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Nuclear excitation of 229Th induced by laser-driven electron recollision
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Previously we proposed a new approach of exciting the 229Th nucleus using laser-driven electron recollision
[Wang, Zhou, Liu, and Wang, Phys. Rev. Lett. 127, 052501 (2021)]. The current article is aimed at elaborating the
method by explaining further theoretical details and presenting extended new results. The method has also been
improved by adopting the electronic excitation cross sections calculated recently by Tkalya [Tkalya, Phys. Rev.
Lett. 124, 242501 (2020)]. The new cross sections are obtained from Dirac distorted-wave calculations instead
of from Dirac plane-wave calculations as we used previously. The distorted-wave cross sections are shown to be
5 to 6 orders of magnitude higher than the plane-wave results. With the excitation cross sections updated, the
probability of isomeric excitation of 229Th from electron recollision is calculated to be on the order of 10−12 per
nucleus per (femtosecond) laser pulse. The dependency of the excitation probability on various laser parameters
is calculated and discussed, including the laser intensity, the laser wavelength, and the laser pulse duration.
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I. INTRODUCTION

The 229Th nucleus has a unique low-lying isomeric state of
energy (currently known as) around 8.3 eV above the nuclear
ground state [1–5]. This isomeric state is the lowest nuclear
excited state so far known, and its existence has fascinated the
scientific community for its potential applications in nuclear
optical clocks [6–9], nuclear lasers [10], checking variations
of fundamental constants [11–13], etc.

The isomeric state can be obtained from the α decay of
233U (233U → 229Th +α, half-life about 1.6 × 105 yr, with
2% of the resultant 229Th nuclei in the isomeric state), al-
though the efficiency is rather low. One can estimate that every
3.6 × 1014 233U nuclei generate a single 229Th nucleus in the
isomeric state per second. Besides, the 229Th nucleus is left
with a recoil energy of 84 keV into random directions and
various ionic states. Alternatively the isomeric state may be
obtained from the β decay of 229Ac (half-life 62.7 min) [14],
suffering from the low production yield of 229Ac though. To
realize the abovementioned applications, controllable and ef-
ficient excitation of the 229Th nucleus is needed, yet it remains
a major problem to be solved.

The following approaches have been attempted experimen-
tally or proposed theoretically to excite the 229Th nucleus:

(i) Direct light excitation. Vacuum-ultraviolet (vuv) light
sources around 8-eV photon energies can be gener-
ated from synchrotron radiations or from frequency
combs (high harmonic generation). Several experi-
mental attempts have been made to radiate 229Th
nuclei with vuv lights and detect the subsequent flu-
orescence [15–18]. However, no positive results have
been reported observing fluorescence signals with the
desired lifetime characteristics.
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(ii) Indirect light excitation. Masuda et al. [19] use 29-
keV synchrotron radiations to excite the 229Th nuclei
to the second excited state, which then decays pre-
dominantly to the isomeric state [20]. The probability
of excitation to the isomeric state for a single 229Th
nucleus is estimated to be on the order of 10−11

per second. Up to now this is the only experimen-
tally demonstrated excitation of the 229Th nucleus.
This approach, however, requires narrowband high-
photon-energy synchrotron light sources that are not
easily accessible.

(iii) Electronic bridge (EB) excitation schemes. The idea
is to couple the nuclear and the electronic degrees
of freedom and to use the energy released from an
electronic transition to excite the nucleus. An addi-
tional laser, which presumably is easily accessible,
is used to compensate the energy mismatch between
the electronic transition and the nuclear transition.
Several ionic or doped-crystal schemes have been
proposed [21–25]. The EB approach requires accu-
rate knowledge of both the isomeric energy and the
electronic structures of the 229Th ions. Experimental
realizations of the EB schemes have not been re-
ported.

Previously we proposed a new excitation approach us-
ing laser-driven electron recollision in Ref. [26] by Wang
et al. The approach was termed recollision-induced nu-
clear excitation (RINE). Recollision [27–29] is the core
process of strong-field atomic physics, and it is the underly-
ing mechanism of various strong-field phenomena including
high harmonic generation [30–32], attosecond pulse gen-
eration [33–36], nonsequential double ionization [37–39],
laser-induced electron diffraction [40–42], etc. Recolliding
electrons usually have energy up to several tens of electron-
volts, or possibly up to several hundreds of electronvolts with
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FIG. 1. Illustration of the RINE approach. An outer electron of
the 229Th atom (or ion) is emitted into the continuum via tunneling
ionization. It is later driven back by the oscillating laser electric field,
recollides with its parent ion core, and excites the nucleus from the
ground state to the isomeric state.

substantially reduced fluxes, so they usually do not affect the
nucleus. However, for 229Th the recolliding electrons do have
enough energy to excite the nucleus to the isomeric state. The
RINE approach is, therefore, the result of a combination of
strong-field atomic physics and 229Th nuclear physics [43,44].

The goal of the current article is to elaborate the RINE
approach by explaining further details of the method itself
and presenting extended new results. The method will also
be improved by updating the electronic excitation cross sec-
tions from the Dirac plane-wave results [45] to the Dirac
distorted-wave results recently calculated by Tkalya [46]. The
distorted-wave cross sections are shown to be 5 to 6 orders
of magnitude higher than the plane-wave results. With the up-
dated excitation cross sections, the RINE approach is shown
to be very efficient: the probability of isomeric excitation for
a 229Th nucleus is calculated to be on the order of 10−12 per
laser pulse (with durations on the order of 10 fs).

