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Background: It is challenging to distinguish between fusion-fission and quasifission experimentally. To deter-
mine the characteristics of quasifission processes associated with dominant phenomena in heavy-ion collisions
is important for estimating precisely the fusion cross section, which is relevant to the synthesis of new elements.
We classified fusion-fission and quasifission processes theoretically in the past for an accurate assessment of
the fusion cross section [Y. Aritomo and M. Ohta, Nucl. Phys. A 744, 3 (2004)]. However, no detailed analysis
focused on each process was performed.
Purpose: In this work, we aimed to analyze the dynamical characteristics of quasifission processes in terms
of the Langevin equation model. We specify the quasifission processes, and analyze the scission configuration.
Finally, we clarify the origin of several modes included in quasifission.
Method: The calculation framework is the multidimensional dynamical model of nucleus-nucleus collisions
based on the Langevin equations.
Results: It is shown that several quasifission modes exist leading to different fragment deformations. The
timescale of the quasifission process differs for several different modes. Each scission configuration and total
kinetic energy also differ.
Conclusions: The different quasifission modes are caused by the neck relaxation controlling the mass drift
toward symmetry. This means that it is possible to discuss the time-dependent functional form of the neck
parameter ε for the quasifission process in the framework of the dynamical model based on Langevin equations.

DOI: 10.1103/PhysRevC.106.024610

I. INTRODUCTION

Heavy nuclear collisions associated with the large mass
transfer between reaction partners have been attracting con-
siderable attention in the last several decades as incomplete
fusions and quasifission (QF) processes [1–6]. Various phe-
nomena can be seen in these reactions, depending on the
induced angular momentum, i.e., complete fusion produc-
ing a compound nucleus (CN), QF, deep inelastic collision
(DIC), and quasielastic collision (QEC). The theoretical iden-
tification of these phenomena has been traditionally carried
out on the basis of the geometrical difference in the im-
pact parameter (or corresponding the angular momentum) of
the incident channel. At low impact parameters, complete
fusions are dominant. Many QF events are included in the
reactions at low-medium impact parameters. For medium-
high impact parameters, the dominant reaction type is DIC.
When impact parameters is high, QEC is observed. In the
quantum-based dinuclear system model [7], QF is described
on the basis of the property of the diffusion of nucleons in the
mass asymmetry of reaction partners. Multinucleon transfer
in the DIC process has been studied by the Langevin-type
approach [8]. Here, we apply the Langevin-type approach
to investigate the dynamical characteristics of the QF
process.

QF processes are considered to be a bridge between DIC,
where much relative kinetic energy is transferred to their ther-
mal energy, and CN formation leading to evaporation residue
(ER) products after possible particle emissions [3]. The esti-
mation of the ER cross section in the superheavy mass region
has been paid much attention in the challenge of new element
synthesis. In this sense, the study of the QF mechanisms, that
is, the dynamical characteristics of QF and the separation
of QF and CNF (CN fission), is important for the precise
estimation of the ER cross section. In particular, the study
of the dynamics of QF process can be expected to open a
new field for the reaction mechanism in the superheavy mass
region because the process is related to the mass transfer and
the shell structure.

To date, the characteristics of QF have been discussed in
the paper on the total kinetic energy (TKE) of fission frag-
ments including the long-standing problem of energy transfer
to the kinetic energy of fragments and in the investigation of
the timescale of the mass drift to the mass symmetric direction
[1].

In this paper, the dynamical characteristics of the QF pro-
cess are presented by the analysis of dynamical Langevin
trajectories using the unified Langevin equation model [9].
This Langevin-type approach was developed by Zagrebaev
et al. [9] for the analysis of heavy-ion collision from the
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FIG. 1. The sample trajectories and the z-δ plane potential energy surface (α = 0.78) for each orbital angular momentum (L) in the
26Mg + 230Th reaction. The calculation starting point is {z, δ} = {2.85, 0.20}. The × marks denote the contact points.

entrance stage to the fused system including fission processes.
We have revealed the existence of QF modes in the reactions
of the 48Ca projectile and the actinide target system. These
QF modes are investigated in connection with their timescale,
the distribution of the fragment deformation, and the time
evolution of neck formation. In terms of the trajectory analysis
of the QF process, we show the reason for the appearance of
the mode.

