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Simplification of the complete-experiment problem for photoproduction of two
pseudoscalar mesons on a nucleon in a truncated partial-wave analysis
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It is shown that within a truncated partial-wave analysis for photoproduction of two pseudoscalar mesons, it
is possible to halve the number of independent partial amplitudes by taking into account parity conservation. In
addition, within the framework of the proposed formalism, one can rather easily resolve the double discrete
ambiguity arising from the symmetry under complex conjugation of the helicity amplitudes. This leads to
essential simplifications of the complete experiment problem, at least, as far as mathematical aspects are
concerned.
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I. INTRODUCTION

For single pseudoscalar photoproduction, the necessary
and sufficient conditions of a complete experiment for spin
amplitudes were deduced mainly in Ref. [1] and supplemented
in some later works, in particular, in Refs. [2,3]. According to
the completeness rules formulated in Ref. [1], obtaining the
unique solution, including elimination of the discrete ambi-
guities, requires measurements of not only single, but also
four double polarization observables of, at least, two types.
Since it is generally rather hard to accomplish such a task
experimentally, another approach has been developed, which
may somewhat relax the above requirements. The case in
point is a truncated partial-wave analysis (TPWA) where the
partial-wave expansion of the reaction amplitude is truncated
at some maximum value of the orbital momentum L (or the
total angular momentum J = L ± 1/2).

Significant progress in developing TPWA for single pseu-
doscalar photoproduction was achieved owing to the results
of Refs. [4–9]. In these works not only different complete
sets of observables were obtained and systematized (i.e., the
mathematical aspect of the problem was elaborated), but also
efficient practical methods for extracting multipole amplitudes
were devised.

In contrast to single meson photoproduction, analogous
methods for two pseudoscalar mesons, such as γ N → ππN
or γ N → πηN , are still developed to a much lesser extent. An
obvious reason is purely theoretical difficulties arising when
one goes to a process with three particles in the final state.
In addition to a mere increase in the number of independent
kinematic variables, there is a significant growth of the num-
ber of amplitudes to be determined. As a consequence, for
example, solution of the complete experiment problem for
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spin amplitudes requires measuring not only double, but also
triple polarization observables [10].

The increasing complexity of the complete experiment
for two pseudoscalars is especially crucial for TPWA. As is
shown in Ref. [11], the number of independent partial ampli-
tudes with the definite total spin J is equal to 4(2J + 1) =
8 for J = 1/2 and 8(2J + 1) for higher-J values. As one
can straightforwardly calculate, the resulting total number of
the amplitudes limited by the condition J � Jmax is equal to
8(Jmax + 1)2 − 10, which already for Jmax = 3/2 gives 40 am-
plitudes. Thus, the minimum complete set, providing a unique
partial-wave solution up to discrete ambiguities (and up to an
overall phase), must contain 79 observables. For comparison,
in the single meson case the analogous set for Jmax = 3/2
requires only 11 observables.

Such a rapid increase in dimension may greatly complicate
the complete experiment problem for double meson produc-
tion. In particular, it may lead to various difficulties of a
purely mathematical character in solving a set of nonlinear
equations relating observables to bilinear combinations of the
amplitudes. These circumstances may substantially weaken
the above-mentioned advantages of the TPWA method and
thereby cast doubt on the advisability of its application to the
reactions with two mesons.

It is, therefore, of critical importance that the TPWA prob-
lem is formulated in such a way that its dimension is reduced
as much as possible. In the case of a single meson, the parity
conservation results in a relationship between different tran-
sition amplitudes, what enables one to reduce the number of
independent spin amplitudes from eight to four. For example,
in the helicity basis we have

A−ν−λ−μ(θ ) = (−1)ν+λ−μAνλμ(θ ), (1)

where λ, μ, and ν are the photon and nucleon helicities in
the initial and the final states, θ is the meson angle in the
overall center-of-mass (c.m.) frame. The coordinate system is
chosen in such a way that the meson azimuth angle is φ = 0.
The symmetry (1) leads to the corresponding relations for the
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partial amplitudes AJ
νλμ defined by the expansion [12],

Aνλμ(θ ) =
∑

J

AJ
νλμ dJ

λ−μν (θ ). (2)