This article is organized as follows. In Sec. II, the RINE
method is explained in detail by examining each of the in-
volved theoretical elements. In Sec. III, numerical results are
presented, including the dependency of the nuclear excitation
probability on the laser intensity, the laser pulse duration,
and the laser wavelength. Further discussions and remarks are
given in Sec. IV. A conclusion is given in Sec. V. Atomic units
(a.u.) will be used unless otherwise specified.

II. THE RINE METHOD

A. Overview

The idea of the RINE approach is illustrated in Fig. 1. In
a strong laser field (typically of peak intensity on the order
of 1013 to 1015 W/cm2), a 229Th atom (or ion) is ionized
via quantum tunneling. The emitted electron, albeit in the
continuum, has a probability of being driven back to collide

with its parent ion core when the oscillating laser electric
field reverses its direction. This is called a recollision process.
The 229Th nucleus has a probability of being excited to the
isomeric state by the recolliding electron. If the laser field is
strong enough, several electrons may be pulled out and driven
to recollide, at different time intervals during the laser pulse
though.

Let us now consider a single electron, which could
be the first-emitted (second-emitted, third-emitted, fourth-
emitted, ...) electron. Of course, different electrons have
different ionization energies and see different potentials from
the remaining ion core. At each time ti during the laser pulse,
the electron can be emitted via tunneling ionization with a
rate of w(ti ). The emitted electron may be driven back and
recollide with its parent ion core at a later time tr . The effective
flux density of the recolliding electron is given by

j(tr ) = w(ti )dtiP(ti, Rc)

πR2
cdtr

. (1)

This formula is understood as follows: w(ti )dti is the prob-
ability of tunneling ionization at time ti within a small time
interval dti. A fraction, 0 � P(ti, Rc) < 1, of this probability
will experience recollision and recollide within a critical ra-
dius Rc from the nucleus. Only this fraction of the recollision
events contributes to nuclear excitation, as is explained later
in Sec. II C. The contributing probability is then divided by
the area πR2

c and the recolliding time interval dtr to give the
effective flux density at time tr . Note that Rc has a weak depen-
dency on the recollision energy Er , as is shown in Sec. II C, so
it is a function of the recollision time, i.e., Rc = Rc(tr ).

The nuclear excitation rate at time tr is given by

�exc(tr ) = σ (Er ) j(tr )β(tr ), (2)

where Er is the energy of the electron at tr , σ (Er ) is the
corresponding nuclear excitation cross section, and j(tr ) is the
effective flux density of the recolliding electron. The factor

β(tr ) = R2
c (tr )

b2
c(tr )

(3)

transforms the recollision-plane (viz., the x = 0 plane) flux
density to the corresponding asymptotic flux density. The
reason to perform such a transformation is that the cross
section σ (Er ) is obtained for an electron wave coming from
infinity. A recolliding electron flux with the cross area πR2

c at
the recollision plane comes as if from infinity with the cross
area πb2

c. Here bc is the impact parameter corresponding to
Rc. As is shown later in Sec. II C, β(tr ) is only slightly smaller
than 1, so omitting this β factor will not affect the excitation
rate substantially.

The probability of nuclear excitation is obtained by a time
integral of the excitation rate:

Pexc(t ) =
∫ t

−∞
�exc(tr )dtr =

∫ t

−∞
σ (Er )

w(ti)P(ti, Rc)

πb2
c

dti,

(4)

where Eqs. (1)–(3) have been substituted into the first inte-
gral to get the second one. Elements involved in the above
formula, such as the electronic excitation cross section σ (Er ),
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the ionization rate w(ti ), the critical recollision radius Rc and
the corresponding impact parameter bc, and the probability
P(ti, Rc), are explained in the following subsections.

B. The electronic excitation cross section

In nuclear physics, Coulomb excitation is a very use-
ful method for the study of nuclear structures, especially
collective levels from rotational or vibrational degrees of free-
dom [45,47–51]. A beam of projectile particles bombard on
and excite the target nuclei through the mutual Coulomb in-
teraction. Commonly used projectiles in Coulomb-excitation
experiments are protons and α particles, whereas in the cur-
rent article the case of electrons is considered. The target is
the 229Th nucleus.

From the theoretical side, relatively simple analytical
formulas are available for the excitation cross sections if
the electrons are treated as (Dirac) plane waves, i.e., with
the plane-wave Born approximation. For the case of 229Th, the
dominant nuclear transition between the ground state and the
isomeric state is electric quadrupole (E2) and magnetic dipole
(M1). (The ground state has spin and parity 5/2+, and the iso-
meric state has spin and parity 3/2+. Electric dipole transition
is forbidden.) From Ref. [45], the differential excitation cross
sections are given by

dσE2

d�
= B(E2; g → e)

2π

75c2

K4

k2
i

(
VT + 2

3
VL

)
, (5)

dσM1

d�
= B(M1; g → e)

8π

9c2

K2

k2
i

VT . (6)

The total excitation cross sections can be obtained after in-
tegrating over the solid angle. In the above formulas c is the
speed of light, ki (k f ) is the initial (final) wave vector of the
electron, and K = ki − k f is the momentum transfer. VT and
VL are shorthand notations of

VT = kik f

(
k2

i + k2
f − κ2

)
K2 − 2(ki · K )(k f · K )

K2(K2 − κ2)2
, (7)

VL = kik f

2k2
i + 2k2

f + 4c2 − κ2 − K2

K4
, (8)

where κ = 	E/c, with 	E being the energy transfer (i.e., the
energy difference between the isomeric state and the ground
state, taken to be 8.3 eV in the current article).

