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Statistical model calculation of the compound nuclear fission timescale in fusion-fission reactions
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In the decay of an excited heavy nucleus, both the fission or evaporation residue (ER) cross sections and the
fission time are determined by the competition between the various evaporation channels and fission. Statistical
model (SM) calculations for several heavy-ion-induced fusion-fission reactions are presented which reproduce
the fission or ER excitation functions. The corresponding calculated fission times are found to depend upon
the compound nuclei and their excitation energies. The multichance fission probabilities and the corresponding
fission times are also obtained, and they are shown to depend sensitively on the shell correction energies and
the neutron separation energies of the compound nuclei involved. The experimental neutron multiplicities are
reproduced by adjusting the saddle-to-scission transition time interval. An additional delay time for compound
nuclear formation is found necessary to fit the experimental neutron multiplicities for a system with higher
entrance channel mass symmetry.
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I. INTRODUCTION

The fission of an excited atomic nucleus is a complex
process in which the nucleus evolves from spherical or nearly
spherical to highly elongated shapes, passes the saddle con-
figuration, and then splits into two fission fragments. The
charges and masses of the fission fragments and their kinetic
energy distributions are decided during the fission process.
An excited nucleus can also evaporate neutrons, light-charged
particles, and photons. Fission and evaporation are com-
peting processes in the decay of an excited nucleus, and
consequently, a number of nuclei in a given ensemble may
not undergo fission but become evaporation residues (ER).
Though a large volume of research, both experimental and
theoretical, has been carried on different aspects of fission,
a comprehensive picture is yet to emerge due to the intricate
nature of the process [1]. In the above context, the timescale
of fission is of interest in order to understand the dynamical
evolution of the different stages of the fission process.

The fission timescale has been deduced from experimental
data in the past, mostly from the multiplicities of prescission
neutrons emitted by the compound nuclei (CN) formed in
heavy-ion-induced fusion-fission reactions [2–4]. Based on
the expectation that the number of prescission neutrons can
serve as a measure of the fission timescale (neutron clock),
the latter are found to be typically of the order of a few tens of
zs (1 zs = 10−21 s). On the other hand, fission timescales from
crystal blocking and K x-ray lifetime measurements (atomic
clock) are found to be several orders of magnitude higher
than those recorded by the neutron clock [5–9]. It was earlier
shown from the statistical model (SM) and the combined
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dynamical and statistical model calculations of fission lifetime
that a number of CN can indeed survive timescales of the order
of 1000 zs (or more) before they undergo fission [10–12].
More recently, it was observed from full Langevin dynamical
calculations that a considerable time interval can elapse be-
tween the emission of the last neutron and fission for a sizable
fraction of the compound nuclei [13,14]. This decoupling of
the neutron emission and fission timescales suggests that the
neutron clock and the atomic clock sample different ranges of
the temporal evolution of the fission process.

Theoretical estimates of the fission lifetime were obtained
in earlier works with various objectives. The statistical model
and the combined dynamical and statistical model calcula-
tions were performed to show the presence of long-lifetime
fission events in the decay of a compound nucleus [10–12].
The Langevin dynamical calculations were aimed at obtaining
the timescale of fission events which give rise to the multiplic-
ity of prescission neutrons, the same as in the experimental
data [13,14]. The above calculations considered the fission dy-
namics to be dissipative in nature, and the dissipation strength
was treated as an adjustable parameter. However, dissipation
also impacts the fission and ER formation probabilities in
addition to the multiplicities of prescission neutrons. It is
therefore of interest to find the fission timescales which are
consistent with fission or ER cross sections and also prescis-
sion neutron multiplicities.