In the following section, a brief introduction of the
Langevin-type approach is presented. The dynamical QF char-
acteristics of the 48Ca + 249Bk system at Ec.m. = 213.05 MeV
are described in Sec. III, where the detailed analyses of the
properties of the QF mode and the reason for their appearance
are presented. Our concluding remarks are given in the final
section.

II. FRAMEWORK

A. Potential energy surface

We adopt a dynamical model that is similar to the unified
model [10]. First, the initial stage of the nucleon transfer reac-
tions consists of two parts: (1) the system is calculated in the
ground state of the projectile and target because the reaction is
too fast for the nucleons to reconfigure a single-particle state.
(2) Then, the former system relaxes to the ground state of the
entire composite system, which changes the potential energy
surface to an adiabatic one. Therefore, we consider the time
evolution of the potential energy from the diabatic one Vdiab(q)
to the adiabatic one Vadiab(q). Here, q denotes a set of col-
lective coordinates representing a nuclear shape. The diabatic
potential is calculated by a folding procedure using effective
nucleon-nucleon interaction [9–11]. However, the adiabatic
potential energy of the system is calculated using an extended

two-center shell model [9]. Then, we connect the diabatic and
adiabatic potential energies with a time-dependent weighting
function f (t ) as follows:

V (q, t ) = Vdiab(q) f (t ) + Vadiab(q)[1 − f (t )], (1)

f (t ) = exp
(
− t

τ

)
. (2)

Here, t is the interaction time and τ is the relaxation time in
the transition from the diabatic potential energy to the adia-
batic one. We use the relaxation time τ = 10−22 s proposed in
Refs. [12–14].

We use the two-center parametrizations as coordinates to
represent nuclear deformation [15,16]. To solve the dynamical
equation numerically and avoid the huge computation time,
we strictly limited the number of degrees of freedom and em-
ployed three parameters as follows: z0 (distance between the
centers of two potentials), δ (deformation of fragment), and
α (mass asymmetry of colliding nuclei); α = A1−A2

A1+A2
, where

A1 and A2 not only stand for the mass numbers of the target
and projectile, respectively [11,17], but also are then used to
indicate the mass numbers of the two fission fragments. ACN is
the mass number of the compound nucleus. As shown in Fig. 1
of Ref. [15], the parameter δ is defined as δ = 3(a−b)

2a+b , where
a and b represent the half length of the ellipse axes in the z0

and orthogonal-to-z0 directions, respectively. We assume that
each fragment has the same deformation in the first step. In
addition, we use scaling to minimize the computation time
and use the coordinate z defined as z = z0

RCNB , where RCN

denotes the radius of the spherical compound nucleus and the
parameter B is defined as B = 3+δ

3−2δ
.

The adiabatic potential energy is defined as

Vadiab(q, L, T ) = VLDM(q) + VSH(q, T ) + Vrot(q, L), (3)
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where VLDM and VSH are the potential energy of the finite-
range liquid drop model and the microscopic energy that takes
into account the temperature dependence, respectively. The
simplified symbol VLDM and the symbol VSH are described as

VLDM(q) = ES(q) + EC(q), (4)

VSH(q, T ) = E0
shell(q)�(T ), (5)

E0
shell(q) = �Eshell(q) + �Epair(q). (6)

The symbols ES and EC stand for generalized surface energy
[18] and Coulomb energy, respectively. The symbol E0

shell indi-
cates the microscopic energy at T = 0, which is calculated as
the sum of the shell correction energy �Eshell and the pairing
correlation correction energy �Epair. T is the temperature of
the compound nucleus calculated from the intrinsic energy
of the composite system. �Eshell is calculated by the Struti-
nsky method [19,20] from the single-particle levels of the
two-center shell model potential [15,21,22] as the difference
between the sum of single-particle energies of occupied states
and the averaged quantity. �Epair is evaluated in the BCS ap-
proximation as described in Refs. [20,23]. The averaged part
of the pairing correlation energy is calculated assuming that
the density of single-particle states is constant over the pairing
window. The pairing strength constant is related to the average
gap parameter �̃ by solving the gap equation in the same
approximation and adopting �̃ = 12/

√
A suggested in [23]

by considering the empirical results for the odd-even mass
difference [24]. The temperature dependence factor �(T ) =
exp(−E∗

