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The beam energy scan program at RHIC provides data on net-proton number fluctuations with the goal to
detect the QCD critical end point and first-order phase transition. Interpreting these experimental signals requires
a vital understanding of the interplay of critical phenomena and the nonequilibrium dynamics of the rapidly
expanding fireball. We study these aspects with a fluid dynamic expansion coupled to the explicit propagation
of the chiral order parameter sigma via a Langevin equation. Assuming a sigma-proton coupling through an
effective proton mass, we relate cumulants of the order parameter and the net-proton number at freeze-out and
obtain observable cumulant ratios as a function of beam energy. We emphasize the role of the nonequilibrium
first-order phase transition where a mixed phase with gradual freeze-out can significantly alter the cumulants.
We find that the presence of a critical end point is clearly visible in the cumulant ratios for a relatively wide range
of center-of-mass energies.
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I. INTRODUCTION

Since the experimental discovery of a quark-gluon plasma
created in high-energy heavy-ion collisions [1,2], uncovering
the details of the phase diagram of quantum chromodynamics
(QCD) has attracted considerable interest and our current
knowledge is still limited. We know, however, from lattice
QCD, that at small values of the baryochemical potential
μB, the transition from hadronic matter to a phase of de-
confinement and chiral symmetry restoration is a continuous
crossover rather than an actual phase transition. For inter-
mediate to large μB, lattice QCD is not directly applicable
and we have to rely on alternative techniques which in many
cases predict a critical end point (CEP) and adjacent first-
order phase transition (FOPT). These different approaches
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rely on functional methods [3,4] or low-energy effective mod-
els [5–7], and consequently yield a wide range of different
results.

One characteristic signature of criticality is the nonmono-
tonic behavior of cumulants and cumulant ratios of conserved
quantities [8–13] which generally exhibit maxima or minima
at the T and μB values of the transition. Motivated by this
idea, experimental collaborations have started programs to
measure these in event-by-event fluctuations (see publications
by STAR [14,15], NA49/61 [16,17], and HADES [18]). In
the future, the facilities NICA [19] and FAIR [20] are going
to investigate further by bridging the current gap in center-of-
mass energies between STAR and HADES.

For a proper understanding of the dynamics of the fireball
created in a heavy-ion collision, models have been developed
to describe the nonequilibrium expansion and ultimately pre-
dict experimental observables related to a CEP [21–35] or
FOPT [36–44]. Here, finite-size and finite-time effects in-
fluence the fluctuation observables like, e.g., the net-proton
number cumulants that have an anomalous structure in the
ratio of fourth to second cumulant with a strong enhancement
above the Poisson baseline at the lowest center-of-mass en-
ergy of

√
sNN = 7.7 GeV [15].

In the work reported here, we model the evolution of the
plasma by a simple longitudinal Bjorken expansion along the
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beam axis based on a chiral fluid dynamics model without
spatial inhomogeneities [43]. The sigma field or chiral con-
densate as the order parameter is propagated via a Langevin
equation of motion that couples to an expanding quark-
antiquark fluid in local thermal equilibrium. We end the
evolution as soon as it hits a parametrized freeze-out curve
where we calculate net-proton number cumulants from cu-
mulants of the sigma field by assuming a superposition of
standard Poisson and critical fluctuations [24]. We correct
our results by the effect of volume fluctuations as detailed
in [45]. In this paper, we aim to reveal possible signatures in
the net-proton number cumulants that would confirm or rule
out a CEP and FOPT in strongly interacting matter.

After a brief model description in Sec. II, we present and
interpret our results on the various net-proton number cumu-
lant ratios as a function of beam energy in comparison to
data from STAR and HADES in Sec. III, and conclude with a
summary in Sec. IV.

II. MODEL DESCRIPTION

The model is based on the Lagrangian of the widely studied
quark-meson model [5,6,46] with a CEP at (TCEP, μCEP) =
(100, 200) MeV. Although arguably simple, the model pro-
vides a description of a chiral phase diagram with the generic
features of a crossover, CEP, and FOPT. Currently, there is
no agreement within the theoretical physics community on
where to find the CEP in the phase diagram [47], yet re-
cent QCD-based calculations from functional renormalization
group techniques [4,48] suggest a location similar to the one in
the quark-meson model in mean field. We use the fluctuation
of the sigma field as the critical mode of the QCD CEP, char-
acterized by a vanishing sigma mass which has also provided
one of the fundamental motivations for the beam energy scan
program at RHIC [24,49].