In the transition-state model of nuclear fission, a nucleus
is considered to have undergone fission when it evolves
to a deformation beyond the transition state or the saddle
configuration [15,16]. Evaporation of neutrons, light-charged
particles, and γ rays can take place from the compound nu-
cleus as it proceeds towards the saddle point after starting
from an equilibrated ground-state configuration. The time
required by a CN for its passage from the ground state past
the saddle point is termed as the saddle time (τsaddle) in the
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present work. In a subsequent time interval (τssc), the CN
reaches the scission from the saddle configuration [11,17].
The evaporation process continues during this time interval.
It is also possible that the onset of fission is delayed by an
interval during which period no fission takes place, though
particles and gamma rays can be emitted [17]. This delay time
can arise if there is a delay in the formation of an equili-
brated compound nucleus and is denoted by τform here. This
formation time arises possibly due to the entrance channel
dynamics and accounts for a slower equilibration time of the
projectile plus target composite system on its way towards
formation of the CN, although thermal equilibration happens
on a faster timescale and hence allows evaporation during this
time interval [18]. The total fission time (τfiss) will thus be
given as

τfiss = τform + τsaddle + τssc.

Statistical model calculations for heavy-ion-induced
fusion-fission reactions which reproduce fission or ER ex-
citation functions are usually found to underestimate the
multiplicities of prescission neutrons [19–21]. The time in-
tervals τform and τssc have been used in earlier works in order
to allow for evaporation of an additional number of neutrons
to fit the experimental prescission multiplicities [2,17]. Our
objective in the present work is to obtain τsaddle from statistical
model calculations which reproduce the experimental fission
or ER excitation functions and τform and τssc from fitting the
prescission neutron data. The above three time intervals to-
gether will give the total fission time, which will be consistent
with both fission or ER cross sections and prescission neutron
multiplicities.

We perform statistical model calculations for the systems
12C + 194,198Pt, 16,18O + 194Pt, 12C + 204Pb, and 19F + 197Au
forming the compound nuclei 206,210Po, 210,212Rn, and 216Ra,
respectively, at incident beam energies above the Coulomb
barrier. The fission or ER cross sections are calculated in
order to fit the experimental excitation functions by adjusting
the SM parameters. The corresponding saddle time τsaddle

will also be obtained. Subsequently, the calculated prescission
multiplicities are fitted to the experimental values by adjusting
the saddle-to-scission time τssc and the delay time τform. The
contribution of different multichance fission to τsaddle is also
obtained. We interpret the results in terms of the neutron
separation energy and the various decay widths of the CN.

The details of the statistical model used in the present work
are given in the next section. Section III contains the results.
A discussion and summary of this work are presented in the
last section.

II. STATISTICAL MODEL

The statistical model calculation begins by assuming that
a fully equilibrated compound nucleus is formed by the
complete fusion of a projectile with the target nucleus. The
subsequent decay of the CN by evaporation of light particles,
γ rays or fission is decided by the respective decay widths �i

(i = n, p, α, γ ) or � f for fission. The time evolution of the CN
is followed in small time steps, and the decision whether the

CN has undergone any decay process by way of evaporation
or fission at each time step is taken by a Monte Carlo sampling
using the total decay width �tot = �n + �p + �α + �γ + � f .
When a decay is recorded, the type of the decay, i.e., either one
of the evaporation channels or fission, is decided by another
Monte Carlo sampling of the partial decay widths. The en-
ergy and angular momentum carried away by the evaporated
particle γ are also obtained by a Monte Carlo method, and
the excitation energy and spin of the daughter CN are suitably
changed. The time evolution continues until the CN fissions or
becomes an evaporation residue (ER). When fission happens,
the CN is considered to have just crossed the saddle configu-
ration. The CN is then followed for another time interval τssc,
in order to allow the CN to evolve from the saddle to the
scission configuration. The saddle-to-scission sector is also
followed in small time intervals, and the number of evaporated
particles and γ is obtained by sampling of evaporation widths
as outlined above. The prescission multiplicities of various
particles and γ are given by the sum of the emissions in the
presaddle and postsaddle sectors. The details of this procedure
may be found in [22].