Ed
) is explained in Ref. [17], where E∗ indicates the

excitation energy of the compound nucleus. E∗ is given as
E∗ = aT 2, where a is the level density parameter. The shell
damping energy Ed is selected as 20 MeV. This value is given
by Ignatyuk et al. [25]. Vrot is the centrifugal energy generated
from the total angular momentum L. We obtain

Vrot(q, L) = h̄2�(� + 1)

2I (q)
+ h̄2L1(L1 + 1)

2�1(q)
+ h̄2L2(L2 + 1)

2�2(q)
. (7)

Here, I (q) and � represent the moment of inertia of the rigid
body with deformation q and the relative orientation of nuclei
and relative angular momentum respectively. The moment of
inertia and the angular momentum for the heavy and light
fragments are �1,2 and L1,2, respectively.

The neck parameter ε entering in the two-center
parametrization was adjusted to reproduce the available data,
assuming different values between the entrance and exit chan-
nels of the reactions [26]. In our study, we use ε = 1 for
the entrance channel and ε = 0.35 for the exit channel. We
assume the following time dependence of Eq. (4), expressed
in terms of the characteristic relaxation time of the neck t0 and
the variance �ε :

VLDM(q, t ) = VLDM(q, ε = 1) fε (t )

+VLDM(q, ε = 0.35)[1 − fε (t )],

fε (t ) = 1

1 + exp
( t−t0

�ε

) . (8)

B. Dynamical equations

We perform trajectory calculations of the time-dependent
unified potential energy [10,11,17] using the multidimen-
sional Langevin equation [11,17,27] as follows:

dqi

dt
= (m−1)i j p j,

d pi

dt
= − ∂V

∂qi
− 1

2

∂

∂qi
(m−1) jk p j pk − γi j (m

−1) jk pk

+ gi jR j (t ),

dϑ

dt
= �

μRR2
,

dϕ1

dt
= L1

�1
,

dϕ2

dt
= L2

�2
,

d�

dt
= −∂V

∂θ
− γtan

(
�

μRR2
− L1

�1
a1 − L2

�2
a2

)
R

+ RgtanRtan(t ),

dL1

dt
= − ∂V

∂ϕ1
+ γtan

(
�

μRR2
− L1

�1
a1 − L2

�2
a2

)
a1

− a1gtanRtan(t ),

dL2

dt
= − ∂V

∂ϕ2
+ γtan

(
�

μRR2
− L1

�1
a1 − L2

�2
a2

)
a2

− a2gtanRtan(t ). (9)

The collective coordinates qi represent z, δ, and α, the symbol
pi denotes momentum conjugated to qi, and V is the mul-
tidimensional potential energy. The symbol ϑ indicates the
relative orientation of nuclei. ϕ1 and ϕ2 stand for the rotation
angles of the nuclei in the reaction plane, a1,2 = R

2 ± R1−R2
2

is the distance from the center of the fragment to the middle
point between the nuclear surfaces, and R1,2 are the nuclear
radii. The symbol R is the distance between the nuclear
centers. The total angular momentum L = � + L1 + L2 is
preserved. The symbol μR is reduced mass, and γtan is the tan-
gential friction force of the colliding nuclei. Here, it is called
sliding friction. The phenomenological nuclear friction forces
for separated nuclei are expressed in terms of γtan and γR

for sliding friction and radial friction using the Woods-Saxon
radial form factor described in Refs. [11]. Sliding and radial
friction are described as γtan = γ 0

t F (ξ ) and γR = γ 0
R F (ξ ),

where the radial form factor F (ξ ) = [1 + exp( ξ−ρF

aF
)]−1. The

model parameters γ 0
t and γ 0

R are employed 0.1 × 10−22 MeV
s fm−2 and 100 × 10−22 MeV s fm−2, respectively. ρF ≈ 2
fm and aF ≈ 0.6 fm are also model parameters, determined
in Ref. [11], and ξ is the distance between the nuclear sur-
faces, ξ = R − Rcontact, where Rcontact = R1 + R2 [11]. The
phenomenological friction for the radial direction is switched
to one-body friction in the mononucleus stage. γR is used
to consider the kinetic dissipation according to the surface
friction model [28]. The radial friction is calculated as γzz =
γ one

zz + θ (ξ )γR. For the mononuclear system, the wall-and-
window one-body dissipation γ one

zz is adopted for the friction
tensor [29–36]. θ (ξ ) is a smoothing function switching the
phenomenological friction to that of a mononuclear system
as θ (ξ ) = [1 + exp(− ξ

