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Renormalization group evolution of optical potentials: Explorations using a “toy” model
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To take full advantage of experimental facilities such as the Facility for Rare Isotope Beams (FRIB) for ap-
plications to nuclear astrophysics, nuclear structure, and explorations of neutrinos and fundamental symmetries,
we need a better understanding of the interplay of reaction and structure theory. The renormalization group (RG)
is the natural tool for maintaining a consistent treatment of reaction and structure. Here we make a first study of
RG for optical potentials, which are important ingredients for direct reactions. To simplify the analysis, we use
a pedagogical one-dimensional model and evolve toward low RG resolution using the similarity RG (or SRG).
We show how SRG decoupling at low resolution carries over to the optical potential and enhances perturbative
approximations, and how induced SRG nonlocality compares to the nonlocality of the optical potential. We
discuss the results in the larger context of consistent SRG evolution of operators and wave functions in the
analysis of direct reactions.
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I. INTRODUCTION

Experiments at the Facility for Rare Isotope Beams (FRIB)
and other laboratories offer the potential for new insight into
nuclear astrophysics, nuclear structure, and the physics of
neutrinos and fundamental symmetries [1]. To realize this
potential we need to better understand the analysis of direct
reactions. In particular, we seek to isolate quantities of interest
in experiments in a controlled manner, which implies process-
independent analyses, e.g., to apply measurements from one
process to another process or to use them to cleanly extract
structure information.

A specific challenge is that the separation of reaction
and structure is not unique, even though many experimen-
tal analyses assume implicitly that it is. This nonuniqueness
can be swept under the rug as “model dependence,” but we
can do better by working in a renormalization group (RG)
framework. We will focus on the similarity RG (or SRG)
[2], although there are other choices for such a framework
[3]. Under SRG evolution, the dividing line between struc-
ture and reaction, which is a momentum scale we call the
RG resolution (in practice the largest momentum component
of low-energy wave functions), shifts continuously. Structure
and reaction elements individually depend on this RG scale
(“scale dependence”) but when put together the observable
quantities are invariant, due to the evolution being a series of
continuous unitary transformations. There is also individual
dependence of these elements on the starting Hamiltonian and
the details of the RG implementation (“scheme dependence”),
but observables are again unchanged during the evolution.
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An RG framework provides control over scale and scheme
dependence and enables us to relate theory calculations at dif-
ferent scales [4,5]. In Refs. [6,7], the necessity and technical
details of treating reactions and structure at the same scale
were demonstrated explicitly for the SRG. These works in
particular illustrated the advantages of analyzing experiments
targeted at short-range correlations (SRCs) at a low RG reso-
lution (not to be confused with the experimental resolution),
namely one that is most natural for nuclear ground and low-
lying states (e.g., the Fermi momentum). As part of a broader
effort to generalize these studies, in the present work we take
the first steps toward investigating and understanding optical
potentials in an SRG framework.

Optical potentials are effective interactions that describe
the propagation of a particle through a many-body target
[8–10]. They are instrumental in reducing a many-body scat-
tering problem to a few-body process, such as that between
projectile and target or between residue and target. Feshbach’s
seminal work formalized the optical potential and described
three key characteristcs: it is complex, nonlocal, and energy
dependent [11]. Subsequent treatments identified the optical
potential with the single-particle self-energy, which enabled
dispersion relation approaches [9,12].

Significant progress has been made in ab initio nuclear
reactions, in which structure and reaction are automatically
treated consistently, with several approaches to ab initio
optical potentials [13–19]. However, the ingredients and im-
plications need further study. For example, the impact on
the accuracy of observables of scale and scheme depen-
dence and the optical potential’s truncation is not yet under
control. Also, the approximations necessitated in ab initio
approaches and the computational limitations to light nuclei
means that phenomenological approaches are still needed.
A key question is then, how can we implement the needed
structure-reaction consistency in a phenomenological (or
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semi-phenomenological) approach, so as to minimize ambi-
guities from scale and scheme dependence?

There is a natural affinity between optical potentials and
RG (and the SRG in particular) because they share the
common feature of decoupling degrees of freedom. This con-
nection has not yet been explored in the literature. In contrast,
the effect of SRG evolution on Hamiltonians and (some) op-
erators has been explored and exploited, both in free space
and in the medium [2,3,20,21]. Evolution of Hamiltonians
defined at high-momentum scales relative to the nuclear Fermi
momentum (a natural resolution scale for nuclei) to lower
resolution leads to softened potentials and an increased sepa-
ration of scales advantageous for the treatment of interactions
[5,6,22,23]. Low RG resolution would seem to be implied by
optical potential phenomenology because of the use of shell
model wave functions [24,25]. How can we make this consis-
tent? Another open issue is the interplay of nonlocality from
SRG decoupling of momentum modes with the nonlocality
arising in optical potentials.

Analyzing the SRG evolution of an optical potential is a
formidable challenge. It is not just a matter of evolving the
(complex) optical potential by itself in an SRG equation as
one would evolve the full potential (see discussion in Sec. IV).
Indeed, the most immediate path at present is to solve the
entire reaction problem at each SRG scale and then construct
the optical potential at that scale.