The various decay widths of a CN depend upon its excita-
tion energy (E*) and spin (�). We obtain the spin distribution
of the CN formed in a fusion reaction from coupled-channel
calculations using the code CCFULL, where the low-lying col-
lective states of the projectile and target are coupled with the
entrance channel relative motion [23]. For a given fusion-
fission reaction at a given beam energy, a large ensemble
comprised of 200 000 or higher number of compound nuclei
is considered. The spin of each CN is assigned by a Monte
Carlo sampling of the CCFULL-generated spin distribution, and
its time evolution is followed. The final observables, namely,
the fission or ER probabilities, prescission multiplicities,
and the saddle time, are obtained as averages over all the
events in the ensemble.

The particle and γ -decay widths used in the present work
are obtained from the Weisskopf formula as given in Ref. [24].
The fission width is taken from the work of Kramers [15] and
is given as

� f (E∗, �) = �BW
f (E∗, �)

(√
1 +

(
β

2ωs

)2

− β

2ωs

)
, (1)

where a dissipative stochastic dynamical model of fission is
considered and which consequently gives rise to a reduction
from the fission width �BW

f (E*,�), given by the transition-state
theory of Bohr and Wheeler [16]. β is the reduced dissipation
coefficient, and ωs is the frequency of a harmonic oscillator
potential, which approximates the potential at the saddle con-
figuration and depends on the spin of the CN [25]. Denoting
the component of the CN spin along the symmetry axis by K ,
the Bohr-Wheeler fission width for K = 0 is given as [16]

�BW
f (E∗, �, K = 0)

= 1

2πρg(E∗, �)

∫ E∗−B f (�)

0
ρs[E

∗ − B f (�) − ε, �]dε, (2)

where ρg and ρs denote the level densities at the ground-
state and saddle configurations, respectively, and B f (�) is
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the angular-momentum-dependent fission barrier. Here, it is
assumed that the spin of the CN remains perpendicular to the
symmetry axis throughout the course of the reaction. How-
ever, the CN spin can be tilted away from the initial direction
due to intrinsic nuclear motion resulting in nonzero values
of K , which consequently reduces the fission barrier [26].
Assuming a fast equilibration of the K degree of freedom, its
effect on fission width can be obtained as [27]

�BW
f (E∗, �) = �BW

f (E∗, �, K = 0)
K0

√
2π

2� + 1

× erf

(
l + 1/2

K0

√
2

)
, (3)

with K2
0 = Ieff

h̄2 Tsad, and Tsad and Ieff are the temperature and the
effective moment of inertia at the saddle configuration; erf(x)
denotes the error function.

The nuclear shell effects in the level density parameter
and fission barrier are also taken into account in the present
calculations. We use the following level density parameter
a, which includes an excitation-energy-dependent shell effect
term and is given as [28]

a(Eth) = ã

(
1 + 1 − exp(−Eth/ED)

Eth
δ

)
, (4)

where Eth is the thermal part of the excitation energy, δ is the
shell correction energy, and ED is a parameter which accounts
for the rate of decrease of shell effect with increasing exci-
tation energy. The asymptotic shape-dependent level density
parameter ã is taken from the work of Reisdorf [29].

The fission barrier after inclusion of shell correction energy
can be written as

B f (l ) = BLDM
f (l ) − (δg − δs), (5)

where BLDM
f (�) is the angular-momentum-dependent liquid

drop model fission barrier [30], and δg and δs, respectively,
denote the shell correction energies for the ground-state and
saddle configurations. The deformation-dependent shell cor-
rection energies δg and δs are obtained following the recipe
given in Ref. [31], which yields a negligible correction at large
deformations, while the full shell correction is applied at zero
deformation.

The enhancement of level density at low excitation ener-
gies due to collective states is also considered in this work.
After inclusion of the collective enhancement of level density
(CELD), the total level density ρ(E∗) can be written as [32]

ρ(E∗, �) = KColl(E
∗, �)ρintr (E

∗, �), (6)

where KColl is the collective enhancement factor, and ρintr

is the intrinsic level density after inclusion of shell effect.
KColl can have both vibrational and rotational components
[33], and a smooth transition from vibrational to rotational
enhancement with increasing deformation is obtained from
Ref. [34]. A factor accounting for damping of CELD with
increasing excitation energy is also included [35]. The total
level density thus obtained is used to calculate all the decay
widths including fission.