0.3 )]−1 [11]. mi j and γi j stand for the
shape-dependent collective inertia and friction tensors, re-
spectively. We adopted the hydrodynamical inertia tensor mi j
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FIG. 2. The distribution of all trajectories and the δ distribution of the deformation of fragments at scission point for the induced orbital
angular momenta L = 0h̄, 50h̄, 100h̄. The contact point and the starting point of the trajectories are marked by × and star, respectively.

in the Werner-Wheeler approximation for the velocity field
[37]. The one-body friction tensors γi j are evaluated within
the wall-and-window formula [31,38]. The normalized ran-
dom force Ri(t ) is assumed to be white noise: 〈Ri(t )〉 = 0
and 〈Ri(t1)Rj (t2)〉 = 2δi jδ(t1 − t2). According to the Einstein
relation, the strength of the random force gi j is given as
γi jT = ∑

k gi jg jk . We start trajectory calculations from a suf-
ficiently long distance between both nuclei [17]. Thus, we use
the master equation that takes into account the nucleon trans-
fer for slightly separated nuclei [11,11]. When the separated
nuclei achieve the mononucleus state, the neck window of the
contact nuclei is sufficiently opened; therefore, the nucleon
transfer that occurs in the separated nuclei is almost neglected.
Hence, the evolution of the mass asymmetry parameter α

switches from the master equation to the Langevin equation
in accordance with the procedure described in Ref. [17].

III. RESULTS

A. QF trajectories depending on the initial
orbital angular momentum

To review the induced angular momentum dependence of
the QF process, the sample trajectories projected on the z-δ
plane of the potential energy surface for several orbital angular
momenta in the reaction 26Mg + 230Th (α = 0.78) at Ec.m. =
125.00 MeV are shown in Fig. 1. The trajectory starts from
{z, δ} = {2.85, 0.20}. In the case of L = 10h̄, it can be seen
that the trajectory invades the fusion area. The details of the
fusion area are explained in Ref. [17]. The fusion area is
defined as {|α| < 0.3, δ < −0.5z + 0.5} in the present cal-
culation. The trajectory for L = 10h̄ does not go towards the
direction of fission (+z), because it is trapped in the ground
state pocket even after ending the calculation. For the L = 20h̄
case, however, the trajectory, after passing through the contact
point marked by ×, does not enter the fusion area, and finally
the trajectory moves towards the direction of fission (+z). This
behavior of the trajectory is categorized as the QF reaction.
The trajectory for L = 30h̄ also shows the property of the QF

process. At a higher value of L, the barrier indicated by the
grey region begins to grow and it is difficult for the trajectories
of yet higher L to approach the contact point because of the
increasing centrifugal potential energy. These behaviors of
trajectories belong to QEC or DIC. In this paper, we treat the
QF process as follows.

B. Trajectory distribution on the deformation space

To discuss the dynamics of the fusion-fission process, we
introduce the probability distribution of the system in the
deformation space. To this end, we segment the coordinate
space with �z = 0.01, �δ = 0.025, and �α = 0.001. We
define the distribution as an ensemble of Langevin trajecto-
ries. We follow a trajectory as a function of time, and we
increase the event number at each segment when the trajectory
passes through that segment. By generating many trajectories,
we construct a distribution of events on the deformation space
[39].

Figure 2 shows the distribution of all trajectories in the
z-δ plane for the reaction of 48Ca + 244Pu, 48Ca + 249Bk,
and 74Ge + 208Pb systems with Ec.m. = 206.91 MeV, Ec.m. =
213.05 MeV, and Ec.m. = 286.82 MeV, respectively. Here, the
Langevin calculations are stopped at t = 10−19 s. The δ distri-
butions of the deformation of fragments at the scission point
are also appended to the figure as histograms for L = 0h̄, 50h̄,
and 100h̄. The trajectories start at the point marked with a star,
{z, δ} = {2.85, 0.20} for the 48Ca + 244Pu and 48Ca + 249Bk
systems and {z, δ} = {2.85, 0.00} for the 74Ge + 208Pb sys-
tem. The initial value δ = 0 is set for the spherical nuclear
case. The contact point is denoted as ×.