We have faced such challenges before in the development
of SRG technology, e.g., learning how to do three-body force
evolution, and found that simplified models were invaluable in
guiding the way to a fully realistic treatment and for providing
generic insights [26]. In particular, one-dimensional treat-
ments are feasible and preserve many of the important features
(often because the linear algebra is basically the same). We
follow this strategy here by extending the one-dimensional
treatment by Lipkin [27] of scattering, first to an optical po-
tential model with a two-level “nucleus” and then to a more
characteristic (and finite range) potential. As in Ref. [26], we
use a one-dimensional interaction potential, originally intro-
duced in Ref. [28], that roughly simulates three-dimensional
properties.

The paper is organized as follows. Section II lays out
the background, formalism, and solution of the Lipkin
one-dimensional scattering model [27], the extension to its
treatment with an optical potential in the Feshbach formalism,
and the application of the SRG to this model. Results are
given in Sec. III for SRG decoupling and its consequences,
the perturbativeness of the optical potential when evolved, and
the manifestation of nonlocality. Section IV summarizes our
findings, puts them in a broader context, and points to future
next steps.

II. FORMALISM

A. One-dimensional model for scattering

Our theoretical laboratory for exploring SRG applied to
optical potentials builds on the one-dimensional two-level
model used by Lipkin [27] to demonstrate aspects of quantum

scattering.1 In particular, the model has a particle scattering
from a “nucleus” with a ground state and one excited state.
Thus we will have inelastic scattering with increasing energy
of the projectile and we can introduce an optical potential in
the Feshbach formalism (see Sec. II B). We start with delta
function interaction potentials as in Lipkin, which enable an-
alytic solutions to demonstrate the optical model and validate
our numerical methods. We will generalize in Sec. III to a
nuclear-like potential as in Ref. [26] and work with numerical
solutions.

First we review the solution from Ref. [27]. The Hamil-
tonian for this scattering problem can be written in second
quantization for the two-level system,

H = p2

2m
− δ(x)[V0(a†

gag + a†
eae) + V1(a†

gae + a†
eag)]

+ Ega†
gag + Eea†

eae, (1)

where g and e label the ground and excited states, respectively,
and the kinetic energy is that of the scattered particle. V0 is
the strength of the ground and excited state delta function
potentials, V1 is the strength of the coupling of the ground and
excited state, and the energies of the ground and excited states
are Eg and Ee. The coordinate-space Schrödinger equation for
the projectile is (henceforth in units with h̄2/2m = 1)( d2

dx2 + k2
g 0

0 d2

dx2 + k2
e

)(
ψg(x)
ψe(x)

)

= −δ(x)

(
V0 V1

V1 V0

)(
ψg(x)
ψe(x)

)
, (2)

where we have defined kg and ke from

k2
g = E − Eg, (3)

k2
e = E − Ee. (4)

As we are considering a one-dimensional system, the solu-
tions to (2) can be classified as even or odd parity,. which is
analogous to resolving the scattering wave function into par-
tial waves in three dimensions. For a delta function potential
the odd solutions vanish at the origin, so the phase shifts are
identically zero. Hence we look for even-parity solutions for
the ground state,

ψg(x) = α cos[kg|x| + δ0(E )], (5)

and outgoing waves for ψe(x),

ψe(x) = β exp(ike|x|). (6)

We can analytically solve (2) to find [27]

β

α
= −V1 cos(δ0)

V0 + 2ike
= 2kg sin(δ0) − V0 cos(δ0)

V1
. (7)

Solving (7) for the phase shift δ0(E ), we arrive at

tan(δ0) = V0

2kg
− V 2

1

2kg(V0 + 2ike)
. (8)

1We use the conventions from Ref. [29] rather than from Ref. [27].
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FIG. 1. (a) Real and (b) imaginary phase shifts of the two-level delta function potential with Eg = 0, Ee = 4, V0 = 12, and V1 = 7 as a
function of scattering energy Ek = k2. The numerical solutions agree with the analytic result to high precision.

For E < Ee, ke = i
√

Ee − E .
The phase shift is in general complex, as illustrated for

the case of Eg = 0, Ee = 4, V0 = 12, and V1 = 7 in Fig. 1.
The real phase shift is nonzero at zero energy because there
are bound states and at higher scattering energies slowly
approaches zero. The imaginary phase shift exhibits a clear
inelastic threshold, i.e., the scattering energy where the pro-
jectile loses enough energy to excite the nuclear system
to the higher energy level. Thus the threshold is given by
Ee − Eg.

B. Optical potential

We construct the one-dimensional optical potential for our
model problem following the canonical Feshbach formalism
[11,30,31]. We introduce idempotent projection operators P
and Q, where P projects onto the ground state of the potential
and Q projects onto the excited state. The optical potential
then takes the same form as in three dimensions:

Vopt(E ) = PV P + PV Q
1

E − QHQ + iε
QV P. (9)

Starting from a two-level potential V , the first term describes
elastic scattering (i.e., the system stays in the ground state)
while the second term accounts for scattering that excites the
nucleus into the second level. In the following, we will usually
suppress the explicit energy argument for Vopt.