The fission width given by Eq. (1) represents its stationary
value, which is reached after a certain time interval in the

stochastic dynamical model of fission [36]. We use the fol-
lowing parametrized form of the time-dependent fission width
[37],

� f (E∗, �, t ) = � f (E∗, �)
[
1 − exp

−2.3t
τ f

]
, (7)

where

τ f = β

2ω2
g

ln

(
10B f (�)

T

)
(8)

is the transient time period, and ωg is the frequency of the har-
monic oscillator potential approximating the potential at the
ground state. The time interval τform mentioned in the previous
section is also included and treated as a free parameter in the
present calculation. The time t in Eq. (7) is counted after τform

has elapsed.
The saddle-to-scission transition time interval τssc is ob-

tained from either of the following two considerations. Firstly,
it can be used as a free parameter to fit the experimental data.
Alternatively, it can be obtained in a dynamical model where
the CN moves under a dissipative and repulsive force from the
saddle to the scission configuration and is given as [38]

τssc = τ o
ssc

(√
1 + (

βss

2ωs
)2 + βss

2ωs

)
, (9)

where βss is the dissipation strength in the saddle-to-scission
region, and τ o

ssc is the transit time without dissipation [36,38].
The details of the above features can be found in Ref. [20] and
are implemented in the statistical model code VECSTAT [39].
Excitation functions of fission or ER and neutron prescission
multiplicities are calculated along with the saddle time τsaddle

for a number of reactions and are presented in the next section.

III. CALCULATIONS AND RESULTS

A. Fission or evaporation residue cross sections

We first show the calculated fission cross sections for the
fusion-fission reactions 12C + 194Pt and 12C + 198Pt populat-
ing the CN 206Po and 210Po, respectively, in Fig. 1. The
experimental fission cross sections from Ref. [40] are also
shown. The spin distributions of the CN used in the statistical
model calculations are obtained by fitting the experimental
fusion cross sections [40] using the coupled-channel code
CCFULL [23]. It is observed in Fig. 1 that SM results ob-
tained with the dissipation coefficient β = 0 substantially
overestimate the fission cross sections. However, the fission
excitation functions for both the reactions can be well repro-
duced using β = 1.5 zs−1 and 3 zs−1 for the 12C + 194Pt and
12C + 198Pt reactions, respectively. The statistical model re-
sults for evaporation residue (ER) excitation functions for the
reactions 16O + 194Pt and 18O + 194Pt, forming the compound
nuclei 210Rn and 212Rn, respectively, are given in Fig. 2 and
compared with the experimental cross sections [41,42]. The
fusion cross sections to generate CN spin distributions are
taken from Refs. [42,43]. The SM considerably underpredicts
the ER cross sections with β = 0. Reasonably good fits are
obtained for the reactions 16O + 194Pt and 18O + 194Pt with
β = 1.5 zs−1 and 2.5 zs−1, respectively.
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FIG. 1. The fission cross sections (σfiss) for the reactions
12C + 194Pt and 12C + 198Pt forming the compound nuclei 206Po and
210Po, respectively. Statistical model results with β = 0 and best-fit
values are shown. The experimental points are from Ref. [40].

Lastly, we consider the reactions 12C + 204Pb and
19F + 197Au which form the same compound nucleus 216Ra.
These reactions were studied extensively by Berriman et al.
[44], who observed fusion suppression for the 19F + 197Au
reaction by comparing the reduced ER cross sections for the
two systems. Following Ref. [44], we also consider evapo-
ration residues comprised of only Ra isotopes in order to
avoid residues formed by incomplete fusion of the projectile
with the target. The reduced ER excitation function for the
12C + 204Pb can be fitted by using β = 2.2 zs−1 in the present
calculation (Fig. 3). Since both the reactions under discussion
lead to the same CN, the excitation function for 19F + 197Au
is also calculated using the above value of β. This excitation
function, however, overestimates the experimental data and
merges with the calculated excitation function for 12C + 204Pb
at higher excitation energies, similar to the observation made
in Ref. [44].