Here and in the following, μ denotes the quark chemical
potential, thus μ = μB/3. The Lagrangian for light quarks
q = (u, d ) and the chiral order parameter σ with potential U
reads

L = q(iγ μ∂μ − gσ )q + 1
2 (∂μσ )2 − U (σ ), (1)

U (σ ) = λ2

4
(σ 2 − f 2

π )2 − fπm2
πσ + U0, (2)

with parameters fπ = 93 MeV, mπ = 138 MeV, and U0 such
that U (σ ) = 0 in the ground state. The value of the pion fields
has already been set to its vacuum expectation value of zero.
The quark-sigma coupling constant g is fixed requiring that
3gσ equals the nucleon mass of 940 MeV in vacuum.

A. Equations of motion

We evolve the zero mode or volume-averaged sigma field
defined as σ (τ ) = 1

V

∫
d3xσ (τ, x) using a Langevin equa-

tion of motion,

σ̈ +
(D

τ
+ η

)
σ̇ + δ


δσ
= ξ, (3)

neglecting spatial fluctuations. We describe the expanding
fluid using a Bjorken model, and consequently use proper

time τ rather than coordinate time t , starting from an initial
thermalization at τ0 = 1 fm. Consequently, the dots in Eq. (3)
denote derivatives with respect to τ . For our case of purely
longitudinal hydrodynamic flow, we set D = 1 in the Hubble
term. The full and proper nonequilibrium dynamics of sigma
is encoded in the dissipation coefficient η and the stochastic
noise ξ which are related by a dissipation-fluctuation rela-
tion [50]:

〈ξ (t )ξ (t ′)〉 = mσ η

V
coth

(mσ

2T

)
δ(t − t ′). (4)

Here, ξ is assumed Gaussian and white, i.e., it is not corre-
lated over time. The damping coefficient η includes effects
from various intersigma and sigma-quark scattering processes
(see [50] for further details about this model and the explicit
derivation of the coupled equations of motion).

The quark-antiquark fluid is given by the ideal energy-
momentum tensor T μν

q = (e + p)uμuν − pgμν . From the van-
ishing of its divergence, we obtain the equation for the energy
density:

ė = −e + p

τ
+

[
δ
qq̄

δσ
+

(D

τ
+ η

)
σ̇

]
σ̇ . (5)

The net-baryon density does not directly couple to σ and
obeys the equation

ṅ = −n

τ
. (6)

Note that the fireball volume which appears in Eq. (4) and
also later in the description of the freeze-out cumulants is
given by V = πR2τ , with a gold nucleus radius of R = 7.3
fm, assuming central Au + Au collisions.

B. Freeze-out and mapping to beam energies

We investigate higher order cumulant ratios of the net-
proton number along a freeze-out curve which has been
obtained from thermal model fits to experimental data from
SIS, AGS, SPS, and RHIC for a wide range of beam energies
from

√
s = 2.24 to 200 A GeV [51]. The parametrization

reads

Tf.o.(μB) = a − bμ2
B − cμ4

B, (7)

with a = 0.166 GeV, b = 0.139 GeV−1, and c =
0.053 GeV−3. To ensure that this freeze-out line is situated
below the phase boundary of our underlying model, we
rescale Eq. (7) such that Tf.o.(μ = 0) equals the crossover
temperature at μ = 0 that we have identified from a maximum
in the quark-number susceptibilities.