In detail for the delta function case, the full potential in (9)
is

V (x) = −δ(x)

(
V0 V1

V1 V0,

)
, (10)

so we identify PV P = −V0δ(x) and PV Q = QV P =
−V1δ(x). To solve for Vopt(x), we introduce G̃(x) as the
solution to(

E − Ee + d2

dx2
+ V0δ(x) + iε

)
G̃(x) = V1δ(x) (11)

with outgoing wave boundary conditions for G̃(x) encoded by
the +iε as in (9), so that

Vopt(x) = −V0δ(x) + V1δ(x)G̃(0). (12)

Integrating (11) across the delta function and matching to
plane wave solutions for x �= 0, we find

G̃(x) =
{

eikex + ( V1
V0+2ike

− 1
)
e−ikex, x � 0,

V1
V0+2ike

eikex, x � 0,
(13)

so that the final analytic form for the optical potential is

Vopt(x) =
(

−V0 + V 2
1

V0 + 2ike

)
δ(x). (14)

To find the phase shifts, we return to the Schrödinger equa-
tion and substitute Vopt:

−d2�

dx2
+

(
−V0 + V 2

1

V0 + 2ike

)
δ(x)�(x) = k2

g�(x). (15)

As already noted, odd parity states vanish at the origin so the
phase shift for such states are zero. Considering only even
parity states, we solve the Schrödinger equation to find the
wave function �(x) using (5). After matching at x = 0, we
arrive at the phase shift for the even parity states:

tan(δ0) = V0

2kg
− V 2

1

2kg(V0 + 2ike)
, (16)

which, of course, is the same as the original phase shift ex-
pression derived for the full two-level potential in (8).

Alternatively, we can work in momentum space. We define
the Green’s functions

G0
g(k, k′; E ) = δ(k − k′)

k2
g − k2 + iε

, (17)

G0
e (k, k′; E ) = δ(k − k′)

k2
e − k2 + iε

, (18)
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and insert complete sets of momentum states in (9):

〈p|Vopt|p′〉 = − V0

2π
+

( V1

2π

)2 ∫
dk

∫
dk′〈k|Ge|k′〉. (19)

We relate Ge to the free-space Green’s function G0
e :

Ge = G0
e − G0

eV0G0
e + G0

eV0G0
eV0G0

e + · · ·
= G0

e − G0
eV0Ge. (20)

We can sum the expansion of the energy-dependent term:∫
dk

∫
dk′〈k|Ge|k′〉 =

∫
dk

1

E − Ee − k2 + iε

− V0

2π

(∫
dk

1

E − Ee − k2 + iε

)2

+ · · ·

= 2π

V0 + 2ike
. (21)

Thus we obtain the same optical potential as before, but now
in momentum space:

〈k|Vopt(E )|k′〉 = 1

2π

(
−V0 + V 2

1

V0 + 2ike

)
. (22)

To extract the phase shifts, we use an operator Lippman-
Schwinger equation for the T matrix,

T = Vopt + VoptG
0
gT, (23)

which can be rearranged to yield

〈p|T |p′〉 = 〈p|Vopt|p′〉 1

1 − 2π
2ikg

〈p|Vopt|p′〉 . (24)

Using the relation 2π〈p|T |p〉 = −2kgeiδ0 sin(δ0), we arrive
again at the phase shift expression (16). The optical potential
construction will have to be performed numerically when we
switch to a more realistic finite-range or once we do any SRG
evolution; this is detailed in Sec. II D.

C. SRG evolution

The SRG flow equation,

dH (s)

ds
= [η(s), H (s)], (25)

is an operator equation that implements a continuous series
of unitary transformations, such that operators are modified
while keeping observables invariant [20]. The SRG evolution
is parameterized by the flow parameter s or λ = s−1/4, where
λ can be viewed as setting the resolution scale of the physical
problem at hand. Note that Eq. (25) can be evaluated in any
basis and has the same form in one or three dimensions.
In one dimension, we evolve separately the even and odd
components of the potential (see Sec. III C).

The pattern of the RG flow is dictated by the gen-
erator η. For example, the Wegner generator is η(λ) =
[Hd (λ), Hod (λ)], i.e., it is the commutator of the diagonal
(d) and off-diagonal (od) components of the Hamiltonian H .
In momentum space, evolution with this generator decouples

high and low relative momenta in the Hamiltonian, hence
shifting from a high-RG resolution picture to a low-RG reso-
lution one. In general, SRG evolution will induce many-body
interactions (e.g., when expressed in second quantization; see
[6,7]). However, they will not contribute here due to two-body
nature of the Hamiltonian (1).

At high resolution, convergence of basis expansions of
the wave function is significantly slowed down because of
high-momentum components in low-energy wave functions
(referred to generically as short-range correlations or SRCs).
Evolving to low-resolution significantly softens the Hamil-
tonian, making it more perturbative, which enables simpler
calculations of low-energy observables. Nevertheless, a con-
sequence of momentum decoupling is that the SRG flow
introduces nonlocality to the interactions; in Sec. III C we will
contrast this with the nonlocality of the optical potential.