B(E2; g → e) and B(M1; g → e) are the reduced transition
probabilities, and the notation g → e means from the nuclear
ground state to the isomeric excited state. The following rela-
tion holds if the transition direction is reversed:

B(E2/M1; g → e)

B(E2/M1; e → g)
= 2Ie + 1

2Ig + 1
, (9)

where Ig = 5/2 and Ie = 3/2 are the nuclear spin for the
ground state and for the isomeric state. The values of
the reduced transition probabilities are determined either
from analyses of γ -ray spectra of excited 229Th nuclei
exploiting Alaga rules [52–57] or from nuclear model
calculations [55,56,58,59]. There are some degrees of uncer-
tainties with these values at the current stage. For example,

0 20 40 60 80 100
Electron energy (eV)

10-10

10-8

10-6

10-4

10-2

100

C
ro

ss
 s

ec
tio

n 
(b

ar
n)

(a)

10-4 10-3 10-2 10-1 100 101
-1

-0.5

0

0.5

1
(b)

plane wave
distorted wave

101 103 105 107 109

Electron energy (eV)

10-10

10-8

10-6

10-4

10-2

100

C
ro

ss
 s

ec
tio

n 
(b

ar
n)

(c)

FIG. 2. (a) Total (E2 + M1) electronic excitation cross sec-
tions of 229Th from the ground state to the isomeric state. The black
(upper two) curves are from distorted-wave calculations and the
red (gray, lower two) curves are from plane-wave calculations. For
each calculation, the solid curve uses set 1 [Eqs. (10) and (11)] of
the reduced transition probabilities and the dashed curve uses set 2
[Eqs. (12) and (13)]. (b) Comparison between (the large component
of) a Dirac plane wave and the corresponding distorted wave for
electron energy 100 eV (with l = 0, j = 1/2). (c) Extension of panel
(a) into a much larger energy range.

Ref. [53] suggests B(M1; e → g) = 0.048 W.u. (Weisskopf
units), Ref. [56] suggests B(M1; e → g) = 0.014 W.u. and
B(E2; e → g) = 67 W.u., Ref. [58] suggests B(M1; e → g) =
0.0076 W.u. and B(E2; e → g) = 27 W.u., and Ref. [59] sug-
gests B(M1; e → g) to be between 0.005 and 0.008 W.u. and
B(E2; e → g) to be between 30 and 50 W.u. First-principle
many-body nuclear calculations are not expected to be avail-
able in the near future.

In Ref. [46], Tkalya compares the excitation cross sec-
tions with the following two sets of reduced transition
probabilities (with the g → e values converted to e → g val-
ues):

set 1: B(M1; e → g) = 0.048 W.u., (10)

B(E2; e → g) = 17.6 W.u., (11)

set 2: B(M1; e → g) = 0.0076 W.u., (12)

B(E2; e → g) = 27 W.u. (13)

With these two sets of the reduced transition probabilities and
Eqs. (5) and (6), the total (E2 + M1) electronic excitation
cross sections can be obtained, as shown in the red (lower
two) curves of Fig. 2(a). The solid curve is for set 1 and the
dashed curve is for set 2. The two curves are within a factor of
2 or 3. It has been checked that other suggested values of the
reduced transition probabilities mentioned above lead to cross
sections roughly within the range of set 1 and set 2. One also
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sees that the plane-wave formulas result in excitation cross
sections on the order of 10−8 b, or 10−32 cm2.

Recently Tkalya calculated the electronic excitation cross
sections using Dirac distorted waves [46] instead of plane
waves. That is, he used the distorted-wave Born approxima-
tion. The results show that the excitation cross sections are
5 to 6 orders of magnitude higher than the plane-wave val-
ues for low electron energies, as shown in Fig. 2(a) by the
black (upper two) curves (solid curve for set 1 and dashed
curve for set 2 of the reduced transition probabilities). The
cross sections are on the order of 10−3 to 10−2 b. Unlike the
plane-wave cross sections, which ignore the ion-core poten-
tial, the distorted-wave cross sections depend on the ion-core
potential, although the dependency is rather weak. The black
curves shown in Fig. 2(a) are for the 229Th+ ion, but the
cross sections for the 229Th2+, 229Th3+, and 229Th4+ ions are
almost visually indistinguishable from the 229Th+ case. The
cross sections for the neutral 229Th atom are a little different
though [46,60]; however, for the RINE method, only cross
sections for the first few ions are of concern. Except for a
couple of minor and insignificant errors (including an over-
all factor of 2 larger possibly from summing over angular
indices, and a confusion of the nuclear transition direction
of set 2 of the reduced transition probabilities), our indepen-
dent calculations by Zhang et al. [60] confirm the results of
Tkalya [46]. (The cross sections shown in Fig. 2 have had the
errors corrected.) Detailed formulas of the Dirac distorted-
wave calculations can be found in Refs. [46,60] and are not
repeated here.

