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Charged-particle optical potentials tested by first direct measurement of the *Cu(p, «)**Ni reaction
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Due consideration of proton optical-model potential (OMP) anomalies at sub-Coulomb energies for medium-
weight nuclei is shown to be critical for the analysis of the unprecedented measurement of ¥Cu(p, ) *Ni
reaction cross section at an energy of ~6 MeV [Randhawa et al., Phys. Rev. C 104, L042801 (2021)]. The
variation in predicted cross sections from standard statistical-model calculations and the cross-section range
corresponding to the anomalous proton imaginary-potential depth, for target nuclei off the line of stability, are
distinct and well separated. Consequently, the new measurement provides, under unique conditions, tests of
proton isoscalar and isovector real-potential components, the anomalous imaginary potential, as well as previous

a-particle OMP, for nuclei off the line of stability.

DOLI: 10.1103/PhysRevC.106.024615

Following a first direct measurement of I Cu( p, o) 50N re-
action cross section at a center-of-mass energy of 6 MeV [1],
a reaction modeling challenge becomes possible on far better
terms than ever before. This reaction Q value of +2.413 MeV
and the first excited state of the residual double-magic nucleus
%Ni at 2.701 MeV led at this energy to a real competition of
merely inelastic scattering and (p, o) reaction to °Ni ground
state. In such a case, calculated cross sections within Hauser-
Feshbach (HF) statistical model were assumed essentially
sensitive only to the a-particle optical model potential (OMP)
whereas other ingredients like the nucleon OMP, the y-ray
strength function, and the level density have only marginal
influence [1]. However, it was found that all recent «-particle
OMPs, including that of Ref. [2], overestimate the new exper-
imental result by a factor of 2.

On the other hand, in an enlarged analysis of nucleon-
induced o emission in the mass range A = 60, a suitable
account of (p, &) reaction on %% Cu stable isotopes has been
found at similar incident energies [3]. Moreover, it has also in-
volved the a-particle OMP [2], but with no overestimation as
the above-mentioned. Therefore, we have found of interest a
similar analysis for >’Cu(p, a) *°Ni reaction cross section also
related to a distinct nucleus off the line of stability.

The same consistent parameter set has also been involved,
with results for (p, ) reaction on %*>Cu shown in Fig. 13
of Ref. [3]. Nonetheless, the calculated cross sections that
are first shown as curve (i) in Fig. 1 are obtained likewise in
Ref. [1] by using the proton OMP of Koning and Delaroche
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[4]. They are quite close to the calculated results of the world-
wide used code TALYS-1.95 [5] with default options including
the same OMPs [4], the related TENDL-2019 evaluation [6],
and Ref. [1] at the center-of-mass energy of 6 MeV, while no
real change corresponds to the previous minor adjustment [3]
of the proton OMP [4]. To understand the same factor of 2 be-
tween the measured and calculated cross sections, a summary
of the rest of the presently involved model parameters is given
hereafter.

The additional nuclear-level density (NLD) parameters
for the corresponding neutron-poor nuclei besides those in
Ref. [3], in the back-shifted Fermi gas (BSFG) model [7],
are given in Table I. For completeness of the work details,
a first note may concern the larger number of the low-lying
levels in an assumed complete scheme [8] of the target nu-
cleus ¥Cu. They contribute to changes below 0.2% of the
calculated (p, o) reaction cross section at the center-of-mass
energy of 6 MeV. Similar changes correspond to the range
of NLD parameters for the compound nucleus ®°Zn [3],
with details given elsewhere [9]. The related (p, y) reaction
cross section is smaller by more than two orders of magni-
tude. The level scheme above the 2.701 MeV first excited
state of the residual nucleus °Ni does not matter either.
The feeding of even this state is only ~4.4% of the cal-
culated (p, o) reaction cross section while the rest goes to
the ground state (g.s.), in close agreement with experimental
evidence [1].