We may add here that the same dissipation strengths are
used for the 216Ra compound nuclei populated in the two
reactions, though their spin distributions are different. In fact,
spin distributions deduced from the experimental fusion cross
sections show that slightly lower spin states are populated in
the 19F + 197Au reaction than the 12C + 204Pb reaction, in spite
of 19F being the heavier projectile due to the difference in
barrier distributions in the two reactions [44]. In principle,

FIG. 2. The evaporation residue cross sections (σER) for the re-
actions 16O + 194Pt and 18O + 194Pt forming the compound nuclei
210Rn and 212Rn, respectively. Statistical model results with β = 0
and best-fit values are shown. The experimental points are from
Refs. [41,42].

FIG. 3. The reduced evaporation residue cross sections σ̃ER =
σER/π λ̄2 where λ̄ is the de Broglie wavelength in the entrance
channel, for the reactions 12C + 204Pb and 19F + 197Au, both forming
the compound nucleus 216Ra. Statistical model results with β = 0
and 2.2 zs−1 are shown. The experimental points are from Ref. [44].
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FIG. 4. The prescission neutron multiplicities (npre) for the re-
actions 12C + 194Pt and 12C + 198Pt, forming the compound nuclei
206Po and 210Po, respectively. Statistical model results for presaddle
neutrons obtained with β = 0 and best-fit β values from fission
excitation functions are shown (lines a and b, respectively). Lines c
and d show npre values which include saddle-to-scission contributions
obtained with β = β (best-fit) and βss = 10 zs−1, respectively. npre

values calculated with β (best-fit) and τssc = 65 zs are given by the
line e. The experimental points are from Ref. [46].

the one-body dissipation can depend upon nuclear spin, but
little is known about this dependence [45]. So we use the same
values for both the dissipation coefficients β and βss in both
reactions in the SM calculations.

B. Prescission neutron multiplicities

We next present the statistical model results for prescission
neutron multiplicity (npre) obtained for the reactions under
consideration. Figure 4 shows the calculated npre values for the
12C + 194Pt and 12C + 198Pt reactions forming the compound
nuclei 206Po and 210Po, respectively, for various input parame-
ters. The numbers of presaddle neutrons obtained with β = 0
and 1.5 zs−1 are considerably smaller than the experimental
results [46]. When neutrons emitted during the saddle-to-
scission transition are taken into account [Eq. (9)], npre

remains underpredicted when β = βss = 1.5 zs−1 are used in
the statistical model calculations, though β = 1.5 zs−1 gives
good fit to the fission excitation function (Fig. 1). Statistical

model results with β = 1.5 zs−1 and βss = 10 zs−1 are still
lower than the experimental multiplicities. Similarly, observa-
tions are made for the 12C + 198Pt reaction, where β = 3 zs−1

is used, since it well reproduces the experimental fission cross
sections. npre obtained with β = 3 zs−1 and βss = 10 zs−1 in
this case also fall short of the experimental values.