Initial conditions are fixed by setting Ti and μi equal to the
set of initial values chosen in a previous study [43] such that
the evolutions will be able to probe crossover, CEP, and FOPT
in the phase diagram. The point where the evolution of the
fluid according to Eqs. (3), (5), and (6) meets the freeze-out
curve for the first time is then used to map the initial condition
to a corresponding beam energy via

μB(
√

s) = d

1 + e
√

s
, (8)
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with parameters d = 1.308 GeV and e = 0.273 GeV−1 deter-
mined in accordance with the freeze-out curve above [51]. The
baryochemical potential in Eq. (8) is obtained from averaging
over events with the same initial condition. Note that the thus
obtained beam energies are to be understood as guidelines to
put our results into the context of experimentally obtained data
from STAR and HADES. Even though in our present model
the CEP is passed for evolutions with an initial

√
s ≈ 5 GeV,

this does not mean that we necessarily expect the physical
CEP to be found there. However, it allows us to estimate the
impact of a CEP on measurable observables in a fully dynam-
ical nonequilibrium setup if it indeed exists in this low-energy
range.

C. Sigma and net-proton number cumulants

To relate the fluctuations in the chiral order parameter σ

to fluctuations or cumulants of the net-proton number, we
follow the strategy outlined in [24]. Consider an infinitesimal
change of the chiral field, δσ , leading to a change of the
effective proton mass by δm = gδσ . Assuming a sigma-proton
coupling gσ p̄p, we may write fluctuations of the momentum
space distribution function for protons, fk , as

δ fk = δ f 0
k + ∂nFD

∂m
gδσ. (9)

The first term δ f 0
k is the purely statistical fluctuation, and in

the second term nFD denotes the Fermi-Dirac distribution for
a particle of a given mass m. The fluctuation of the net-proton
multiplicity N = V d

∫
d3k

(2π )3 fk is then given by

δN = δN0 + V gδσ d
∫

d3k

(2π )3

∂nFD

∂m
, (10)

where d = 2 is the spin degeneracy factor. The first term δN0

can be assumed Poisson distributed, given that np � 1, i.e.,
effects from quantum statistics are negligible [24]. Conse-
quently, all of its cumulants are equal to the expectation value
〈N〉. In leading order and assuming no correlations between
δN0 and δσ , we can express cumulants of order n as

〈δNn〉c = 〈N〉 + 〈δσ n
V 〉c

(
gd

∫
d3k

(2π )3

∂nFD

∂m

)n

. (11)

In this notation, σV = ∫
d3xσ = σV as we neglect spatial

fluctuations, and 〈·〉c is the respective cumulant, which is
equal to the expectation value for n = 1 and to the correspond-
ing central moment for n = 2, 3. For n = 4, we have

〈
δσ 4

V

〉
c = 〈

δσ 4
V

〉 − 3
〈
δσ 2

V

〉2
, (12)

and similarly for 〈δNn〉c. In Sec. III, we will use the shorter no-
tation Cn for the net-proton number cumulants 〈δNn〉c which
has also been commonly used in experimental studies of re-
cent years.

III. RESEARCH PROCEDURE AND RESULTS

We initialize the fluid at a set of fixed values (Ti, μi) and
define initial sigma field, energy density, quark number den-
sity, and pressure as the corresponding equilibrium values.

The pairs of initial values are hereby adopted form earlier
works [43,52] and will be matched to center-of-mass energies
using the freeze-out condition, Eq. (8). The coupled system
evolves according to the equations of motion until the freeze-
out curve is hit. Notably, for expansions at high baryochemical
potential, the freeze-out curve can be hit more than once due
to the nonequilibrium evolution of the expanding plasma. This
effect occurs due to the sudden release in latent heat that drives
the system back into the chirally symmetric phase, visible
in a back-bending of the trajectories in T and μ [40,43]. In
contrast to that, an equilibrated hydrodynamic system with
constant S/A would pass along the phase boundary for a
finite amount of time [53]. To take into account this effect
of a possible mixed phase in a heavy-ion collision and its
impact on the observed cumulants, we evolve the system for
these cases until a second crossing of the freeze-out curve
and subsequently calculate cumulants at both crossing or hit
points. In the following figures and text, we consequently
refer to the “first hit” as the cumulants evaluated at the first
crossing of the freeze-out line and the “second hit” as those
evaluated at the second crossing, where applicable. This is
relevant for evolutions near the CEP in the phase diagram or
crossing the FOPT line [52]. Ultimately, it will provide us with
a range of possible cumulants for the respective energies. The
characteristic back-bending after passing the phase boundary
becomes most pronounced for evolutions passing the FOPT
due to significant energy dissipation pushing the system back
into the chirally restored phase. Physically, this process could
manifest in a gradual freeze-out where the medium undergoes
droplet formation [37,54]. Another suggested signal for such
a delayed transition process is an enhancement in the dilepton
production [55].