The surprising, but not totally unexpected, difference be-
tween the distorted-wave results and the plane-wave results
stems mainly from the fact that the electron energies con-
sidered here are very low (mostly below 100 eV), so plane
waves turn out to be bad approximations to the actual wave
functions of the electron. Figure 2(b) shows the compari-
son between (the large component of) a Dirac plane wave
and the corresponding distorted wave for electron energy
100 eV (with l = 0, j = 1/2). One can see the striking dif-
ference between the two waves, especially in regions close
to the nucleus. The region with r < 10−2 a.u. is most rel-
evant to nuclear excitation, and the distorted wave has a
much larger amplitude than the plane wave in this region,
leading to the difference in the nuclear excitation cross
section.

The difference between the plane-wave cross sections and
the distorted-wave ones shrinks as the electron energy in-
creases, as shown in Fig. 2(c). Only at very high energies
(approaching 109 eV), however, do the plane-wave cross
sections become good approximations to the distorted-wave
cross sections. Note that the purpose of Fig. 2(c) is merely to
compare plane-wave and distorted-wave excitation cross sec-
tions between the two considered nuclear levels. Excitations
to higher nuclear states are not considered.

In our previous article by Wang et al., Ref. [26], the plane-
wave cross sections were used. In the current article, the
distorted-wave cross sections are adopted. As expected, the
nuclear excitation probabilities reported in the current article
are roughly 5 to 6 orders of magnitude higher than the results
reported in Ref. [26].
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FIG. 3. (a) Illustration of an electron collision trajectory. The
electron has an asymptotic velocity v0 and an impact parameter b.
Its distance to the nucleus is denoted R0 as the electron passes the
x = 0 plane. (b)–(d) The relationship between R0 and b for electron
energies 10, 50, and 100 eV, as labeled on each figure. For each en-
ergy, four different ion-core charges are used. The ion-core potential
is described by the GSZ potential [Eq. (14)].

C. The adiabaticity of collision trajectories
and the effective collision area

An electron collision trajectory is illustrated in Fig. 3(a).
The electron has an asymptotic velocity, v0, assuming point-
ing to the +x direction, and an impact parameter, b. As the
electron approaches the nucleus, it is accelerated by the ion-
core potential but its total energy (kinetic energy plus potential
energy) remains to be v2

0/2. Denote R0 be the electron-nucleus
distance as the electron passes through the x = 0 plane (the
“recollision plane” in the case of laser-driven recollision).
Obviously R0 < b. The detailed relationship between them
depends on the value of b, the energy of the electron, and
the form of the ion-core potential. Figures 3(b)–3(d) show the
dependency of R0 on b, for three different electron energies
10, 50, and 100 eV. For each energy, four different ion-core
charges are used. For the ion-core potential, the well-known
Green-Sellin-Zachor (GSZ) effective potential [61] is used:

V (r) = 1

r

[
−(Z − N ) − N

(er/d − 1)ξ + 1

]
, (14)

where Z = 90 is the charge of the nucleus, N (= 89, 88, 87, ...)
is the number of the remaining electrons in the ion core, and
d = 0.927 a.u. and ξ = 5.58 a.u. are two parameters. The ion-
core charge Zc = Z − N .

As can be seen from Figs. 3(b)–3(d), R0 increases linearly
with b (with slope 1) for b larger than a few atomic units.
The difference between R0 and b becomes smaller as the
energy of the electron increases, as can be expected. In the
RINE process, only R0 values smaller than 2 or 3 a.u. are of
concern, as is explained below. The corresponding values of b
are mostly below about 5 a.u.
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FIG. 4. Dependency of |Ṽ (ω0)|2 on b (left column) and on R0

(right column), for different electron energies 10, 50, and 100 eV,
as labeled on the figure. Each curve has been normalized to its own
peak value. For each energy, four different ion-core charges are used.

If the distance b (or R0) is too large, then the interaction
between the electron and the nucleus is too weak that the
trajectory does not contribute to nuclear excitation. More
precisely, the mutual potential changes with time too slowly
that the trajectory is adiabatic with respect to the nuclear
transition. Only when b or R0 is small enough does the cor-
responding trajectory contribute to nuclear excitation. This
adiabaticity of a collision trajectory can be put in mathemat-
ical terms by looking for the following Fourier component:

Ṽ (ω0) =
∫ ∞

−∞
V (t )e−iω0t dt, (15)

where ω0 = 8.3 eV is the energy gap between the two nu-
clear states, and V (t ) = V [r(t )] is the time-dependent (GSZ)
potential between the electron and the nucleus following the
trajectory r(t ) of the electron. From the semiclassical picture
of Coulomb excitation, the nucleus is excited by the time-
dependent potential supplied by the electron, and the above
Fourier transform naturally arises if the nuclear excitation is
calculated using time-dependent perturbation theory [45]. In
Fig. 4, |Ṽ (ω0)|2 is shown as a function of b (left column) and
as a function of R0 (right column) for electron energies 10, 50,
and 100 eV. For each energy, four different ion-core charges
are shown, as labeled on the figure.

One can see from Fig. 4 that for all the cases, |Ṽ (ω0)|2 has a
rather sharp cutoff beyond which it drops quickly to zero. This

means that electron trajectories with b or R0 larger than the
cutoff distances do not contribute to the nuclear excitation. Let
us denote the cutoff distances to be bc and Rc. For 10 eV, Rc

is between 3.0 and 3.5 a.u., depending weakly on the ion-core
charge Zc. The corresponding bc is around 5 a.u. For 50 eV, Rc

is about 2.0 a.u. and the corresponding bc is about 2.5 a.u. For
100 eV, Rc is about 1.5 a.u. and the corresponding bc is about
2.0 a.u. The area within the radius Rc is the effective collision
area for the purpose of nuclear excitation. The electron flux
within the cross area πR2

c comes from infinity within the
(slightly larger) cross area πb2

c. In the recollision case, the
electron flux does not come from infinity. Nevertheless, one
can image that the electron flux comes as if from infinity with
the cross area πb2

c.