The Wegner generator drives the Hamiltonian to band-
diagonal form. A band-diagonal SRG evolution locally
decouples momentum [32], where the width of the diagonal is
plotted versus momentum squared is roughly λ2. An alternate
decoupling scheme is block decoupling, where the momentum
matrix elements of the potential only coupled if the momenta
are on the same side of a specified cutoff momentum � [33].
A block decoupled potential is achieved using the SRG gen-
erator:

η(λ) = [P�H (λ)P� + Q�H (λ)Q�, H (λ)]. (26)

Here the projection operators Q� and P� partition the poten-
tial above and below the cutoff � [21]. (Note that these are
unrelated to the P and Q projection operators from the optical
potential.)

D. Calculating optical potential at each resolution scale

We construct the optical potential at each SRG resolution
scale by revisiting the Feshbach formalism for the optical
potential (9):

Vopt = V00 + V01G11V10, (27)

where the terms

V00 = PV P,

V01 = V10 = PV Q, (28)

are extracted from the two-level potential introduced in
Sec. II A. The potentials V00, V01, and V10 are SRG-evolved
components of the original potential. We identify G11 from
(9) as G11 = Q(E − H + iε)−1Q.

To treat the integrations over the Green’s function numeri-
cally in momentum space, we first expand G11 in terms of the
free-space Green’s function G0

11 from (18):

G11 = G0
11 + G0

11V11G0
11 + G0

11V11G0
11V11G0

11 + · · · , (29)

where we suppress momentum dependence and intermediate
integrations. Substituting (29) into (27) we can write the opti-
cal potential as

Vopt(E ) = V00 + V01G0
11(E )[V10 + M̃(E )], (30)
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where

M̃(E ) = M̃0(E ) + V11G0
11(E )M̃(E ) (31)

and M0(E ) ≡ V11G0
11(E )V10. We now look at two regimes for

G0
11 in momentum space. For negative k2

e , G0
11 does not have a

singularity. For positive k2
e , we split the Green’s function into

a principal value and on-shell imaginary part:

〈p′|G0
11|p〉 =

[ P
k2

e − p2
− iπδ

(
k2

e − p2
)]

δ(p − p′). (32)

We solve numerically by discretizing M̃(E ) using a Gaussian
quadrature mesh with weights wi,

(M̃ )i j = (M̃0)i j + 4
N∑

l,m=1

wlwm(V11)il
(
G0

11

)
lm

(M̃ )m j . (33)

We calculate the real and imaginary components of M̃0 by
looking at the two cases of k2

e :

Re(M̃0)i j =

⎧⎪⎨
⎪⎩

2
∑N

l=1 wl (V11)il
1

k2
e −k2

l
(V10)l j, k2

e < 0,

2
∑N

l=1 wl
1

k2
e −k2

l
[(V11)il (V10)l j

− (V11)iN+1(V10)N+1 j], k2
e > 0

(34)

and

Im(M̃0)i j =
{

0, k2
e < 0,

− π
ke

(V11)iN+1(V10)N+1 j, k2
e > 0.

(35)

We use these discretized forms of M̃ and M̃0 to construct
Vopt(E ).

III. RESULTS

The general goal of the present investigations is to examine
to what extent the characteristic features of SRG evolution of
potentials are inherited by the corresponding optical potential.
In the next three sections, we examine in turn decoupling in
the potential by applying an artificial regulator, the conse-
quences of SRG decoupling on perturbativeness, and finally
the nature of nonlocality inherent in the optical potential and
that induced by the SRG. We show results in the main doc-
ument for the even parity states only; some corresponding
results for the odd parity states are given in the Appendix.

For the bulk of our explorations we use an interaction that
is the sum of an attractive and a repulsive Gaussian [26],
which we will call the “two-Gaussian potential.” In momen-
tum space this is

V (k, k′) = V1

2π
e−(k−k′ )2σ 2

1 + V2

2π
e−(k−k′ )2σ 2

2 , (36)

with parameter values given in Table I; the “Diago-
nal” values were chosen in Ref. [28] to reflect empirical
three-dimensional nuclear properties in this one-dimensional
model. We use “Off-diagonal I” values everywhere except for
Figs. 5 and 6, for which we use the values for “Off-diagonal
II.” Our analysis is not sensitive to the particular values of
these parameters.

A. SRG decoupling analysis and consequences

As described in Sec. II C, the Wegner generator drives
the Hamiltonian to band-diagonal form. We will first look
at the consequences of this RG evolution pattern for phase
shifts calculated with the optical potential of the two-Gaussian
potential. We calculate the phase shifts by numerically solving
the Lippman-Schwinger equation for the T matrix in one
dimension [29].

From early work on the SRG with (real) nucleon-nucleon
potentials [34], we know that phase shifts at energies cor-
responding to relative momenta below the SRG λ only get
substantial contributions from matrix elements of the potential
with arguments less than λ. This effect of decoupling was
manifested in Ref. [34] by introducing artificial regulators
applied to the potential,

Vλ,�(k, k′) = e−(k/�)2n
Vλ(k, k′)e−(k′/�)2n

, (37)

for SRG resolution λ. These regulators smoothly cut off the
potential at a specified cutoff �, so that matrix elements with
at least one argument above the cutoff were set to zero (with
n = 32). The signature of decoupling was that the phase shift
was equal to the original phase shift for energies below the
imposed cutoff and zero above. As expected, the same is seen
to be true with our one-dimensional potentials when SRG-
evolved.