A comment should concern the direct-interaction (DI) col-
lective inelastic scattering, within the distorted-wave Born
approximation (DWBA) method, as well as the preequilib-
rium emission (PE) also considered [3]. The deformation
parameters of collective states for the odd-even nucleus *Co
[13] were used to obtain the DI proton-emission component. It
is found to be ~3.7% of the proton reaction cross section og
at the center-of-mass energy of 6 MeV while the PE similar
weight was, as expected, only ~0.8%. Consequently, the un-
common account of DI+PE effects at so low incident energy
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FIG. 1. Comparison of *Cu(p,a)™Ni reaction cross sec-
tions measured [1], evaluated (TENDL) [6], calculated by TALYS-
1.95 and default options [5] (dotted curve), and similarly to Ref. [3]
but for proton OMPs of (i)—(ii) Koning and Delaroche [4] (KD) with-
out (dash-dot-dotted) and with (short dash-dotted) DI+PE account,
(iii) Saini et al. [14] either original parameters (dash-dotted) or (iv)
related (N-Z)/A dependence (dashed), (v) the imaginary potential
W (E) of Ref. [15] (solid), as well as (vi) cross-section range with
the lower and upper limits given by W values of 1 and 2 MeV,
respectively [16]. Effect of replacing a-particle OMP [2] by [17],
for proton OMP [15], is also shown (short-dotted).

corresponds to only ~4.5% decrease of (p, o) reaction cross
sections shown as curve (ii) in Fig. 1.

On the other hand, the above-mentioned consistent pa-
rameter set was established using independently measured
data as proton ok and (p, n) reaction cross sections [18] and
validated by the analysis of (p, y) and even (p, @) reaction
cross sections [3]. Consequently, it included a local proton
OMP of Saini et al. [14] as a better option for the Cu stable
isotopes. However, replacing the proton global OMP [4] by
this local potential also within the analysis of (p, @) reaction
cross section of the neutron—poor *Cu target nucleus, we
found a decrease of just 6% connected to the curve (iii) in
Fig. 1. Thus, it would correspond eventually to a standard HF
cross-section range of ~10% at 6 MeV center-of-mass energy,

TABLE 1. Low-lying levels numbers N; up to excitation E; [10],
used in HF calculations, and N'(E¥) fitted to obtain g.s. shift A
using average [11] LD parameter a, and a spin cutoff factor for
a variable moment of inertia [12] between half and 75% of the
rigid-body value, from g.s. to neutron separation energy, and reduced
radius ro = 1.25 fm.

E} E} a A
Nucleus N; (MeV) NIt (MeV) (MeV') (MeV)
3Ni 9 5.353 9 5.353 5.5 2.34
¥Cu 38 3.758 38 3.758 6.3 —0.23
P7n 5 1.397 3 0.894 6.6 —0.75
O7n 12 3.972 12 3.972 6.15 1.00

at variance with experimental data [1] overestimation by a
factor of ~2.

Nevertheless, a primary shortcoming of latest replacement
follows the setup of the local OMP [14] through the fit of
(p, n) reaction cross sections for the stable isotope ®>Cu up
to an incident energy of ~4 MeV [14], with no distinc-
tion between the isoscalar and isovector components. These
components are duly considered in the global proton OMP
between 4 and 180 MeV of Kailas ef al. [16], which was at the
origin of this local potential for % Cu. However only the global
energy dependence of the real-potential depth V was kept by
Saini et al. while constant values were derived for the other
local OMP parameters. Therefore, to adopt properly this po-
tential for other Cu isotopes, especially off the line of stability,
depth V = 55.5-0.85E MeV and surface-imaginary potential
diffuseness ap = 0.57 fm [14] should take into account the
corresponding dependencies [16,19] V = 50 + 24(N-Z)/A +
0.4Z/A'3-0.85E MeV and ap = 0.495 + 0.7(N-Z)/A fm.
Use of the subsequent V and ap values for *Cu neutron-
poor nucleus is leading to an additional (p, ) reaction
cross-section decrease of ~13% at 6 MeV center-of-mass
energy, shown by curve (iv) in Fig. 1. Although larger
than the whole above-mentioned conventional HF changes,
it is still insufficient to match the measured value for *Cu
target nucleus.