D. Tunneling ionization and recollision

A 229Th atom can be ionized, or even multiply ionized, in
a strong laser field. The time-dependent ionization rate can be
described by an Ammosov-Delone-Krainov (ADK) tunneling
formula [62]:

w(ti ) = f (l, m)

κ2Zc/κ−1

(
2κ3

|E (ti )|
)2Zc/κ−|m|−1

e−2κ3/3|E (ti )|. (16)

Here l and m are the quantum numbers of the ionizing state,
κ ≡ √

2Ip with Ip being the ionization potential, Zc is the ion-
core charge, and E (ti ) is the laser electric field at the time ti.
The coefficient f (l, m) is given by

f (l, m) = C2
l

2|m||m|!
(2l + 1)(l + |m|)!

2(l − |m|)! , (17)

where Cl is a constant on the order of unity (in atomic units).
Up to now no study has reported the values of Cl particularly
for 229Th, so Cl is assumed to be 1 a.u. for the time being.
Reported values of Cl are mostly between 1 and 3 a.u. for rare
gas atoms [62]. The ionization probability is given by

Pion(ti ) = 1 − exp

[
−

∫ ti

t0

w(t ′)dt ′
]
, (18)

where t0 is the time when the laser pulse starts. The exponen-
tial term on the right-hand side is the survival probability at
the time ti.

The emitted electron has a chance to be driven back and
recollide with its parent ion core when the oscillating laser
electric field reverses its direction. Whether an electron recol-
lides and with how much energy it recollides are determined
by the emission time of the electron. In the simplest estimation
one can ignore the ion-core potential and consider only the
effect of the laser electric field. The electron is assumed to
be emitted at the time ti at the position of the atom (taken as
the origin) with zero initial velocity. The subsequent trajec-
tory of the electron can be easily solved. These assumptions
constitute the so-called Simpleman model that has been very
useful in qualitative understanding of strong-field phenom-
ena [29,63].

Conclusions from the Simpleman model include the fol-
lowing:
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FIG. 5. (a) Relationship between the recollision time tr and the
ionization time ti. (b) Relationship between the recollision energy
Er and the ionization time ti. For both panels, the solid black curve
is for the case where only the laser potential is considered, i.e.,
the Simpleman model, and the red dashed curve is for the case
including the ion-core GSZ potential. The laser intensity used here is
5 × 1013 W/cm2 and the laser wavelength is 800 nm.

(i) The emitted electron can recollide if it is emitted af-
ter a laser field peak, e.g., if 0.25T � ti < 0.5T for
a sinusoidal laser electric field E (t ) = E0 sin ωt . The
electron cannot recollide if it is emitted before a field
peak, e.g., if 0 < ti < 0.25T . Here T = 2π/ω is the
laser period. The relationship between the ionization
time ti and the corresponding recollision time tr is
shown as the solid curve in Fig. 5(a).

(ii) The maximum energy of the electron at the time of
recollision is 3.17Up with Up = E2

0 /4ω2 being the
ponderomotive potential. This maximum recollision
energy is taken when the emission time ti = 0.3T , i.e.,
0.05 periods after the field peak. The dependency of
the recollision energy Er on the emission time ti is
shown as the solid curve in Fig. 5(b).

The above conclusions are subject to modifications if the ion-
core GSZ potential is included. For example, (i) recollision
may still happen if the ionization happens a little earlier than
the peak of the laser electric field, as shown by the red dashed
curve of Fig. 5(a), and (ii) The recollision energy can be
higher than the values from the Simpleman model, as shown
by the red dashed curve of Fig. 5(b).

If the ion-core GSZ potential is included, the initial posi-
tion of the electron is set to be the tunneling-exit point, which
can be solved by equating the total potential of the electron to
the negative of the ionization energy on the polarization axis:

V (r) + E (ti )x = −Ip. (19)

The initial momentum of the electron at the tunneling-exit
point is usually assumed to be zero along the longitudinal
direction [64–73] (although some authors argue for slightly
nonzero longitudinal momenta [74–78]) and a Gaussian dis-
tribution along the transverse direction [79]

P(v⊥) ∝ exp

(
−v2

⊥
η2

)
, (20)

with η2 = |E (ti )|/
√

2Ip.
In the calculation the laser pulse duration is divided into

small time steps with dti = 0.005T . At each time step, 105 tra-
jectories are launched at the tunneling-exit point with random
momenta along the transverse direction. Each trajectory is

given a weight according to the above transverse-momentum
distribution formula such that the total weight of the 105 tra-
jectories born at the time ti is w(ti )dti[1 − Pion(ti )]. The value
in the square bracket is the survival probability of the electron
at the time. The convergence of the results has been checked
by increasing the number of time steps and the number of
trajectories at each time step.