We simulate 107 events and calculate event-by-event fluc-
tuations in terms of cumulants of σV . Since these are subject
to significant fluctuations of the freeze-out volume, we include
the corresponding corrections as derived in [45]. This is most
relevant for evolutions at the lowest energies with large varia-
tions in the time at which different events from the same initial
condition hit the freeze-out curve [52]. Equation (11) allows
us to determine the net-proton number cumulants. The such
obtained values are compared with a Poisson baseline. For the
net-proton number (p − p̄), the cumulants assuming Poisson
distributed proton and antiproton numbers are calculated by

Cn,p−p̄ = Cn,p + (−1)nCn,p̄, (13)

where Cn,p, Cn,p̄ are equal to the expectation values of the
Poisson distribution for all orders n (see [15]). We furthermore
provide comparison to the equilibrium net-baryon number
susceptibilities which are obtained as

χn = ∂n(p/T 4)

∂ (μB/T )n
. (14)

Figure 1 (top) shows the ratio C2/C1 of the net-proton
number compared to results from STAR for energies

√
sNN �

7.7 GeV [15] and HADES for
√

sNN = 2.4 GeV [18]. Since
the HADES collaboration reported a strong dependence of
cumulant ratios on the chosen rapidity window, we depict
results for both |y| < 0.4 and 0.5 for comparison, the latter one
also being applied to STAR data. In [18], a reliable rapidity

024901-3



CHRISTOPH HEROLD et al. PHYSICAL REVIEW C 106, 024901 (2022)

 0

 2

 4

 6

 8

 10

 12

 14

 5  10  20  30

C
2/

C
1 

(n
et

-p
ro

to
n)

√ ⎯s (GeV)

first hit
second hit

Poisson
STAR

HADES, |y| < 0.4
HADES, |y| < 0.5

-8

-6

-4

-2

 0

 2

 4

 5  10  20  30

χ 2
/χ

1

√ ⎯s (GeV)

first hit
second hit

FIG. 1. Cumulant ratio C2/C1 of the net-proton number com-
pared to results from STAR [15] and HADES [18] (top). Sus-
ceptibility ratio for comparison shows an extremum at the same
center-of-mass energy (bottom).

window of |y| < 0.46 is quoted. We see that for high energies
our results together with STAR data lie close to the Poisson
baseline. With decreasing energy, our model yields values
that are gradually enhanced until they reach a maximum at
around 5 GeV for the evolution that passes through or close
by the CEP and freezes out close to a spinodal line of the
FOPT [52]. Along the spinodal lines, all susceptibilities di-
verge in nonequilibrium with critical exponents that become
larger with order of the susceptibility [41,56]. This is clearly
reflected in the peak of the corresponding susceptibility ratio
visible on the bottom of Fig. 1. Further lowering the energy
results in a gradual return to the baseline for the first hit of the
freeze-out curve, while for the second hit significantly larger
fluctuations are observed, possibly due to an enhancement
of spinodal instabilities. Notably, the data from HADES lie
within the thus obtained range of cumulant ratios at the low-
est beam energy. Since our model is arguably simplistic, the
comparison to experimental data must be understood as qual-
itative, at best. The quark-meson model contains only a small
number of degrees of freedom, especially in the hadronic
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FIG. 2. Cumulant ratio C3/C2 of the net-proton number com-
pared to results from STAR [15] and HADES [18] (top). Sus-
ceptibility ratio for comparison shows an extremum at the same
center-of-mass energy (bottom).

sector, and it has been known that its equation of state be-
haves unphysically for low temperatures [57]. Obviously, a
significant gap in the experimental data will have to be filled
by future experiments such as FAIR and NICA that aim at
exploring the high-μB region of the QCD phase diagram. The
susceptibility ratio on the right hand side of Fig. 1 shows a
similar trend for high energies. The freeze-out close to the
spinodal line, where susceptibilities in the presence of spin-
odal instabilities diverge and change sign [41,56], results in
the strongly negative value of χ2/χ1 which is reflected in
the peak of C2/C1, similar to what we found for the other
cumulant ratios as we will discuss below.