In the context of the choice of values for β or βss, we would
like to point out that the dissipation strength represents the
coupling between the intrinsic and collective nuclear degrees
of freedom, giving rise to an irreversible energy flow from
the collective to the intrinsic motion. Theoretical estimates of
one-body nuclear dissipation, which is mostly used in low-
energy nuclear dynamics, are not quite specific as yet. While
macroscopic models predict an excitation energy independent
one-body dissipation [47], microscopic calculations show a
strong dependence on excitation energy which approaches the
macroscopic values in the limit of large excitations [48]. One-
body dissipation strength also depends on the nuclear shape
[47,48], and in particular, a suppression of one-body dissi-
pation strength is predicted when chaos in the single-particle
motion is taken into account [49]. All the above considerations
led us to treat both β or βss as adjustable parameters where
they can assume different values since they represent dissipa-
tion for different domains of nuclear deformation, namely, the
presaddle and saddle-to-scission stages. Further, we restrict
the choice of the dissipation strengths within the macroscopic
predictions of one-body dissipation, since the macroscopic
estimates represent the upper limit of one-body dissipation.
Hence we do not use βss values greater than 10 zs−1 which
is the macroscopic one-body dissipation strength at large de-
formations [47]. Alternatively, we use the saddle-to-scission
transition time interval τssc as an adjustable parameter and
calculate the number of neutrons emitted during this period.
We find in Fig. 4 that experimental npre values for both
reactions can be reasonably well reproduced (except at the
highest energy for the CN 206Po) with τssc = 65 zs. Results
of similar calculations of npre for the reactions 16O + 194Pt
and 18O + 194Pt leading to the compound nuclei 210Rn and
212Rn, respectively, are given in Fig. 5. Here, also we find that
the number of presaddle neutrons obtained with the β values
which reproduce the ER excitation functions are much smaller
than the experimental npre. When saddle-to-scission neutrons
are included first using βss = β and then βss = 10 zs−1, npre

still remains underestimated. Reasonable fits to experimental
npre for both the systems are obtained with τssc = 65 zs.

We next studied the prescission neutron multiplicities emit-
ted by the compound nucleus 216Ra populated through two
different entrance channels 12C + 204Pb and 19F + 197Au. Ob-
servations similar to those made for the systems as given
above are also made here, as shown in Fig. 6. Interestingly,
though experimental npre values are well reproduced with
τssc = 65 zs for 12C + 204Pb, it is underestimated to some
extent for 19F + 197Au with the same value of τssc. The under-
estimation of npre for 19F + 197Au with respect to 12C + 204Pb
is possibly due to the higher symmetry of the entrance channel
of the former system compared to the latter. A suppression of
the reduced ER cross sections for the 19F + 197Au system with
respect to the statistical model predictions has been observed
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FIG. 5. The prescission neutron multiplicities (npre) for the re-
actions 16O + 194Pt and 18O + 194Pt, forming the compound nuclei
210Rn and 212Rn, respectively. Statistical model results for presaddle
neutrons obtained with β = 0 and best-fit β values from ER excita-
tion functions are shown (lines a and b, respectively). Lines c and
d shows npre values which include saddle-to-scission contributions
obtained with β(best- f it ) and βss = 10 zs−1, respectively. npre values
calculated with β(best- f it ) and τssc = 65 zs are given by the line e.
The experimental points are from Ref. [51].

earlier [44] and also in the present work (Fig. 3) and has been
attributed to the diversion of a part of the entrance channel
flux to quasifission, though none has been observed for the
12C + 204Pb system. Therefore the entrance channel dynamics
is expected to be quite different for the two systems. While the
projectile nucleus can be swallowed by the target nucleus to
form the compound nucleus in the less symmetric 12C + 204Pb
system, a considerable amount of mass flow from the target to
the projectile nucleus will take place before they fuse to form
the compound nucleus for the more symmetric 19F + 197Au
system. No fission takes place during this formation time
interval τform, already introduced in Sec. I, though the particles
and γ can be evaporated. It is to be noted here that the CN is
not necessarily in a spherical equilibrated configuration at the
end of the interval τform but can assume a symmetrical din-
uclear shape [50]. The transient time period given in Eq. (8)
considers all CN to start with a spherical shape and evolve
to the saddle configuration and hence cannot give an accurate

FIG. 6. The prescission neutron multiplicities (npre) for the re-
actions 12C + 204Pb and 19F + 197Au, both forming the compound
nucleus 216Ra. Statistical model results for presaddle neutrons ob-
tained with β = 0 and best-fit β values from ER excitation functions
are shown (lines a and b, respectively). Lines c and d show npre

values, which include saddle-to-scission contributions obtained with
β(best- f it ) and βss = 10 zs−1, respectively. npre values calculated
with β(best- f it ) and τssc = 65 zs are given by line e. The experi-
mental points are from Ref. [52].

time dependence of the fission width when the initial shape is
nonspherical. In such cases, Langevin dynamical calculations
have shown that the time dependence of the fission width
alters from Eq. (7) in the transient region with a shortening
of the transient time [50]. In the present case, the transient
time from Eq. (8) is of the order of 10 zs or less and can serve
as an upper limit of the error in the estimation of transient
time due to noninclusion of nonspherical initial shapes. This
interval being small in comparison with other timescales, we
continue using Eqs. (7) and (8) in SM calculations.