With the initial conditions specified, each trajectory is
propagated according to the classical Hamiltonian equa-
tions of motion

dri

dt
= ∂H

∂ pi
, (21)

d pi

dt
= −∂H

∂ri
, (22)

where i = x, y, and z, and the Hamiltonian

H = 1
2

(
p2

x + p2
y + p2

z

) + V (r) + xE (t ). (23)

The integrations are performed using the openly available
LSODE (Livermore solver for ordinary differential equa-
tions) software package [80]. Each trajectory r(t ) = [x(t )2 +
y(t )2 + z(t )2]1/2 is followed and determined whether recolli-
sion happens (whether x(t ) = 0 subsequently). If it does, the
recolliding distance R0 = [y(tr )2 + z(tr )2]1/2 is recorded. As
explained earlier, only collision trajectories with R0 smaller
than the critical distance Rc contribute to nuclear excitation.
The probability P(ti, Rc) in Eq. (1) can be obtained by sum-
ming the weights of all the contributing trajectories born at ti
and then dividing the total weight of all the trajectories born
at the same time.

It is worth mentioning that similar tunneling-ionization-
plus-classical-trajectory methods have been widely used in
strong-field atomic physics to simulate strong laser-atom in-
teractions [64–73].

E. The effective recollision flux density

The effective recollision flux density is calculated using
Eq. (1). Figure 6(a) shows the recollision flux densities for
a 30-fs (full width at half maximum) Gaussian pulse with a
peak intensity of 1014 W/cm2. Under this intensity, the out-
ermost three electrons can be ionized. (The first two electrons
are completely ionized. The third electron has an ionization
probability of 35%. The ionization of the fourth electron is
negligible.) The recollision time intervals of the three elec-
trons are separated, though, as can be seen from the figure.
The first electron has the smallest ionization energy, so it
is emitted and recollides early during the rising edge of the
pulse. The second electron and the third electron follow. The
effective recollision flux is calculated to be on the order of
10−5 a.u.

More electrons can be emitted and contribute to nuclear
excitation as the intensity increases, as is shown later.

F. The nuclear excitation probability

The nuclear excitation probability is calculated using
Eq. (4) for each contributing electron, and an example is
shown in Fig. 6(b). The excitation probability depends on
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FIG. 6. (a) Effective recollision flux density for the first-emitted
electron (red, leftmost), the second-emitted electron (blue, middle),
and the third-emitted electron (magenta, rightmost). The laser elec-
tric field is shown as the gray background. The pulse duration is 30 fs
and the peak intensity is 1014 W/cm2. Note that the flux density is
shown in atomic units (1 a.u. = 1.48 × 1037 m−2 s−1). (b) The cor-
responding nuclear excitation probability. Both the total excitation
probability and the individual contribution from each electron are
shown, as labeled.

both the effective flux density and the excitation cross section,
which is determined by the electron energy at the recollision
time. Note that set 1 of the reduced transition probabilities
[Eqs. (10) and (11)] has been used to calculate the cross
section and the excitation probability. If set 2 is used, the cross
sections and the excitation probabilities will be 2 to 3 times
lower.

One can see from Fig. 6 that, although the first electron
has higher flux densities, it does not contribute to nuclear
excitation. This is because the recollision energy of the first
electron is lower than the 8.3-eV excitation threshold. The first
electron has a low ionization potential (6.3 eV), so it is emitted
early during the rising edge of the laser pulse and experiences
relatively weak laser fields, under which the recollision ener-
gies are not sufficient. This is, of course, a waste of electron
fluxes. As is shown later in Sec. III B, shorter laser pulses
(with durations of ≈10 fs) can increase the recollision energy
of the first electron and make it useful in nuclear excitation.
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FIG. 7. (a) Nuclear excitation probability as a function of laser
peak intensity. The laser pulse has a wavelength of 800 nm and a
pulse duration of 30 fs. (b) Accumulated excitation probability dur-
ing the laser pulse for an intensity of 2 × 1014 W/cm2. Contributions
from each electron are also shown, as labeled. (c) Similar to panel
(b), but for an intensity of 2 × 1015 W/cm2.

III. NUMERICAL RESULTS

In this section extended numerical results are presented for
the nuclear excitation probability. Dependencies on the laser
intensity, the laser pulse duration, and the laser wavelength are
calculated and analyzed.

A. Dependency on laser intensity

Figure 7(a) shows the dependency of the (end-of-pulse)
nuclear excitation probability on the laser peak intensity. The
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pulse duration is fixed at 30 fs and the laser wavelength is
800 nm. One can see that there is a threshold intensity around
3 × 1013 W/cm2 below which nuclear excitation cannot hap-
pen via recollision. This is because the recollision energy of
the electron cannot reach the 8.3-eV excitation threshold be-
low this intensity. Above the threshold intensity the excitation
probability quickly increases. The excitation probability is
on the order of 10−12 and increases as a general trend with
intensity.

Figures 7(b) and 7(c) show the accumulation of the excita-
tion probability during the laser pulse for two different laser
intensities, namely, 2 × 1014 and 2 × 1015 W/cm2. For the
former intensity, three electrons are emitted and contribute
to the nuclear excitation. Comparing to the case of 1 × 1014

W/cm2 as shown in Fig. 6(b), the first-emitted electron now
has a small but recognizable contribution to nuclear excita-
tion. For the latter intensity, four electrons are emitted and
contribute to the nuclear excitation. If the laser intensity in-
creases further, more electrons can be emitted and contribute
to nuclear excitation.

B. Dependency on laser pulse duration

Figure 8(a) shows the dependency of nuclear excitation
probability on the laser pulse duration, for two difference
intensities as labeled. The laser wavelength is fixed at 800 nm.
For both intensities, one can see that the excitation probability
is rather flat for pulse durations longer than about 20 fs.
Shorter pulses lead to higher excitation probabilities. The
excitation probability can be about twice as high compared
to the long-pulse values.