A representative example of the corresponding test of
decoupling for the optical potential in our one-dimensional
model is shown in Figs. 2 and 3. The curves labeled “Unreg-
ulated” are the (a) real and (b) imaginary even-parity phase
shifts calculated from the original unevolved two-Gaussian
potential (see Table I), with no regulator applied. The zero-
energy phase shift of π/2 is what is expected from Levinson’s
theorem for even-parity one-dimensional systems [35], as
there is one bound state for this choice of potential with Eg =
0 and Ee = 4. The expected inelastic threshold of Ek = 4 is
clear in the right panel and also shows up as a kink in the left
panel.

The other curves in Fig. 2 are the phase shifts of the
regulated optical potentials constructed from the two-level
two-Gaussian potential at the indicated SRG λ. We emphasize
that, if unregulated, all of the phase shifts from the optical
potentials at every SRG resolution are the same, because the
SRG transformations are unitary. However, with a regulator at
Ek = 25 (thus a momentum cutoff of k = 5) we see that the
λ = ∞ (i.e., unevolved) phase shifts, both real and imaginary,
disagree significantly from the “unregulated” phase shifts
over the full range of energies plotted. This demonstrates

TABLE I. Parameters for the two-Gaussian potential. For the
one-level system, we use only the parameters of the ground-state
potential.

Potential level V1 V2 σ1 σ2

Diagonal 12 −12 0.2 0.8
Off-diagonal I 7.5 −7.5 0.2 0.8
Off-diagonal II 2.0 −2.0 0.2 0.8
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FIG. 2. Test of decoupling using (a) real and (b) imaginary even-parity phase shifts of the optical potential under SRG evolution, as
constructed from the two-level two-Gaussian potential (see Table I), with Eg = 0 and Ee = 4. The SRG-evolved potential for each curve
labeled by an SRG λ value is cut off by a regulator at k = √

25 (corresponding to Ek = 25). The unevolved and undistorted phase shifts are
labeled “unregulated.” For λ above the cutoff, the phase shifts are modified, but converge rapidly to the unevolved phase shifts as the SRG
resolution λ is decreased below the cutoff. (Note that, without a regulator, all curves are identical for all Ek .)

the important role of momentum matrix elements above the
regulator scale for the unevolved potential, even for the lowest
energies well below that scale. But with SRG evolution, the
phase shifts become less distorted and agree closely with
the unregulated observables once λ is less than the regulator
scale. To more clearly see the decoupling effects of the SRG
evolution on the phase shifts, we shift to a log-log plot for
the real phaseshifts and the corresponding relative phase shift
error in Fig. 3. Thus decoupling implies that once λ2 is below
the cutoff energy (so here for λ = 3 and λ = 2), those omitted
high-momentum matrix elements become irrelevant for opti-
cal potential phase shifts, just as with any nucleon-nucleon
potential.

The consequences of decoupling as a function of resolu-
tion scale should also be manifested in the bound state and
scattering wave functions. In Ref. [26], suppression of high-
momentum tails of the bound-state wave function (i.e., SRCs)
for the two-Gaussian potential was observed as the potential
was SRG-evolved to lower resolution scales. In Fig. 4(a) we
see this same signature of decoupling for the bound state wave
function from the optical potential derived from the two-level
two-Gaussian potential. The logarithm of the wave function
squared shows the same pattern of high-momentum suppres-
sion as seen in momentum distributions of nuclei [6], with the
start of suppression just above the value of SRG λ. In panels
(b) and (c) are plotted the logarithm of the scattering wave

FIG. 3. Same as Fig. 2 but plotting the relative errors of the even-parity phase shifts from regulated SRG-evolved optical potentials
compared to the exact phase shifts. The light gray horizontal line marks 100% relative error.
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FIG. 4. Optical potential wave functions evaluated at energies (a) E = −1.44, (b) E = 4, and (c) E = 16 for the two-level two-Gaussian
potential with levels Eg = 0 and Ee = 4. We SRG evolve the two-Gaussian potential to several λ values from which we construct the optical
potential. Local decoupling of the SRG is exhibited by the suppression of momentum modes of the scattering wave functions above and below
the scattering momentum

√
E .

function squared for two energies, where the on-shell delta
function is omitted to define 
ψ [29]. We again see high-
momentum tails getting suppressed as we evolve to lower λ

values. But in addition the lower momentum components of
the wave function also get suppressed due to the effect of local
decoupling from the band-diagonal SRG evolution [5,32].

In summary, the SRG decoupling behavior of the opti-
cal potential, observables, and wave functions is completely
aligned with what is observed for free-space nucleon-nucleon
potentials. Therefore we expect the consequences described in
Refs. [4–7] to follow as well, as summarized in Sec. IV.

