–
(63) we considered only terms linear in αk [we started with
generating function (45)]. We checked that taking higher V
terms in Eq. (43) does not change κ

(1,B)
2 and κ

(1,B)
3 , and

thus this is the final result. However, the higher order V
terms change κ

(1,B)
4 , and to reach agreement with Ref. [51]

we take

G(1,B)(z) ≈ ln

{
A

B!

dB

dxB

[
exp[(xz − 1) f 〈N〉 + (x − 1) f̄ 〈N〉]

(
M∑

m=0

V m

m!

)]∣∣∣∣∣
x=0

}
(64)

instead of Eq. (45). Next, we calculate κ
(1,B)
4 κ

(1,B)
2 in the large

B limit taking M = 1, 2, 3, . . . . We observed that for M � 2
the result is always given by

κ
(1,B)
4 κ

(1,B)
2 ≈ f̄ 2 f 2

[
κ

(G)
4 κ

(G)
2 − 3 f̄ f

((
κ

(G)
3

)2 + κ
(G)
4 κ

(G)
2

)]
,

(65)
and thus the formula for the fourth cumulant reads

κ
(1,B)
4 ≈ f̄ f

[
κ

(G)
4 − 3 f̄ f

(
κ

(G)
4 + (κ (G)

3 )2

κ
(G)
2

)]
, (66)

which is in agreement with Ref. [51].
In a similar way we also calculated the large B limit of

κ
(1,B)
5 κ

(1,B)
2 and κ

(1,B)
6 (κ (1,B)

2 )3.6 We found that κ
(1,B)
5 κ

(1,B)
2 is

not changing for M � 2 and κ
(1,B)
6 (κ (1,B)

2 )3 is not changing for
M � 4. We obtain

κ
(1,B)
5 ≈ f̄ f (1 − 2 f )

[
(1 − 2 f̄ f )κ (G)

5 − 10 f̄ f
κ

(G)
3 κ

(G)
4

κ
(G)
2

]
,

(67)

κ
(1,B)
6 ≈ f̄ f {1 − 5 f̄ f [1 − f̄ f ]}κ (G)

6

+ 5 f 2 f̄ 2

{
3 f̄ f

(
κ

(G)
3

κ
(G)
2

)2
3κ

(G)
4 κ

(G)
2 − (κ (G)

3 )2

κ
(G)
2

− 2(1 − 2 f )2

(
κ

(G)
4

)2

κ
(G)
2

− 3[1 − 3 f̄ f ]
κ

(G)
3 κ

(G)
5

κ
(G)
2

}
,

(68)

also in agreement with Ref. [51].

VI. COMMENTS AND SUMMARY

In this paper we obtained the factorial cumulant generating
function in one of the two subsystems [Eqs. (13) and (14)]

6For the case of κ
(1,B)
6 (κ (1,B)

2 )3 it was necessary to allow for α6 �= 0.

assuming global baryon number conservation and short-range
correlations. For simplicity, the case of one species of particles
was discussed. Using this function, we calculated the facto-
rial cumulants assuming two-particle short-range correlations
[Eqs. (22)–(27) and Eqs. (33)–(38)]. We showed how they de-
pend on the correlation strength and acceptance and compared
the approximated formulas with the exact ones (Figs. 2 and 3).

Next, we obtained expressions for the factorial cumu-
lants assuming small multiparticle short-range correlations
[Eqs. (48)–(51)], and we studied the limit of large baryon
number B [Eqs. (52)–(57)]. It turns out that for the nth fac-
torial cumulant only short-range correlations of less or equal
to n particles are significant. Finally, we calculated cumulants
and checked that for large B they are in agreement with the
results presented in Ref. [51].

We emphasize that in our calculation we assumed one
species of particles only (baryons) and thus our results might
be applicable to low colliding energies, where the production
of antibaryons can be neglected. Moreover, all our results
are for baryons whereas in practice cumulants are measured
for proton (net-proton) number since neutrons are difficult or
impossible to measure. Baryon vs proton number is a usual
problem when interpreting experimental data, and here cer-
tain corrections can be made, as discussed in Refs. [44,52].
Another issue arising when interpreting experimental data
is coordinate vs momentum space. Theoretical calculations
are usually made in the coordinate space and measurements
are made in the momentum space. The presence of the
collective flow in heavy-ion collisions can reflect the coor-
dinate space correlations on the momentum space (see, e.g.,
Ref. [53]), although this is not straightforward, especially at
lower energies. In our calculations, we assume short-range
correlations between baryons and the division presented in
Fig. 1, and all our results could in principle be applied
to the momentum space if the correlations are short-range
in momentum.