Namely, using the symmetry property of the Wigner rotation
matrices dJ

−M−M ′ (θ ) = (−1)M−M ′
dJ

MM ′ (θ ) one obtains from
(1),

AJ
−ν−λ−μ = AJ

νλμ. (3)

In contrast to single-meson photoproduction, when one
goes to a process with two mesons, the symmetry due to parity
conservation reads [13]

T−ν−λ−μ(θ, φ) = (−1)ν+λ−μ Tνλμ(θ, 2π − φ). (4)

Here φ is the angle between the reaction plane and the plane
spanned by the momenta of the final nucleon and two mesons.
In this case the parity conservation relates the amplitudes Tνλμ

at different points of the kinematic region and, hence, does not
allow one to reduce their number at one and the same point.

In the present paper we show that in contrast to the com-
plete experiment in terms of the spin amplitudes, within
TPWA, a rather standard choice of the kinematic variables
and the quantization axis makes it possible to obtain the ex-
pression, such as (3) relating the corresponding partial-wave
amplitudes at one and the same point in the reaction phase
space. This is achieved by splitting off the φ dependence of
Tνλμ in the form of a phase factor. In addition to halving the
number of independent amplitudes, the resulting expressions
give a method for resolving the double discrete ambiguity
which may arise in a partial-wave analysis of the type S
observables.

II. FORMALISM

We start from a brief description of the formalism which
was outlined in detail in Ref. [14]. For definiteness we will use
as an example the two-pion photoproduction γ N → ππN ,
although the formulas can be applied to any process in which
two pseudoscalar mesons are produced on a nucleon. The
reaction formula reads

γ (ωγ , �k λ) + N (Ei, �pi; μ)

→ π (�q1, ω1) + π (�q2, ω2) + N (E , �p ; ν), (5)

where in parentheses the four-momenta of the particles and
the helicities are given. The transition amplitude in the over-
all c.m. frame is given by a matrix element of the current

FIG. 1. Diagram representing the angles 
, θ , and � used in the
present formalism. �q1, �q2, and �p are the three-momenta of the two
final mesons and the nucleon, respectively.

operator,

Tνλμ = −(−)〈 �p, �q ∗; ν|Jλ(�k )|μ〉, (6)

where �q ∗ is the momentum in the ππ c.m. frame. In the
nonrelativistic limit it is equal to the relative momentum
(�q1 − �q2)/2. For the z axis we choose the �k direction and the
y axis is directed along �p × �k (see Fig. 1). Now we introduce
the multipole expansion of the current,

Jλ(�k) = −
√

2π
∑

L

iLL̂OλL
λ (k), (7)

with OλL
λ (k) containing the electric and magnetic multipoles,

OλL
λ (k) = EL

λ + λML
λ , (8)

and the partial-wave expansion of the final state,

(−)〈 �p, �q∗; ν| = 1

4π

∑
lp jpmp

∑
lqmq

∑
JM

l̂pl̂q

×
(

lp0
1

2
ν

∣∣∣∣∣ jpν

)
( jpmplqmq|JM )

×D
jp∗
mpν (φp, θp,−φp)D

l∗q
mq0(φq, θq,−φq )

×(−)

〈
pq∗

[(
lp

1

2

)
jplq

]
JM

∣∣∣∣, (9)

where the Wigner rotation matrices D j
mn are taken in the

convention of Rose [15]. The notation l̂ in Eqs. (7) and (9)
stands for

√
2l + 1. Angles (θp, φp = π ) and (θq, φq) are the

polar and azimuthal angles of momenta �p and �q ∗ in the chosen
coordinate frame OXY Z .