B. Perturbativeness of the optical potential

At high RG resolution in three dimensions, such as when
using the Argonne V18 potential [36], a strong short-range
repulsive potential and the short-range tensor force ren-
der the nuclear many-body problem highly nonperturbative
[20,21,37]. For scattering, this is manifested as contributions
to the Born series in the lower partial waves getting signif-
icantly larger with each successive order. We can identify
the source of this nonperturbativeness as the mixing of high-
momentum components into low-energy states driven by the
short-range interactions. As SRG evolution decouples this
mixing, we expect and observe that low resolution Hamilto-
nians are more perturbative, meaning that successive terms in
the Born series and many-body perturbation theory (MBPT)
do not grow as fast. Note that nonperturbative behavior from
the existence of bound states (e.g., the deuteron or pairing)
are not changed by unitary SRG evolution (when combined
with Pauli blocking in nuclei, MBPT expansions do become
largely perturbative [38]).

From the decoupling with SRG evolution of the optical
potential verified in the last section, we expect this potential
will also inherit the more perturbative trend with lower resolu-
tion. To manifest and quantify this perturbativeness, we adapt
to our one-dimensional problem the method of “Weinberg
eigenvalues,” which are the eigenvalues of the G0V matrix
that appears in the Lippmann-Schwinger Born series for scat-
tering. Among these eigenvalues are ones associated with the

repulsive parts of the potential and ones associated with the
attractive parts of the potential; we focus on the former. The
treatment of Weinberg eigenvalues in one dimension largely
carries over from three dimensions, with the exception of
additional singular behavior due to the different measure in
momentum space.

The Weinberg eigenvalues η(z) at complex energy z are
defined by [39–41]

G0(z)V |�η〉 = η(z)|�η〉, (38)

but in practice we will want to integrate over the singular
Green’s function, so we can solve for the left eigenvalues of
G0V or the right eigenvalues of

V G0(z)|V �η〉 = η(z)|V �η〉, (39)

which has the same spectrum. If we apply expansion of the T
operator at z,

T (z) = V + V G0(z)V + V G0(z)V G0(z)V + · · · , (40)

to |�〉 and use (38), we obtain

T (z)|�〉 = V (1 + η(z) + η(z)2 + η(z)3 + · · · )|�〉. (41)

For this ordinary power series in η(z) to converge, η(z) < 1.
If this is the case for all η(z), the interaction V is perturbative
at this energy, and the rate of convergence is determined by
the largest such η(z). These discrete eigenvalues are defined
in the complex z plane with a cut along the positive real axis.

Equation (38) can be rearranged to take the form of the
Schrödinger equation with a modified potential:(

H0 + V

η(z)

)
|�〉 = z|�〉. (42)

This shows that η(z)−1 acts like a complex, energy-dependent
coupling constant that multiplies the interaction V . If there is
a bound state at z = Eb, then η(Eb) = 1. For real z = E < 0,
a purely attractive V has only positive eigenvalues, while a
purely repulsive V has only negative eigenvalues. For a mixed
attractive and repulsive potential, we denote the eigenvalues
as attractive or repulsive according to the sign. For positive
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FIG. 5. Repulsive Weinberg eigenvalues for the two-level two-
Gaussian potential using “Off-diagonal II” values (see Table I). We
plot the absolute value squared |η|2 of the complex eigenvalue versus
the energy for a range of SRG λ resolutions. The initial peaks are at
the values of Eg = 0 and Ee = 4.

energies E we take z = E + iε and the modified Schrödinger
equation has complex eigenvalues. They are classified as at-
tractive or repulsive depending on the continuation of η(z)
from z on the negative real axis.

To calculate the Weinberg eigenvalues for the two-level
system, we solve (38) or (39) with z = E + iε, accounting for
the 2 × 2 matrix structure in momentum representation:∫

dk′
[
V00(k, k′)G0

g(E ) V01(k, k′)G0
g(E )

V10(k, k′)G0
e (E ) V11(k, k′)G0

e (E )

]
〈k′|V �η(z)〉

= η(z)〈k|V �η(z)〉, (43)

where 〈k|V �η(z)〉 is a two-component vector wave function
and we have suppressed the momentum indices of the Green’s
functions G0

g(k, k′; E ) and G0
e (k, k′; E ) from Eqs. (17) and

(18). For the optical potential we have only the 00 component
with the energy-dependent potential in place of V00.

The repulsive Weinberg eigenvalues for the full two-level
two-Gaussian potential are shown for a range of energies at
several SRG λ values in Fig. 5. The appearance of the two
initial (λ = ∞) peaks at energies Eg and Ee is unfamiliar
from three-dimensional investigations. The source of these
peaks are singularities from the Green’s functions in Eq. (43),
which in three dimensions are suppressed by the measure
in momentum integrals. Discounting this feature, the general
pattern we are looking for, namely a dramatic suppression
of the repulsive eigenvalues with decreasing λ, is clear. In
Fig. 6 we see that the same pattern is seen for the optical
potential.