In Figs. 2(a) and 2(b), for the central collision (L = 0h̄) the
trajectories near the scission point distribute around δ ≈ 0.4,
but for L = 50h̄ the distribution has a structure with two
peaks. The different quasifission modes appear in this angular
momentum region. In the case of the 48Ca + 249Bk system,
the structure of the δ distribution appears even for the low
partial wave, and the bifurcation of the trajectory can be seen
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FIG. 3. The trajectory distribution for 48Ca + 249Bk system with
Ec.m. = 213.05 MeV and L = 50h̄. Starting at star point {z, δ} =
{2.85, 0.20}, passing through the bifurcation point of paths marked
with the symbol BP(◦), the trajectory evolves toward different areas
indicated by arrows. The path along the solid arrow is named “path1”
and the dashed arrow “path2.”

clearly. As the Coulomb interaction is stronger in this system,
the approach to the fusion area is inhibited. The mode that
appeared in the δ distribution has a different timescale, as
discussed later. In contrast, in the 74Ge + 208Pb system, no
bifurcation in the quasifission path can be seen because of
the entrance memory of the strong shell effect of the target
208Pb. From the starting point (�), the fragment deformation
increases only up to δ ≈ 0.6 owing to the stiffness of 208Pb.
Therefore, the trajectory follows a similar area leading to
the same fragment deformation around δ ≈ 0.4. We select a
typical example of the QF path bifurcation from Fig. 2(b).

Figure 3 shows an enlarged map of the trajectory distri-
bution for the 48Ca + 249Bk system (L = 50h̄). From the
starting point indicated by the star, the trajectory moves to the
area of large δ up to 0.8 where the fragments are stretched
in preparation of fission. Then, the fission path bifurcates
at the point {z, δ} = {1.3, 0.8}, and each path evolves along
the arrows. We call the trajectory sustaining δ = 0.8 “path1,”
indicated by the solid arrow, and the other trajectory along the
dashed arrow “path2.” The interesting point is the timescales
of these two paths, which lead to the different fragment mass
distributions, as shown in the next section.

C. Two quasifission modes in massive nucleon transfer

Figure 4 shows the fragment mass distributions for path1
and path2. The components of path1 and path2 correspond to
the deformation ranges of 0.6 < δ < 0.8 and 0.4 < δ < 0.6 at
the scission point, respectively. The main peak of the fragment
distributions is located far outside the symmetric region of
ACN/2 ± 20 u. Therefore, the normalized measure of the de-
gree of mass drift toward the symmetry defined by Shen et al.
[1] �A/�Amax is less than ≈0.3, where �A/�Amax = 1

2 (At −
Ap) and �A = Af − Ap. Af, At, and Ap are the fragment, target,

FIG. 4. The fission fragment mass distribution for the
48Ca + 249Bk system with Ec.m. = 213.05 MeV and L = 50h̄.
The distributions in path1 and path2 are plotted separately by the red
and the blue lines, respectively. Panel (a) is for L = 0h̄ and (b) for
L = 50h̄.

and projectile mass, respectively. Since both QF modes have
a large elongation, no sign of the spherical fission fragment
such as Pb can be seen. However, the mass distribution shows
a subtle difference. The peak of mass distribution for path2
shifts to the mass symmetric region, in comparison with that
of path1. It is inferred that the mass drift is larger than that in
path1, as can be seen from the trajectory distribution plotted in
the z-α plane shown in Fig. 5, where the trajectory distribution
of path2 extends to the lower value of α. We further investigate
the dynamics around the bifurcation point (BP) of two modes
near δ = 0.8. The feature of the trajectory bifurcation and the
shape of fissioning nuclei are drawn in Fig. 6. The illustrations
of fragment shape for path1 and path2 are distinguished by
red and blue colors, respectively. The striking fact is in the
role of neck radius for each path. The small neck radius of
path1 inhibits the mass drift at this point. On the one hand,
the nuclear shape of path2 has a large neck radius and the
mass drift can be sustained after passing BP. As a result, the
fragment mass distribution for path2 shifts further to the mass
symmetric region. These differences originate from the fluc-
tuation in the timescale of the reaction. As shown in Fig. 7(a),
path2 belongs to the time-consuming trajectory to reach BP in
comparison with path1. The evolution degree of deformation