The cumulant ratio C3/C2 is shown and compared to ex-
perimental data in Fig. 2 (top). The most notable feature is,
again, the strong impact of the CEP around

√
s = 5 GeV.

Besides that, the obtained points from our model are close
to the baseline for high energies and the second hit at the
lowest energy is close to the data point from HADES, where
a suppression of C3/C2 was found, possibly a result of the
dynamics at the FOPT. Once again, a quantitative comparison
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FIG. 3. Cumulant ratio C4/C2 of the net-proton number com-
pared to results from STAR [15] and HADES [18] (top). Sus-
ceptibility ratio for comparison shows a maximum at the same
center-of-mass energy (bottom).

between our model results and the experimental data is not
intended here and its inclusion is made for the sake of improv-
ing our qualitative understanding of the measured cumulant
ratios in the context of a nonequilibrium FOPT and CEP. The
net-baryon number susceptibility ratio on the bottom part of
the same figure approaches zero for the first hit and remains
negative for the second hit of the parametrized freeze-out
curve. The most apparent difference to C3/C2 is the sign at
the CEP evolution which is positive for the susceptibilities,
but negative for the cumulants. As mentioned before, the
evolution passing close to the CEP freezes out very close to
the spinodal line where some of the susceptibilities change
sign [41]. Therefore, finite-time effects can here dramatically
influence the final values at freeze-out.

Finally, the ratio C4/C2 is depicted in Fig. 3; on the top
we see qualitative similarities between our model results and
the experimental data. A slight suppression in the STAR data
around 20 GeV is also present in our model calculations
where the cumulant ratio lies below the Poisson base-
line, although with smaller significance. Then, as the beam

energy is lowered, the notable point at 7.7 GeV where C4/C2

is enhanced is reflected in an enhancement, albeit orders of
magnitude larger, of the ratio from our calculation. Here, it
is necessary to emphasize that the aforementioned freeze-out
near the spinodal line leads to larger and larger cumulants
at higher orders. Lowering the beam energy even further,
our calculations approach the HADES results which for this
cumulant ratio show the strongest dependence on the applied
experimental cut. Within error bars, both points lie within our
range defined by the first and second hit of C4/C2 ≈ 1–10. The
susceptibility ratios, shown on the bottom of the same figure,
are close to zero at these low energies which could indicate
that an enhancement of the net-proton number cumulants oc-
curs through a prolonged evolution in the mixed-phase region
for the FOPT. The positive peak for the CEP evolution is also
found in the susceptibilities; however, for larger energies, the
values are slightly negative, which is only partly reflected in
the obtained cumulants.

IV. SUMMARY AND CONCLUSIONS

We have studied cumulant ratios C2/C1, C3/C2, and C4/C2

of the net-proton number at STAR and HADES energies
within a nonequilibrium chiral Bjorken expansion. Here, a
sigma model served as input for a generic chiral phase struc-
ture and net-proton cumulants have been calculated event by
event from cumulants of the sigma field at a parametrized
freeze-out curve. Volume fluctuations have been accounted
for and were properly corrected. Although admittedly crude
and neglecting effects of an inhomogeneous medium, the
dynamical description nevertheless shows some qualitative
resemblance to the experimental data, in the approach of
the Poisson baseline for high energies far away from the
critical region, but also the enhancement or suppression of
certain cumulant ratios at a speculated CEP or FOPT. We
have demonstrated the general impact of a CEP and FOPT
on cumulant ratios as key observables for probing the QCD
phase structure. If indeed a CEP is present for center-of-
mass energies below 7.7 GeV, it should be clearly visible in
a relatively wide energy range and manifest itself and the
adjacent FOPT through an enhancement and/or suppression
of cumulant ratios. Clearly, the current gap in beam energies
from 2.4 to 7.7 GeV requires filling by future experiments.

Possible future improvements of our current model include
the consideration of a spatially inhomogeneous fluid and an
extension of the study to full (3 + 1) dimensional hydrody-
namics.
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