Statistical model calculations are performed for the
19F + 197Au system, where τform is included as an adjustable
parameter. The results for npre are shown in Fig. 7, where we
find that experimental multiplicities can be well reproduced
with τform = 30 zs. It may be noted, however, that though
the presaddle contribution to npre increases with introduction
of τform as expected, it also reduces the available excita-
tion energy in the saddle-to-scission sector. Consequently,
the saddle-to-scission contribution decreases though the to-
tal multiplicity increases. Formation time intervals of similar
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FIG. 7. Prescission neutron multiplicity (npre) obtained with
τform. The presaddle (npre−sad) and saddle-to-scission (nssc) contribu-
tions to npre are also shown.

orders of magnitude have also been found in earlier works
[18,53,54]. Introducing a formation time, however, also af-
fects the ER cross sections. The reduced ER cross sections for
19F + 197Au obtained with τform = 30 zs are given in Fig. 8.
Evaporation during τform depletes the excitation energy, which
consequently increases the ER cross sections, as observed in
Fig. 8. Further, it is also likely that the number of neutrons
emitted in quasifission events is smaller than those from CN
fission, since the timescale of the former is expected to be
shorter than the latter. Therefore, on the one hand, a long
formation time for the CN increases the neutron multiplicity,
while the quasifission events reduce the neutron multiplic-
ity on the other. We observe here a net increase of neutron

FIG. 8. Effect of formation time delay (τform) on reduced ER
cross section.

multiplicity from the 19F + 197Au reaction compared to a
less symmetric system. Evidently, detailed calculations of en-
trance channel dynamics would be required in order to make
further quantitative assessment of neutron emission during the
formation stage and from quasifission events.

A number of observations can be made regarding the de-
pendences of fission or ER cross sections and npre on the
dissipation strength β. The fission or ER cross sections change
substantially when β is increased from 0 to (1.5–3.0) zs−1 for
the compound nuclei 206,210Po, 210,212Rn, and 216Ra (Figs. 1–
3). The corresponding increase of npre with increase of β

is however marginal for 206,210Po over the entire range of
excitation energy considered here. The β dependence of npre

increases with excitation energy for 210,212Rn and is strong
over the entire excitation energy range for 216Ra. The above
observations can be qualitatively understood as follows.

The fission and presaddle neutron emission probabilities
of a CN are given as Pf = � f /(� f + �n) and Pn = �n/(� f +
�n), where � f and �n are the fission and neutron widths,
respectively. The charged particle and photon emission widths
are much smaller than �n and hence are not included here for
the sake of simplification, though they are included in the SM
calculations. Denoting � f /�n by x, Pf and Pn can be written
as Pf = x/(x + 1) and Pn = 1/(x + 1). When the dissipation
strength β increases, � f and hence x decrease [Eq. (1)]. If
x < 1, Pf changes substantially with x, while the effect on Pn

is marginal. This is the case with 206,210Po, for which x < 1
over the energy range under study, as shown in Fig. 9. On
the other hand, Pf depends weakly on x when x > 1, but the
dependence of Pn is strong. However, large x implies a large
fission cross section and consequently low ER cross section.
Therefore a small change in fission cross section will make
a large fractional change in ER cross section. Thus both ER
cross section and npre will be sensitive to β, which is observed
at higher excitation energies for 210,212Rn, where x > 1 and at
all excitation energies for 216Ra (Fig. 9).
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FIG. 9. Fission-to-neutron width ratios for the compound nuclei
210Po, 212Rn, and 216Ra at CN spin � of 20h̄. The width ratios for
206Po and 210Rn are higher than 210Po and 212Rn, respectively, and
are not shown here.