On the other hand, additional attention should be given to
the anomalous behavior also shown by Kailas et al. [16,19]
for the surface-imaginary potential depth W as a function
of A. Thus, a minimum at A ~ 61 has been found, followed
by a steep increase within just a few mass units (Fig. 2 of
Ref. [16]). At the same time, the depth W = 3.5-0.3E MeV
was found earlier by Kailas ef al. [15] by analysis of (p, n) re-
action on *°Co up to an incident energy of ~5 MeV. Hence, it
may be concluded that this depth should be considered rather
than the constant W = 4.1 MeV of the OMP for ®Cu [14].
The corresponding results shown by curve (v) in Fig. 1 are
finally in close agreement with the measured cross section and
support thus the anomalous dependence W (A) [16,19] and its
energy dependence for A ~ 59 [15].

The systematics in Fig. 2 of [16] for A = 65 indicates W
values between 1 and 2 MeV for target nuclei with A = 55—
59. The (p, o) reaction cross sections corresponding to these
limits provide an anomalous cross-section range, which has
embedded the calculated excitation function using the W (E)
found for Co [15] as well as the new experimental data
for ¥Cu (Fig. 1). Thus, this recent measurement supports
the most pronounced sensitivity to nuclear structure effects of
the imaginary-potential depth at low energies, i.e., the W(A)
dependence on the shell structure of the nuclei, the deforma-
tion of the target nuclei, and the coupling to the collective
states [16,19] altogether. It should be noted that the proton
interaction was described by the same depth W (E') [15] for
the two target nuclei *Co and >°Cu nearby the proton shell
closure for Zy = 28.

Nevertheless, there is a clear distinction between the
changes of the standard HF calculated cross sections shown on
the top of Fig. 1 and their range associated with the anomalous
proton OMP depth W off the stability line. On the other hand,
the results for o emission from the neutron-poor compound
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nucleus %°Zn are rather complementary to the also recent
analysis of the o emission from the neutron-rich Mn [20].
The critical role of the isovector optical potential has been
entirely pointed out within this analysis too.

For the sake of completeness, we may add that the re-
placement of the a-particle OMP of Ref. [2] with an earlier,
but different one [17] provides results somehow in between
the conventional HF results and their range corresponding to
the anomalous W value in Fig. 1. Nonetheless, one must note
the much simpler way to obtain the earlier OMP, particularly
for a emission in the mass range A =~ 54, by extrapolation
to low energies of an optical potential well suited at higher
energies [21], i.e., beyond the critical OMP ambiguities.
Therefore, it is superseded by the recent OMP [2] shown to
be able to account also for o emission [3].

A similar outcome has another recent measurement also off
the stability line for the excitation function of **Fe(p, &) >'Mn
reaction from 9.5-18 MeV by Lin et al. [22]. Their results
have been found in agreement with the default predictions
of TALYS code, including the a-particle OMP [2]. Additional
and complementary support for this potential has been pro-
vided by also recent direct measurement of °Ni(n, p) >*Co
and *Ni(n, o) S6Fe reactions from 0.5-10 MeV, with no ad-
justment made to the default « optical potential [2] whereas
the proton OMP parameters were adjusted to reproduce the
low-energy (n, p) cross sections [23].

Finally, the results of this work could be summarized as
follows. (i) Due consideration of the proton OMP anomalies at

sub-Coulomb energies for medium-weight nuclei is shown to
be critical for the analysis of >*Cu(p, &) >°Ni reaction. (ii) The
variation in predicted cross sections from standard statistical-
model calculations and the cross-section range corresponding
to the anomalous proton imaginary-potential depth, for target
nuclei off the line of stability, are distinct and well separated.
(iii) The new measurement of >’Cu(p, ) *°Ni reaction around
the energy of 6 MeV provides, under unique conditions, tests
of proton isoscalar and isovector real-potential components,
the anomalous imaginary potential [16], as well as previous
a-particle OMP [2], for nuclei off the line of stability. It is thus
completed the similar «-emission account by this OMP [2] for
Cu stable isotopes [3] at once with all «-induced reactions on
Ni stable isotopes [18].
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