Now inserting expansions (7) and (9) into Eq. (6) and using
the Wigner-Eckart theorem one obtains

Tνλμ = 1

2
√

2π

∑
lp jpmp

∑
lqmq

∑
JL

iL(−1)lp+ jp+lq+J+ν+μ l̂pl̂q ĵpĴL̂

(
lp

1
2 jp

0 ν −ν

)(
jp lq J

mp mq μ − λ

)

×
(

J L 1
2

μ − λ λ −μ

)〈
pq∗

[(
lp

1

2

)
jplq

]
J

∥∥∥∥∥OλL

∥∥∥∥∥1

2

〉
d

jp
νmp (θp) D

lq∗
mq0(φq, θq,−φq ), (10)
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where 〈 j′‖T κ‖ j〉 denotes the reduced matrix element. As in-
dependent kinematic variables (at fixed photon energy ωγ ) we
take the polar angle 
 of the total two-pion momentum �q1 +
�q2, the ππ invariant c.m. energy ωππ , and the angles (θ,�).
The latter determine orientation of the c.m. momentum �q ∗ in
the coordinate frame with the z axis along �q1 + �q2 = −�p (see
Fig. 1). The angle � is numerically equal to the azimuth angle
φ in Eq. (4).

From Fig. 1 one can see that the set (θq, φq ) is related to
(θ,�) via rotation by the angle 
 around the OY axis. This
gives

D
lq∗
mq0(φq, θq,−φq ) =

∑
M

D
lq∗
mqM (0,
, 0)Dlq∗

M0(�, θ,−�)

=
∑

M

d
lq
mqM (
)eiM�d

lq
M0(θ ). (11)

Then taking into account the relation θp = π − 
, leading to

d
jp
νmp (θp) = (−1) jp+νd

jp

mp−ν (
), (12)

and using the sum rule for the Wigner matrices,

∑
mpmq

(
jp lq J

mp mq μ − λ

)
d

lq
mqM (
)d jp

mp−ν (
)

= (−1)M−ν+μ−λ

(
J jp lq

ν − M −ν M

)
dJ

λ−μM−ν (
),

(13)

one obtains for the transition amplitude the following expres-
sion:

Tνλμ(ω1, ω2,
,�) =
∑
JM

tJM
νλμ(ω1, ω2)eiM�dJ

λ−μM−ν (
).

(14)

Here, instead of θ and ωππ , we use as arguments the meson
energies ω1, ω2. The corresponding relations can readily be
derived as Lorentz transformation of these energies from the
ππ to the overall c.m. frame:

ω1/2 = 1

2

(
W − E ∓

√(
E2 − M2

N

)(
ω2

ππ − 4m2
π

)
ωππ

cos θ

)
,

E = 1

2W

(
W 2 − ω2

ππ + M2
N

)
, (15)

where W is the total c.m. energy. The partial amplitudes t JM
νλμ

in Eq. (14) absorb all quantities which are independent of 


and �,

t JM
νλμ = 1

2
√

2π
(−1)J+M+ν+λ

∑
lplq jpL

iL(−1)lp+lq l̂pl̂q ĵpĴL̂d
lq
M0(θ )

×
(

lp
1
2 jp

0 ν −ν

)(
J L 1

2
μ − λ λ −μ

)(
J jp lq

ν − M −ν M

)〈
pq∗

[(
lp

1

2

)
jplq

]
J‖OλL‖1

2

〉
. (16)

It is now an easy matter to establish from (14) that the sym-
metry analogous to Eq. (4),

T−ν−λ−μ(ω1, ω2,
,�) = (−1)ν+λ−μTνλμ(ω1, ω2,
,−�)

(17)

leads to the relation,

t J−M
−ν−λ−μ(ω1, ω2) = (−1)M tJM

νλμ(ω1, ω2), (18)

which can also be derived directly from the definition (16).
Equations (14) and (18) are the main results of the present

paper. As we can see, despite the fact that parity conserva-
tion relates the amplitudes Tνλμ at different points [Eq. (17)],
turning to partial waves allows one to relate the corresponding
partial amplitudes t JM

νλμ at the same values of ω1, ω2. Specifi-
cally, for each J and M we can choose as four independent
amplitudes those with λ = 1, i.e.,

t JM
(1/2)[1−(1/2)], t JM

(1/2)[1−(1/2)], t JM
(−1/2)[1−(1/2)], t JM

(1/2)[1(1/2)].