A key question now is whether the increased pertuba-
tiveness at lower RG resolutions is reflected in improved
convergence of Eq. (30). To study this we compare in Fig. 7
the phase shifts from the full optical potential (“Optical”) to

FIG. 6. Same as Fig. 5 but for the repulsive eigenvalues derived
from the optical potential at each λ. We exclude from consideration
the narrow singular region for Weinberg eigenvalues at energies
in the gray boxed region, which are problematic for classifying as
repulsive or attractive.

those obtained with (30) truncated at the V01G0
11(E )V10 term

(“Optical 2nd Order”). For the unevolved optical potential
(λ = ∞), there are substantial differences, particularly for the
imaginary phase shifts. With evolution to λ = 7 [panel (b)],
the agreement for both real and imaginary parts is significantly
improved, while the results for λ = 3 in panel (c) show excel-
lent convergence except near the inelastic threshold (λ = 2 is
even better, although more prone to numerical artifacts).

C. Nonlocality

The formal structure of an optical potential as in Eq. (9)
implies a spatial nonlocality, but because this is a numeri-
cal complication, phenomenological optical potentials have
typically assumed a local energy-dependent form [9]. How-
ever, several recent studies have reexamined the importance
of explicit nonlocality when calculating reaction observables
[42,43]. In comparison to a local optical potential, it was
found that introducing nonlocality drastically improved the
accuracy of experimental (d, p) transfer cross sections, specif-
ically the calculation of spectroscopic factors. The latter are
scale- and scheme-dependent quantities, so it is important to
understand the impact of nonlocality. At the same time, it was
also found that some observables, such as the spin distribution
for the nonelastic transfer cross section for (d, p) processes,
are largely unaffected. Clearly there is more to be understood
from the purely phenomenological perspective.

Here we seek insight into the nature of optical potential
nonlocality in the RG framework by examining our model
system at different resolutions. This will enable us to contrast
the nonlocality arising in the Feshbach formalism with that
induced from SRG evolution. We start by examining the non-
locality purely from the SRG by evolving a completely local
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FIG. 7. Phase shifts of the two-level two-Gaussian system calculated from the full optical potential (“Optical”) compared to the direct
calculation and to the optical potential calculated to second order (“Optical 2nd Order”). The real phase shifts are in panels (a), (b), and (c) for
SRG λ = ∞, 7, and 3, and the imaginary phase shifts are in panels (d), (e), and (f) for the same λ’s.

potential, the two-Gaussian potential (i.e., treating this poten-
tial as the interaction potential between two nucleons or as the
potential for purely elastic scattering). The nonlocality can be
manifested in one dimension by considering the dependence
on p and q, defined as

p = k + k′

2
, (44)

q = k − k′. (45)

In this representation, q is the momentum transfer and p serves
as a “nonlocality parameter,” which will be used to directly
quantify the degree of nonlocality for the potential, as a local
potential is a function of q only. We can anticipate the induced
nonlocality due to SRG evolution by focusing on the far
off-diagonal elements in momentum space. For nuclear-like
Hamiltonians (including the one-dimensional analogs consid-
ered here), the diagonal is dominated by the kinetic energy,
which leads to the SRG equation (25) for these elements being
given to good approximation by [44]

d

ds
Vs(k, k′) = −(k2 − k′2)2Vs(k, k′). (46)

Thus each matrix element evolves independently and the so-
lution is (recalling s = 1/λ4)

Vs(k, k′) = Vs=0(k, k′) e−[(k2−k′2 )/λ2]2
(47)

= Vs=0(k, k′) e−4p2q2/λ4
. (48)

The first equality (47) manifests the suppression of off-
diagonal matrix elements that decouple momenta separated

by order λ or greater. The second equality (48) manifests the
q and p dependence that modifies the original potential.

If the initial potential is local, hence a function of q only,
then from (48) the nonlocality takes the form of the Gaussian
dependence on p with coefficient proportional to q2/λ4. This
in turn is proportional to the nonlocality width in coordi-
nate space. Thus the nonlocality extent increases rapidly as
λ decreases, and grows with increasing q2. This behavior can
be contrasted with Perey-Buck parametrized nonlocality [45]
that is also Gaussian in p but with a constant coefficient. Note
that these features are independent of the dimension.

We can test whether Eq. (48) captures the essence of the
nonlocality by plotting the evolved potential with appropriate
choices of independent variables. We SRG-evolve separately
the even (V +) and odd (V −) components of the potential,
given by

V + = 1
2 [V (k, k′) + V (k,−k′)], (49)

V − = 1
2 [V (k, k′) − V (k,−k′)]. (50)

At any s we then combine these components to obtain the
potential Vs and the corresponding optical potential Vopt in the
full (k, k′) space.

We begin with SRG evolution of the one-level two-
Gaussian potential, which is plotted three ways for different
λ values in Fig. 8. Panel (a) is the potential as a function of p
for a single representative value of q = q0 = 7. The unevolved
potential (λ = ∞) has no p dependence, indicating it is local.
With decreasing λ the width in p decreases, meaning an in-
crease in spatial nonlocality. To test whether the dependence
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FIG. 8. (a) SRG evolution of the one-level two-Gaussian potential at fixed q = q0 = 7. The original unevolved potential (λ = ∞) is fully
local, as indicated by independence of p; however, the SRG evolution progressively introduces nonlocality to the potential. (b) Same as (a) but
rescaled by 1/λ2, showing that the dependence is only on p/λ2 as implied by Eq. (48). (c) Same potential but plotted against pq0 for fixed
λ = 3.

of the evolved potentials on λ and q are given by Eq. (48), we
scale the x axis in panels (b) and (c). Choosing a single q value
in (b) and plotting against p/λ2, the curves overlap almost
perfectly. In panel (c) we choose a single SRG resolution
scale (λ = 2 in this case) and plot versus pq, so the width
is determined by the constant λ only. The graphs lie close to
each other except for q < λ. Thus the nonlocality is indeed
characterized by Eq. (48).