There are many ways to broaden our study. First, it would
be interesting to calculate the next correction to the re-
sults from Ref. [51]; see, e.g., Eq. (66). These results take
the leading term in B, which is justified for large systems,

024904-9



MICHAŁ BAREJ AND ADAM BZDAK PHYSICAL REVIEW C 106, 024904 (2022)

and in our approach it is possible to obtain higher order
terms. Next, it would be interesting to expand our calcu-
lations to many species of particles. Finally, it is desired
to investigate the convolution of baryon number conserva-
tion with other long-range correlations. This might be rather
challenging.
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APPENDIX A: FAÁ DI BRUNO’S FORMULA AND THE
COMPLETE EXPONENTIAL BELL POLYNOMIALS

The Faá di Bruno’s formula reads

dB

dxB
f (g(x)) =

B∑
i=1

f (i)(g(x)) BellB,i(g′(x), g′′(x),

. . . , g(B−i+1)(x)), (A1)

where BellB,i(x1, x2, . . . , xB−i+1) are the partial exponential
Bell polynomials.

Applying this to Eq. (13) with

f (g(x)) = eg(x), (A2)

g(x) =
∞∑

k=1

(xz − 1)kĈ(1)
k + (x − 1)kĈ(2)

k

k!
, (A3)

we obtain

dB

dxB

[
exp

( ∞∑
k=1

(xz − 1)kĈ(1)
k + (x − 1)kĈ(2)

k

k!

)]∣∣∣∣∣
x=0

=
B∑

i=1

exp

( ∞∑
k=1

(xz − 1)kĈ(1)
k + (x − 1)kĈ(2)

k

k!

)
BellB,i

( ∞∑
k=1

kz(xz − 1)k−1Ĉ(1)
k + k(x − 1)k−1Ĉ(2)

k

k!
,

∞∑
k=2

k(k − 1)z2(xz − 1)k−2Ĉ(1)
k + k(k − 1)(x − 1)k−2Ĉ(2)

k

k!
,

. . . ,

∞∑
k=B−i+1

k(k − 1) · · · (k − B + i)[zB−i+1(xz − 1)k−B+i−1Ĉ(1)
k + (x − 1)k−B+i−1Ĉ(2)

k ]

k!

)∣∣∣∣∣
x=0

. (A4)

After simplifications and evaluation at x = 0 we obtain

dB

dxB

[
exp

( ∞∑
k=1

(xz − 1)kĈ(1)
k + (x − 1)kĈ(2)

k

k!

)]∣∣∣∣∣
x=0

= C
B∑

i=1

BellB,i

( ∞∑
k=0

(−1)k

k!

[
Ĉ(1)

k+1z + Ĉ(2)
k+1

]
,

∞∑
k=0

(−1)k

k!

[
Ĉ(1)

k+2z2 + Ĉ(2)
k+2

]
,

. . . ,

∞∑
k=0

(−1)k

k!

[
Ĉ(1)

k+B−i+1zB−i+1 + Ĉ(2)
k+B−i+1

])
. (A5)

Here C = exp[
∑∞

k=1
(−1)k

k! (Ĉ(1)
k + Ĉ(2)

k )] is a constant with respect to z, which is unimportant for calculations of the factorial
cumulants. Then by applying the relation between the complete and partial exponential Bell polynomials, see Eq. (15), and
denoting A′ = AC, we obtain Eq. (14).

APPENDIX B: AN ANALYTIC APPROACH WITH TWO-PARTICLE CORRELATIONS

When substituting Eqs. (17) into Eq. (14) with αk = 0 for k � 3, we see that only the first two arguments of the Bth complete
exponential Bell polynomial BellB are non-zero; that is

G(1,B)(z) = ln

[
A′

B!
BellB

(
1∑

k=0

(−1)k

k!
〈N〉αk+1( f z + f̄ ), 〈N〉α2

(
f z2 + f̄

)
, 0, 0, . . . , 0︸ ︷︷ ︸

(B−2) zeros

)]
. (B1)
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Using Eq. (15) we can rewrite it as follows:7

G(1,B)(z) = ln

{
A′

B!