The increased excitation probability for shorter pulses
mainly comes from the activation of the first-emitted electron.
Figures 8(b) and 8(c) show the nuclear excitation probability
during two pulses of different durations, namely, 10 and 20 fs.
Both pulses have an intensity of 1 × 1014 W/cm2 and a wave-
length of 800 nm. One can find that the contributions from the
second and the third electrons are almost the same for the two
pulse durations. The difference comes from the first electron.
For the 10-fs case, the first electron contributes the most to
nuclear excitation among the three electrons. Whereas for the
20-fs case, the first electron contributes the least among the
three electrons.

The above results can be understood as follows. Rec-
ollision is largely a process that happens within a laser
cycle. Ionization happens around a field peak and recolli-
sion happens roughly 3/4 cycles later around field zero. As
long as the pulse is long enough, such that the pulse enve-
lope does not change substantially within a laser cycle, the
ionization-recollision process is similar from cycle to cycle.
This explains the nearly flat behavior above 20 fs. However, if
the pulse is very short so that the pulse envelope changes ap-
preciably within a laser cycle, then the ionization-recollision
behavior can be greatly modified. An emitted electron can feel
quite a different electric field compared to a pure sinusoidal
field, and its recollision time and recollision energy can be
significantly modified. Interestingly, as the pulse becomes
shorter, the recollision energy of the first-emitted electron
increases to values above the 8.3-eV threshold and the first
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FIG. 8. (a) Nuclear excitation probability as a function of laser
pulse duration, for two different peak intensities as labeled on the
figure. The laser pulses have wavelengths of 800 nm. (b) Accumu-
lated excitation probability during a laser pulse for an intensity of
1 × 1014 W/cm2 and a pulse duration of 10 fs. (c) Similar to panel
(b), but for a pulse duration of 20 fs.

electron is “activated” to excite the nucleus. This is good news
since the flux density of the first electron is usually larger than
that of other electrons.

Pulse durations around 10 fs seem to be the most efficient
for the purpose of nuclear excitation. As the pulse duration
decreases further, the ionization is suppressed, which reduces
the recollision flux, hence the nuclear excitation probability.
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FIG. 9. (a) Nuclear excitation probability as a function of laser
wavelength. The pulse duration is fixed at 30 fs. Two peak intensities
are shown, as labeled on figure. (b) Accumulated excitation probabil-
ity during a laser pulse with a wavelength of 400 nm and an intensity
of 5 × 1014 W/cm2. (c) Similar to panel (b), but for a wavelength of
1600 nm.

C. Dependency on laser wavelength

Figure 9(a) shows the dependency of the nuclear excitation
probability on the laser wavelength, within a range from 400
to 1600 nm. The laser pulse duration is fixed at 30 fs. Results
for two peak intensities are shown, as labeled on the figure.

The laser wavelength has twofold effects on the recollision
process. First, longer wavelengths lead to higher recollision
energies. Second, longer wavelengths lead to more severe
wave-packet spreading along the transverse direction and
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FIG. 10. Nuclear excitation probability with (black solid circles)
and without (blue empty diamands) the ion-core GSZ potential. The
black curve with solid circles is the same as Fig. 7(a). The laser
wavelength is 800 nm and the pulse duration is 30 fs.

hence to lower recollision fluxes. These two aspects manifest
in Fig. 9(a). For example, the excitation probability decreases
for wavelengths longer than about 1000 nm. This is a man-
ifestation of transverse wave-packet spreading. For another
example, the excitation probability also drops as the wave-
length becomes shorter than 600 nm. This is a manifestation
of reduced recollision energies as the wavelength decreases.

Figures 9(b) and 9(c) show two examples of accumulated
nuclear excitation probabilities during the laser pulse. For the
400-nm case shown in Fig. 9(b), the first electron and the
second electron do not contribute to nuclear excitation. The
recollision energies are below the 8.3-eV threshold, albeit
with a relatively high laser intensity of 5 × 1014 W/cm2.
Fortunately this intensity is strong enough to pull out four
electrons, and the third and the fourth electrons have enough
recollision energies to excite the nucleus. If the intensity de-
creases to a value with which the third electron and the fourth
electron barely ionize, then the nuclear excitation probability
will be greatly suppressed. This is the case for an intensity of
1 × 1014 W/cm2. For the 1600-nm case shown in Fig. 9(c),
the first electron has enough recollision energy to excite the
nucleus. However, the excitation probabilities decrease sub-
stantially for the second, the third, and the fourth electrons,
due to severe wave-packet spreadings along the the transverse
direction. The laser wavelength therefore is quite an efficient
knob to control recollision and the nuclear excitation process.

IV. DISCUSSIONS

A. Effects of the ion-core potential (Coulomb focusing)

If the ion-core GSZ potential is removed from the calcula-
tion (the electron trajectories are propagated under the driven
of only the laser electric field), then the nuclear excitation
probability is found to drop by over an order of magnitude,
as shown in Fig. 10. The ion-core potential plays an important
role in focusing the electron trajectories along the transverse
direction and enhancing the effective recollision flux density.
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FIG. 11. Absorption potential felt by the recolliding electron as
it travels through the electron cloud of 229Th+. The potential is cal-
culated using the code ELSEPA with three different electron incoming
energies as labeled. Note that the potential is shown in atomic units
(1 a.u. = 27.2 eV).