(19)
It is clear, that the possibility to halve the number of ampli-
tudes in TPWA appears since we are able to isolate the �

dependence of Tνλμ by the phase factor eiM�.
Note that as one can see from Eq. (16), the quantum

number M has the meaning of the z projection of the orbital

momentum lq, rather than of the total angular momentum
J . In the limit �q1 → �q2, only the partial waves with lq = 0
and, consequently, M = 0 contribute. In this situation, the
amplitude Tνλμ(ω1, ω2,
,�) does not depend on � so that
one has a complete analogy with the single-meson case. As
may be inferred from (16), for fixed J and ν, M varies from
ν − J to ν + J . The resulting total number of the amplitudes
t JM
νλμ, taking into account (18), is equal to 4(Jmax + 1)2 − 5. In

particular, for Jmax = 3/2, we, thus, have only 20 amplitudes.
The symmetry (18) favorably distinguishes the expansion

(14) from the partial-wave expansion derived in Ref. [11]
where the quantization axis was chosen orthogonal to the
plane spanned by the momenta of the three final particles.
Within this choice, the invariance with respect to parity trans-
formation requires a permutation of the arguments ω1 and ω2

(see Eq. (8) in Ref. [11]) and, thus, does not allow to get an
expression of the form (18).

Another advantage of the decomposition (14) is that it
makes it fairly easy to find discrete ambiguities of TPWA
for the group S (single polarization) observables. In the case
of photoproduction of two pseudoscalar mesons, in addi-
tion to the unpolarized cross section, this group contains
nine observables. Their expressions in terms of helicity am-
plitudes are listed in Table I. There we use the shorthand
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TABLE I. Single polarization observables for photoproduction of two pseudoscalar mesons in terms of helicity amplitudes. The no-
tations in the first column are taken from Ref. [14]. The observable I is determined by the unpolarized differential cross section as
dσ/(dω1 dω2 d cos 
 d�) = KI with K being the reaction kinematic factor. The notation Ô means the polarized cross-section OI . In the
third column, we also indicate the notations introduced by Roberts and Oed in Ref. [13], which are commonly used in the literature. The last
column contains the corresponding observables for single pseudoscalar photoproduction.

Observable Helicity representation Ref. [13] γ N → πN

I 1
4

8∑
i=1

|Hi|2 I0 I

T̂ l
00 − 1

2 Re[H∗
1 H5 + H∗

2 H6 + H∗
3 H7 + H∗

4 H8] I0Ic �̂

Ŝ0
11 − 1√

2
Im[H∗

2 H1 + H∗
4 H3 + H∗

6 H5 + H∗
8 H7] I0Py T̂

P̂0
y

1
2 Im[H∗

1 H3 + H∗
2 H4 + H∗

5 H7 + H∗
6 H8] I0Py′ P̂

T̂ c
00

1
4 [|H1|2 + |H2|2 + |H3|2 + |H4|2 − |H5|2 − |H6|2 − |H7|2 − |H8|2] I0I�

Ŝl
00 − 1

2 Im[H∗
1 H5 + H∗

2 H6 + H∗
3 H7 + H∗

4 H8] I0Is

T̂ 0
11 − 1√

2
Re[H∗

2 H1 + H∗
4 H3 + H∗

6 H5 + H∗
8 H7] I0Px

T̂ 0
10

1
4 [|H1|2 − |H2|2 + |H3|2 − |H4|2 + |H5|2 − |H6|2 + |H7|2 − |H8|2] I0Pz

P̂0
x

1
2 Re[H∗

1 H3 + H∗
2 H4 + H∗

5 H7 + H∗
6 H8] I0Px′

P̂0
z

1
4 [|H1|2 + |H2|2 − |H3|2 − |H4|2 + |H5|2 + |H6|2 − |H7|2 − |H8|2] I0Pz′

notations,

H1 = T(1/2)[1−(1/2)], H2 = T(1/2)[1−(1/2)],

H3 = T(−1/2)[1−(1/2)],

H4 = T(−1/2)[1−(1/2)], H5 = T(1/2)[−1−(1/2)],

H6 = T(1/2)[−1−(1/2)],

H7 = T(−1/2)[−1−(1/2)], H8 = T(−1/2)[−1−(1/2)]. (20)

The first four observables,

I, T̂ l
00, Ŝ0

11, P̂0
y (21)

are equivalent, respectively, to the differential cross section,
beam, target, and recoil polarization for single pion photopro-
duction (last column in Table I). In particular, in the coplanar
kinematics (� = 0) we have from (17)

H5 = H4, H6 = −H3, H7 = −H2, H8 = H1, (22)

and the expressions for the observables (21) formally coin-
cide with those in the single meson case (for � and T up
to numerical factors −1 and −√

2 due to differences in the
definitions). In the same limit the remaining six observables
in Table I vanish exactly.