FIG. 5. The trajectory distribution of path1 and path2 drawn in
the z-α plane for the 48Ca + 249Bk system with Ec.m. = 213.05 MeV
and L = 50h̄. The starting points of the trajectories are denoted by
star symbols.
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FIG. 6. The feature of the trajectory bifuraction and the shape
of fissioning nuclei for 48Ca + 249Bk system with Ec.m. = 213.05
MeV and L = 50h̄. The bifurcation point and the starting point of
the trajectories are indicated by ◦ and star, respectively.

in each path shows the sample results. The times that the
sample trajectories of path1 and path2 reach BP are ≈5.6 zs
and ≈10.8 zs. The distribution of the time duration for each
path to reach the area of BP is shown in Fig. 7(c). Owing
to the random fluctuation of the trajectory combined in the
potential energy surface (PES), the time duration to obtain
BP also fluctuates. It takes ≈9 zs on average for path2. In
addition, the important point is in the behavior of the time
evolution of the neck parameter ε in Fig. 7(b). The trajectory
of path1 reaches the scission point before the neck parameter
decreases sufficiently toward the recommended value for fis-
sion, ε ≈ 0.35 [26] in Eq. (8). It is mentioned that the value
can be extracted from the analyses of the mass and energy
distributions of the fission fragments [9]. In Fig. 7, we employ
t0 = 9.0 × 10−21 s and �ε = 1.0 × 10−21 s in Eq. (8).

FIG. 7. The temporal evolution of the trajectory (a) and the neck
parameter ε (b) for the two different paths in the 48Ca + 249Bk system
with Ec.m. = 213.05 MeV and L = 50h̄. The distributions of the time
duration reaching BP for different paths are plotted in (c). In all
panels, vertical dotted lines indicate the time of reaching BP labeled
in panel (a).

It is clear that, as shown in Fig. 7(b), the neck parameter ε

for each path differs at BP, i.e., ε ≈ 1.0 for path1 and ε ≈ 0.55
for path2. The neck radius near the scission point is strongly
related to the timescale of the trajectory mentioned above. It is
inferred that sufficient relaxation of the neck condition further
accelerates the mass drift. For the trajectory taking a long time
to reach BP, i.e., path2, the value of ε is decreased to 0.55.
In contrast, if the trajectory reaches BP in a short time, i.e.,
path1, neck relaxation is incomplete and mass drift stops at
that point.

This situation can be seen clearly in Fig. 8, where the
contour map of the neck cross section is drawn in the z-δ plane
overwriting the trajectory of each path. We can see the that
neck cross section vanished at BP for path1 but still exists
for path2. Therefore, in path2, the mass drift continues after
passing BP owing to the decrease in ε, as shown in Fig. 7.

Here, we investigate the TKE of fission fragments to dis-
tinguish two modes. The scission configuration is defined as
the shape with the neck radius equal to zero [40]. The TKE is
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FIG. 8. The contour map of the square of neck radius r2 in the
same 48Ca + 249Bk system as in Fig. 7. The trajectories of path1
(left) and path2 (right) are overwritten. The trajectories start at the
points marked by stars.

expressed as

TKE = Vcoul + Epre, (10)

Vcoul = e2 Z1Z2

dsci
, (11)

Epre = 1

2
(m−1)i j pi p j, (12)

where Epre and Vcoul denote the prescission kinetic en-
ergy and the prescission Coulomb energy, respectively. e2 =
1.44 MeV fm, Z1, Z2 are the charges of each fragment, and dsci

is the distance between the centers of mass of light and heavy
parts of the nucleus at the scission point. The average of Epre

over all fission events is equal to 7.03 MeV. Thus, the main
contribution to the TKE comes from the Coulomb repulsion
of fission fragments.

Figure 9 shows the calculation results of TKE shown by
each path at L = 50h̄. The TKE of each path differs owing
to different dsci values. The average TKE values of each path
are 〈TKEpath1〉 = 119 MeV and 〈TKEpath2〉 = 145 MeV. The
lower TKE corresponds to a more elongated scission configu-
ration (path1). The TKE values shown by path1 and path2 are
different, and two modes clearly exist in QF.