This effect is called Coulomb focusing, which is well known
in strong-field atomic physics [81–84].

B. Loss of flux as the recolliding electron travels through
the ion-core electron cloud

The recolliding electron penetrates through the electron
cloud of the remaining ion core before getting close enough to
excite the nucleus. During this process the recolliding electron
may interact with the ion-core electrons and lose part of its
flux. It is therefore important to estimate this loss.

Here the code ELSEPA [85] is used to calculate the imagi-
nary absorption potential iWabs(r) of the 229Th+ ion, felt by an
electron coming close to it. The absorption potential is shown
in Fig. 11, for three different electron incoming (asymptotic)
energies. The probability that the electron is lost from the flux
(absorbed) can be estimated to be

Pabs = 1 − exp

[∫ ∞

0
2Wabs(r)

dr

v(r)

]
, (24)

where v(r) = √
2(Ei + 1/r) is the electron velocity at dis-

tance r. In writing the above formula, I have, for simplicity,
assumed a straight trajectory passing through the electron
cloud on the x axis. Trajectories off the axis have shorter
traces inside the electron cloud so they are expected to be
less absorbed than the on-axis case. Pabs is calculated to be
about 19% for 10 eV, 16% for 50 eV, and 14% for 100 eV.
These results change very little for the 229Th2+, 229Th3+, and
229Th4+ ion cores. Based on these results, it can be concluded
that the recolliding electrons indeed lose some fluxes, but the
majority of the fluxes can penetrate the ion-core electron cloud
and contribute to nuclear excitation.

C. Advantages of the RINE approach

Compared with other excitation approaches, the RINE
approach has the following advantages, some of which are
unique:

(i) It is efficient. The probability for a single 229Th nu-
cleus to be excited during a 10-fs pulse is calculated
to be on the order of 10−12. In comparison, for the
29-keV indirect light excitation approach, which is
the only experimentally realized excitation approach
so far, the excitation probability for a single 229Th
nucleus is estimated to be 10−11 per second [19]. That
is, the same excitation probability can be achieved
with RINE during a 10-fs laser pulse as the indirect
light excitation approach does for 0.1 s.

(ii) A precise knowledge of the isomeric energy is not
needed. The current knowledge of the isomeric state
energy of 8.3 eV (8.28 ± 0.17 eV as given in Ref. [5])
is still uncertain by a fraction of an electronvolt, which
leads to troubles for excitation approaches requiring a
precise knowledge of it. This is not a problem for the
RINE approach because the recolliding electrons have
a range of energies instead of a single energy. The
isomeric energy is certainly covered by the energy
range of the recolliding electrons.

(iii) Large light facilities like synchrotron radiations are
not needed. The RINE approach only needs table-top
femtosecond laser systems, which are widely accessi-
ble.

(iv) The nuclear excitation is well timed. All the ex-
citations happen within (in fact, a fraction of) the
femtosecond laser pulse, instead of distributing over
all the time. This might be a crucial property for future
coherent operations of the isomeric state.

(v) The excited nuclei are accompanied with well-
controlled ionic states, and they will not decay via
internal conversion. The resultant 229Th ions have
almost no recoil energies, unlike those from the decay
of 233U.

D. Further remarks

(i) A tunneling-ionization-pulse-classical-trajectory
method has been used to describe the ionization and
the recollision processes. This method is physically
very intuitive and computationally moderate. A
more fundamental (quantum mechanical) method
would be to solve the time-dependent Schrödinger
equation for the ionization and the subsequent
evolution of an electron. This can be done under
a single-active-electron approximation, but the
computational load will be much higher and the
physics less intuitive.

(ii) Only first-order recollisions have been considered and
higher-order ones have been neglected. This should be
well justified because higher-order recollisions asso-
ciate with much more severe wave-packet spreadings
along the transverse direction, hence much lower rec-
ollision fluxes.

(iii) The ionization rates are calculated using the ADK
tunneling formula, which is valid in the tunneling
regime. A possible extension would be to use the
Perelomov-Popov-Terent’ev formula [86], which is
applicable also in the multiphoton regime [87].
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V. CONCLUSION

In this article I have elaborated our previously proposed
RINE approach, see Wang et al. [26], for the excitation of the
229Th nucleus. The method itself has been explained in further
detail, with the involved elements carefully examined, includ-
ing the electronic excitation cross section, the adiabaticity of
collision trajectories and the critical collision radius, the ion-
ization and the recollision processes, the effective recollision
flux density, etc. I believe that the RINE approach is now more
solidly founded.

Numerical results show that the RINE approach leads to
nuclear isomeric excitation probabilities on the order of 10−12

per nucleus per (femtosecond) laser pulse. The dependency
of the nuclear excitation probability on the laser intensity,
the laser pulse duration, and the laser wavelength has been
calculated and analyzed. The nuclear excitation process can
be efficiently controlled by varying these laser parameters.
Additional discussions have also been made on the effect of

the ion-core Coulomb focusing and on the loss of recollision
flux when the recolliding electron flies through the ion-core
electron cloud.

229Th is a fascinating system with important potential ap-
plications. Apart from the applications, it also provides an
interesting platform on which nuclear physics, atomic physics,
and laser physics directly interplay. An example of such an
interplay is the RINE method, which combines 229Th nuclear
physics with strong-field atomic physics. It would certainly
be interesting to see new manifestations of this three-partite
interplay.
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