[
BellB,B

[
( f z + f̄ )〈N〉(1 − α2)

] +
B−1∑
i=1

BellB,i

(
( f z + f̄ )〈N〉(1 − α2), ( f z2 + f̄ )〈N〉α2, 0, 0, . . . , 0︸ ︷︷ ︸

(B−i−1) zeros

)]}
.

(B2)

By definition, the partial exponential Bell polynomials are given by

BellB,i(x1, x2, . . . , xB−i+1) =
∑ B!

j1! j2! · · · jB−i+1!

(x1

1!

) j1(x2

2!

) j2 · · ·
(

xB−i+1

(B − i + 1)!

) jB−i+1

, (B3)

where the sum is over the non-negative integers j1, j2, . . . , jB−i+1 such that

j1 + j2 + ... + jB−i+1 = i,

j1 + 2 j2 + 3 j3 + ... + (B − i + 1) jB−i+1 = B.
(B4)

However, in our case x3 = x4 = · · · = xB−i+1 = 0, so we have nonzero terms in Eq. (B3) if and only if j3 = j4 = · · · = jB−i+1 =
0 (because 0r �= 0 for r = 0 only). In this case, the constraints (B4) lead to j1 = 2i − B, j2 = B − i. Since both j1 and j2 have
to be greater than or equal to 0, meaning B/2 � i � B, we obtain8

G(1,B)(z) = ln

[
A′

B!

B∑
i=B0

B!

(2i − B)!(B − i)!
[( f z + f̄ )〈N〉(1 − α2)]2i−B

[
1

2
( f z2 + f̄ )〈N〉α2

]B−i]
, (B5)

where B0 is defined in Eq. (19). Taking 〈N〉 = B, we obtain Eq. (18).

APPENDIX C: AN APPROXIMATE APPROACH WITH TWO-PARTICLE CORRELATIONS

The general Leibnitz formula reads

dB(u v)

dxB
=

B∑
k=0

(
B

k

)
dB−ku

dxB−k

dkv

dxk
. (C1)

In our case [see Eq. (32)],

u(x) = exp[(xz − 1) f 〈N〉 + (x − 1) f̄ 〈N〉], (C2)

v(x) = exp
[

1
2 (xz − 1)2 f 〈N〉α2 + 1

2 (x − 1)2 f̄ 〈N〉α2
]

≈
mmax∑
m=0

1

m!

[
1
2 (xz − 1)2 f 〈N〉α2 + 1

2 (x − 1)2 f̄ 〈N〉α2
]m

, (C3)

dku

dxk
= [ f̄ 〈N〉 + f z〈N〉]k exp[(xz − 1) f 〈N〉 + (x − 1) f̄ 〈N〉], (C4)

dkv

dxk
= 0 for k > 2mmax. (C5)

Taking 〈N〉 = B, we obtain

G(1,B)(z) = ln(A) − ln(B!) − B + B ln(BY1) + ln

[
1 + 1

2 B

(
B − 1

B
X2 − 1

)
α2

+ 1
4!! B

2

(
B!

(B − 4)!

X 2
2

B4
− 4

B!

(B − 3)!

X2

B3
+ 2

B!

(B − 2)!

X2 + 2

B2
− 3

)
α2

2

+ 1
6!! B

3

(
B!

(B − 6)!

X 3
2

B6
− 6

B!

(B − 5)!

X 2
2

B5
+ 3

B!

(B − 4)!

X2(X2 + 4)

B4

− 4
B!

(B − 3)!

3X2 + 2

B3
+ 3

B!

(B − 2)!

X2 + 4

B2
− 5

)
α3

2

7Here the last (B − i − 1) arguments of BellB,i are zeros since BellB,i has (B − i + 1) arguments. In particular, BellB,B−1 has two arguments
and no zeros, BellB,B−2 has three arguments including one being zero, etc. For clarity we separate BellB,B because it has one argument only.

8This result naturally includes BellB,B(( f z + f̄ )〈N〉(1 − α2)) = (( f z + f̄ )〈N〉(1 − α2))B.
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+ 1
8!! B

4

(
B!

(B − 8)!