IV. CONCLUSIONS

The dynamical characteristics of the QF processes were
investigated in terms of the Langevin equation model. We

FIG. 9. The TKE distribution in the same 48Ca + 249Bk system
as in Fig. 7. The red and blue lines indicate path1 and path2,
respectively.

paid attention to the QF processes outside the fragment mass
of ACN/2 ± 20 u and the inside DIC processes with several
nucleon transfers. The 48Ca + 249Bk system was taken as an
example. Detailed dynamical analysis of the QF trajectory in
the Langevin calculation was performed. It was found that
there exist two QF modes with different fragment mass and
deformations. Results of the trajectory analysis revealed that
the characteristics of each mode originates from the differ-
ent timescales of the reaction, which arise from the different
neck relaxation modes controlling the mass drift toward mass
symmetry. This means that it is possible to discuss the time-
dependent functional form of the neck parameter ε during the
QF process in the framework of the Langevin equation model.
Note that the relaxation of the neck parameter is sensitive
to the structure of the QF mass fragment distribution. The
scission configurations of the two modes are both very elon-
gated. However, one of the two modes corresponds to a more
elongated scission configuration. The characteristics of two
QF modes may lead to useful knowledge in the experimen-
tal QF analyses. We hope that the difference of TKE values
of the QF component in the medium angular momentum (im-
pact parameter) region can be confirmed experimentally using
collision systems forming Z � 114 with hot fusion.

ACKNOWLEDGMENTS

The Langevin calculation was performed using the clus-
ter computer system (Kindai-VOSTOK) under the support of
JSPS KAKENHI Grant No. 20K04003 and Research funds
for External Fund Introduction 2021 provided by Kindai Uni-
versity.

[1] W. Q. Shen et al., Phys. Rev. C 36, 115 (1987).
[2] B. B. Back et al., Phys. Rev. C 53, 1734 (1996).
[3] M. G. Itkis et al., Nucl. Phys. A 944, 204 (2015).
[4] E. M. Kozulin et al., Phys. Rev. C 90, 054608 (2014).
[5] E. M. Kozulin et al., Phys. Rev. C 94, 054613 (2016).
[6] E. M. Kozulin et al., Phys. Rev. C 99, 014616 (2019).
[7] A. Diaz-Torres, G. G. Adamian, N. V. Antonenko, and W.

Scheid, Phys. Rev. C 64, 024604 (2001).

[8] A. V. Karpov and V. V. Saiko, Phys. Rev. C 96, 024618 (2017).
[9] V. Zagrebaev et al., Phys. Part. Nuclei 38, 469 (2007).

[10] V. Zagrebaev and W. Greiner, J. Phys. G: Nucl. Part. Phys. 34,
2265 (2007).

[11] V. Zagrebaev and W. Greiner, J. Phys. G: Nucl. Part. Phys. 31,
825 (2005).

[12] G. Bertsch, Z. Phys. A 289, 103 (1978).
[13] W. Cassing and W. Nörenberg, Nucl. Phys. A 401, 467 (1983).

024610-7

https://doi.org/10.1103/PhysRevC.36.115
https://doi.org/10.1103/PhysRevC.53.1734
https://doi.org/10.1016/j.nuclphysa.2015.09.007
https://doi.org/10.1103/PhysRevC.90.054608
https://doi.org/10.1103/PhysRevC.94.054613
https://doi.org/10.1103/PhysRevC.99.014616
https://doi.org/10.1103/PhysRevC.64.024604
https://doi.org/10.1103/PhysRevC.96.024618
https://doi.org/10.1134/S106377960704003X
https://doi.org/10.1088/0954-3899/34/11/004
https://doi.org/10.1088/0954-3899/31/7/024
https://doi.org/10.1007/BF01408501
https://doi.org/10.1016/0375-9474(83)90361-5


AMANO, ARITOMO, AND OHTA PHYSICAL REVIEW C 106, 024610 (2022)