Having set a baseline of nonlocal behavior for ordinary
potentials, we turn to the optical potential for the two-level
two-Gaussian potential in Fig. 9. In panel (a) at λ = ∞ and
fixed q = 7, we now observe the explicit nonlocality of the
optical potential when unevolved. As we go lower in RG
resolution, the nonlocality of the optical potential becomes
overtaken by that of the SRG evolution. This is manifest in
panel (b) when we plot versus pλ2, where the curves lie on top
of each other once λ < q0. In panel (c) at constant λ = 5, we
see the same dependence induced nonlocality in q until q < λ.
Thus the SRG nonlocality dominates at low RG resolution
with a “universal” Gaussian-like nonlocality proportional to
q and inversely proportional to λ2.

IV. SUMMARY AND OUTLOOK

In this paper, we used a one-dimensional toy model to carry
out exploratory studies of how an optical potential evolves
under SRG evolution. We showed that key features of the evo-
lution of the full system to low resolution are inherited by the
optical potential description. In particular, high-momentum
and low-momentum modes of the optical potential are decou-
pled while the observables are unchanged, and this is reflected
in high-momentum components in bound states being sup-
pressed and local decoupling of scattering states. We also
verified the increase in perturbativeness as measured by the
repulsive Weinberg eigenvalues. It followed that perturbative
approximations for optical potentials, such as used in some
ab initio approaches [13], become increasingly valid as the
resolution is decreased. We observed that the nonlocality of
the optical potential gives way to that of the SRG evolution for
momentum transfers greater than that of the SRG resolution
scale λ. Despite the simplicity of the toy model, due to the
nature of the SRG via the flow equation, the observations in
this study will likely carry over directly to three-dimensional
examples.

FIG. 9. Same as Fig. 8 but for the SRG evolution of the optical potential derived from the two-level two-Gaussian potential. All the curves
in panels (a) and (b) are for q0 = 7.

024616-10



RENORMALIZATION GROUP EVOLUTION OF OPTICAL … PHYSICAL REVIEW C 106, 024616 (2022)

FIG. 10. Same as Fig. 2, but for the odd two-level two-Gaussian potential. The decoupling is not as apparent as that for the even-parity
case due to less high-momentum strength. This is because the wave function passes through zero at the origin in coordinate space, so the odd
states feel less of the repulsive part of the potential.

In moving to such examples, a good candidate for the first
system to consider is neutron–alpha-particle scattering at dif-
ferent RG resolutions. As the n-α optical potential describes
one of the simplest processes of scattering off a composite par-
ticle, it is a natural continuation from the toy models explored
here. We can compare the results of the n-α potential to those
of current ab initio calculations as well [15]. Also, by extend-
ing the investigations in [4] in deuteron electrodisintegration,
we can look at the corresponding problem with the breakup
done by a neutron instead of an electron to better understand
the discrepancy between theory and experiment in scattering
cross sections for breakup reactions [24,25]. In these studies
we will explore the feasibility of directly SRG evolving the
optical potential. This would require either evolving each of
the ingredients in the equation for the optical potential (9) or

working with the irreducible self-energy [9]. It will also be
useful to consider alternative SRG schemes, such as using a
generator for block decoupling (see Sec. II C).

Because we have shown that basic features of RG evolution
are inherited by optical potentials, we should also expect
that the lessons from SRG evolution about the consistency
of structure and reactions [6] will also apply. In particular,
the softening of low-energy many-body states, consistent with
their description using shell model wave functions, is accom-
panied by modifications to reaction operators. For electron
scattering from nuclei, short-distance physics described at
high-resolution with one-body operators is shifted to sim-
ple two-body operators [5–7]. This may mean significant
three-body operator contributions for short-distance physics
in nucleon-nucleus scattering. In this regard, applying an

FIG. 11. Same as Fig. 10 but plotting the relative errors of the odd-parity phase shifts from regulated SRG-evolved optical potentials
compared to the exact phase shifts. The light gray horizontal line marks 100% relative error.
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FIG. 12. Odd-parity wave functions as in Fig. 4 from using the odd two-level two-Gaussian potential. They display the same pattern of
decoupling as did the even-parity wave functions. However, the high-momentum strength is less than for the even-parity states because the
effect of the repulsion is less as the odd states go through zero at the origin.

RG analysis within the framework of the dispersion optical
model (DOM) [9,12,46] and its recent applications [47,48]
may prove fruitful.
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APPENDIX

In this Appendix Figs. 10–12 are for odd-parity states
corresponding to selected figures for even-parity states in the
main text.
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