X 4
2

B8
− 8

B!

(B − 7)!

X 3
2

B7
+ 4

B!

(B − 6)!

X 2
2 (X2 + 6)

B6

− 8
B!

(B − 5)!

X2(3X2 + 4)

B5
+ 2

B!

(B − 4)!

3X2(X2 + 8) + 8

B4

− 8
B!

(B − 3)!

3X2 + 4

B3
+ 4

B!

(B − 2)!

X2 + 6

B2
− 7

)
α4

2 + · · ·
]
, (C6)

where Xk = Yk/(Y1)k and Yk = f zk + f̄ (in this formula only X2 and Y1 appear).
Note that for large B and very small α2 we obtain a simple formula:

G(1,B)(z) ≈ ln(A) − ln(B!) − B + B ln(BY1) + 1
2 (X2 − 1)B α2. (C7)

APPENDIX D: MULTIPARTICLE FACTORIAL CUMULANTS FROM (1 + V + 1
2V 2 )

Instead of Eq. (45), we use the following factorial cumulant generating function:

G(1,B)(z) ≈ ln

{
A

B!

dB

dxB

[
exp[(xz − 1) f B + (x − 1) f̄ B]

(
1 + V + 1

2
V 2

)]∣∣∣∣
x=0

}
, (D1)

where αk �= 0 for k � 7 and

V =
7∑

k=2

(
(xz − 1)k

k!
f Bαk + (x − 1)k

k!
f̄ Bαk

)
. (D2)

The factorial cumulants in the limit of large B read

Ĉ(1,B)
1 = f B, (D3)

Ĉ(1,B)
2 ≈ f B[− f + f̄ α2], (D4)

Ĉ(1,B)
3 ≈ f B[2 f 2 − 6 f̄ f α2 + f̄ (1 − 2 f )α3], (D5)

Ĉ(1,B)
4 ≈ f B[−3! f 3 + 36 f̄ f 2α2 − 12 f̄ f (1 − 2 f )α3 + f̄ (1 − 3 f̄ f )α4 − 12 f̄ 2 f α2

2 + −3 f̄ 2 f α2
3 − 12 f̄ 2 f α2α3]. (D6)

Ĉ(1,B)
5 ≈ f B[4! f 4 − 240 f 3 f̄ α2 + 120 f 2 f̄ (1 − 2 f )α3 − 20 f f̄ (1 − 3 f f̄ )α4 + f̄ (1 − 2 f )(1 − 2 f f̄ )α5

+ 240 f 2 f̄ 2α2
2 − 30 f f̄ 2(1 − 4 f )α2

3 − 60 f f̄ 2(1 − 6 f )α2α3 − 20 f f̄ 2(1 − 2 f )α2α4 − 10 f f̄ 2(1 − 2 f )α3α4], (D7)

Ĉ(1,B)
6 ≈ f B[−5! f 5 + 1800 f 4 f̄ α2 − 1200 f 3 f̄ (1 − 2 f )α3 + 300 f 2 f̄ (1 − 3 f f̄ )α4 − 30 f f̄ (1 − 2 f )(1 − 2 f f̄ )α5

+ f̄ (1 − 5 f f̄ (1 − f f̄ ))α6 − 3600 f 3 f̄ 2α2
2 − 90 f f̄ 2(1 − 14 f + 34 f 2)α2

3 − 10 f f̄ 2(1 − 2 f )2α2
4

+ 1800 f 2 f̄ 2(1 − 4 f )α2α3 − 120 f f̄ 2(1 − 8 f + 13 f 2)α2α4 − 60 f f̄ 2(2 − 12 f + 17 f 2)α3α4

− 30 f f̄ 2(1 − 3 f f̄ )α2α5 − 15 f f̄ 2(1 − 3 f f̄ )α3α5]. (D8)

We note that the V 2 term is not affecting Ĉ(1,B)
1 , Ĉ(1,B)

2 , and Ĉ(1,B)
3 whereas we have higher order terms in Ĉ(1,B)

4 , Ĉ(1,B)
5 , and

Ĉ(1,B)
6 . Importantly, the observation that the αk terms in Ĉ(1,B)

n are suppressed where k > n is confirmed here. We also checked
up to (1 + V + 1

2V 2 + 1
3!V

3 + 1
4!V

4) that this conclusion remains true.
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