Using (14), one can obtain the corresponding expansions
of the observables in a general form

Oα (
,�,ω1, ω2)

= Re/Im

[ ∑
jm′m

e−im�d j
m′m−Mα

(
)uα
jm′m(ω1, ω2)

]
. (23)

Here Mα depends on the type of the observable Oα (it is equal
to +1 or −1 if the final nucleon is polarized and is 0 other-
wise). The properties of the expansion coefficients uα

jm′m will
be considered in more detail elsewhere. Here we only note
that for the set (21) the truncation in (14) at Jmax = 3/2 gives
53 independent coefficients uα

jm′m at each point (ω1, ω2) of the
Dalitz plot. Of these coefficients, one can always choose 39

independent ones, which allow fixing all 20 complex ampli-
tudes t JM

νλμ up to a common phase (and up to possible discrete
ambiguities).

Using the expansion (14) it is easy to verify that the trans-
formation,

t JM
(1/2)[1−(1/2)] → t JM∗

(1/2)[1−(1/2)],

t JM
(1/2)[1(1/2)] → −t JM∗

(1/2)[1(1/2)],

t JM
(−1/2)[1−(1/2)] → −t JM∗

(−1/2)[1−(1/2)],

t JM
(−1/2)[1(1/2)] → t JM∗

(−1/2)[1(1/2)] (24)

results in the following transformation of the helicity ampli-
tudes:

H1 ↔ H∗
8 , H2 ↔ H∗

7 ,

H3 ↔ H∗
6 , H4 ↔ H∗

5 , (25)

which, as one can see directly from Table I, leaves the observ-
ables (21) unchanged. In this case Ŝl

00, T̂ 0
11, and P̂0

x also remain
invariant, whereas T̂ c

00, T̂ 0
10, and P̂0

z change sign.
The ambiguity (24) is analogous to the double discrete

ambiguity in single pseudoscalar meson photoproduction con-
sidered in Ref. [16]. In particular, in the limit � = 0, when the
relations (22) hold, replacement (24) results in the transforma-
tion,

H1 → H∗
1 , H2 → −H∗

2 ,

H3 → −H∗
3 , H4 → H∗

4 , (26)

closely resembling the well-known discrete ambiguity exist-
ing in the single meson case [2,3].

III. CONCLUSION

We developed the formalism for photoproduction of two
pseudoscalar mesons, which enables one to halve the number
of independent partial amplitudes by taking into account par-
ity conservation. In addition, this formalism facilitates a study
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of the double discrete ambiguity arising from the symmetry
under complex conjugation of the helicity amplitudes. These
simplifications make the corresponding complete experiment
problem easier, at least, as far as its mathematical aspects are
concerned.

Since the number of independent amplitudes grows rapidly
with increasing Jmax, studying the cases Jmax > 3/2 can hardly
be of any practical significance. At the same time, Jmax = 3/2
discussed here is, apparently, the minimal nontrivial case for
photoproduction of two pseudoscalars which may be related
to the real situation (the simplest case Jmax = 1/2 which is
more of a pedagogical use is considered in detail in Ref. [11]).
In particular, according to most if not all of the γ N → π0π0N
analyses [17–21] at the energies below the N (1520)3/2−
resonance, the partial waves with J � 3/2 dominate the
reaction amplitude. Here a truncated PWA would be es-
pecially useful for revealing the mechanisms which are

responsible for the linear increase in the γ N → π0π0N total
cross section.

Another question which may arise in connection with our
results is whether (24) is the only discrete transformation of
the amplitudes t JM

νλμ which leaves the group (21) unchanged?
Is not there a wider symmetry which applies to other type-S
observables in addition to (21), or even to the entire set listed
in Table I? Based on the reasoning that any such transforma-
tion generates a corresponding transformation of the helicity
amplitudes Hi, i = 1, . . . , 8, which at � = 0 should reduce to
(26), the symmetry (24) is indeed unique. This issue, however,
requires a more detailed study.
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