[14] A. Diaz-Torres, Phys. Rev. C 69, 021603(R) (2004).
[15] J. Maruhn and W. Greiner, Z. Phys. 251, 431 (1972).
[16] K. Sato et al., Z. Phys. A 288, 383 (1978).
[17] Y. Aritomo and M. Ohta, Nucl. Phys. A 744, 3 (2004).
[18] H. J. Krappe, J. R. Nix, and A. J. Sierk, Phys. Rev. C 20, 992

(1979).
[19] V. Strutinsky, Nucl. Phys. A 122, 1 (1968).
[20] M. Brack et al., Rev. Mod. Phys. 44, 320 (1972).
[21] S. Suekane, A. Iwamoto, S. Yamaji, and K. Harada, JAERI

Report No. 5918, 1993 (unpublished).
[22] A. Iwamoto et al., Prog. Theor. Phys. 55, 115 (1976).
[23] S. G. Nilsson et al., Nucl. Phys. A 131, 1 (1969).
[24] Y. Aritomo, S. Chiba, and F. Ivanyuk, Phys. Rev. C 90, 054609

(2014).
[25] A. V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, Yad. Fiz. 21,

485 (1975).
[26] S. Yamaji, H. Hofmann, and R. Samhammer, Nucl. Phys. A

475, 487 (1987).
[27] Y. Aritomo, Phys. Rev. C 80, 064604 (2009).

[28] P. Fröbrich and I. I. Gontchar, Phys. Rep. 292, 131 (1998).
[29] J. Blocki et al., Ann. Phys. (NY) 113, 330 (1978).
[30] J. Rayford Nix and A. J. Sierk, Nucl. Phys. A 428, 161 (1984).
[31] J. Randrup and W. Swiatecki, Nucl. Phys. A 429, 105 (1984).
[32] H. Feldmeier, Rep. Prog. Phys. 50, 915 (1987).
[33] N. Cârjan, A. J. Sierk, and J. R. Nix, Nucl. Phys. A 452, 381

(1986).
[34] N. Cârjan, T. Wada, and Y. Abe, in Towards a Unified Picture

of Nuclear Dynamics, 6–8 June 1991, Nikko, Japan, AIP Conf.
Proc. No. 250 (AIP, New York, 1992), p. 230.

[35] T. Wada, Y. Abe, and N. Carjan, Phys. Rev. Lett. 70, 3538
(1993).

[36] T. Asano et al., J. Nucl. Radiochem. Sci. 7, 7 (2006).
[37] K. T. R. Davies, A. J. Sierk, and J. R. Nix, Phys. Rev. C 13,

2385 (1976).
[38] A. J. Sierk and J. R. Nix, Phys. Rev. C 21, 982 (1980).
[39] Y. Aritomo, K. Hagino, K. Nishio, and S. Chiba, Phys. Rev. C

85, 044614 (2012).
[40] Y. Aritomo and S. Chiba, Phys. Rev. C 88, 044614 (2013).

024610-8

https://doi.org/10.1103/PhysRevC.69.021603
https://doi.org/10.1007/BF01391737
https://doi.org/10.1007/BF01417722
https://doi.org/10.1016/j.nuclphysa.2004.08.009
https://doi.org/10.1103/PhysRevC.20.992
https://doi.org/10.1016/0375-9474(68)90699-4
https://doi.org/10.1103/RevModPhys.44.320
https://doi.org/10.1143/PTP.55.115
https://doi.org/10.1016/0375-9474(69)90809-4
https://doi.org/10.1103/PhysRevC.90.054609
https://doi.org/10.1016/0375-9474(87)90075-3
https://doi.org/10.1103/PhysRevC.80.064604
https://doi.org/10.1016/S0370-1573(97)00042-2
https://doi.org/10.1016/0003-4916(78)90208-7
https://doi.org/10.1016/0375-9474(84)90249-5
https://doi.org/10.1016/0375-9474(84)90151-9
https://doi.org/10.1088/0034-4885/50/8/001
https://doi.org/10.1016/0375-9474(86)90204-6
https://doi.org/10.1103/PhysRevLett.70.3538
https://doi.org/10.14494/jnrs2000.7.7
https://doi.org/10.1103/PhysRevC.13.2385
https://doi.org/10.1103/PhysRevC.21.982
https://doi.org/10.1103/PhysRevC.85.044614
https://doi.org/10.1103/PhysRevC.88.044614