C. The saddle-time scale

When a fission event is recorded in the SM calculations, the
CN is considered to have just crossed the fission barrier. The
elapsed time interval termed as the saddle time is introduced in
Sec. I. The distribution of the saddle time for a large (500 000)
ensemble of compound nuclei for the 12C + 204Pb system at
E∗ = 56 MeV is displayed in Fig. 10. It is interesting to
note that though the average saddle time is 259 zs, quite a
few fission events with time scale of 10 000 zs are recorded,
similar to the earlier observation by Morjean et al. [10] and
more recently by Rai et al. [14]. The ensemble average value
of the saddle time will be denoted by τsaddle for further discus-
sions. The τsaddle obtained for the various systems are shown
in Figs. 11–13.

FIG. 10. Saddle-time distribution of the compound nucleus 216Ra
populated in the 12C + 204Pb reaction. The average saddle time (259
zs) is marked by the arrow.

FIG. 11. The excitation energy dependence of the average saddle
time (τsaddle) of 206Po and 210Po compound nuclei obtained with β =
0 and also with the β that best fits the respective fission excitation
functions.

It is observed from the above figures that τsaddle increases
with β by varying degrees for different systems. While τsaddle

increases marginally with β at all E∗ for 210Po, the increase
is small at low E∗ but large at high E∗ for 206Po. For both
210,212Rn compound nuclei, the β sensitivity of τsaddle is small
low E∗ but increases at higher E∗. τsaddle depends strongly on
β for 216Ra at all E∗. In order to understand these observa-
tions, we proceed as follows.

The average lifetime of a CN is given by 1/�t , where �t =
� f + �n, and the other evaporation widths (light-charged

FIG. 12. The excitation energy dependence of the average saddle
time (τsaddle) of 210Rn and 212Rn compound nuclei obtained with
β = 0 and also with the β that best fits the respective ER excitation
functions.
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FIG. 13. The excitation energy dependence of the average saddle
time (τsaddle) of the compound nucleus 216Ra populated through the
12C + 204Pb and 19F + 197Au reactions obtained with β = 0 and 2.2
zs−1.

particles and γ ) are not considered for simplification. If the
CN undergoes first chance fission, then the saddle-time scale
is also given by 1/�t . In the event of a neutron emission, the
daughter CN can still undergo second or higher chance fission
after emission of more neutrons. The saddle time is then given
as the weighted average of the lifetime of the compound nuclei
populated after each neutron emission. Since the fission width
� f decreases with increasing dissipation strength β, the CN
lifetime [1/(� f + �n)] also increases with increasing β. How-
ever, if � f � �n or � f /�n � 1, the increase in CN lifetime
is marginal with increase in β. This is the case for 210Po,
where � f /�n � 1 as shown in Fig. 14, and consequently,

FIG. 14. Fission-to-neutron width ratios for the compound nuclei
206Po and 210Po for CN spin � of 20h̄.

τsaddle increases only marginally with β (Fig. 11). As � f /�n

increases, the β dependence of τsaddle also increases. This
happens for 206Po, where � f /�n increases from small values
(� 1) at low E∗ to larger values (� 1) at higher excitation
energies. Consequently, β dependence of τsaddle is weak at low
excitation energies and becomes stronger at high excitation
energies. The cases for 210,212Rn are similar, where � f /�n

increases from smaller to larger values with increasing E∗
(Fig. 9), which causes increasing β sensitivity of τsaddle with
increasing E∗ (Fig. 12). For 216Ra, � f /�n > 1 for the energy
interval under study (Fig. 9), and this is reflected in a strong
β dependence of τsaddle over the entire excitation energy range
(Fig. 13).

Our next observation concerns the excitation energy depen-
dence of τsaddle. It is found in Figs. 11–13 that τsaddle obtained
with β > 0 has a decreasing trend at lower excitation energies
and then it starts increasing with increasing E∗ for 206Po,
210,212Rn, and 216Ra compound nuclei. τsaddle obtained with
β = 0 shows a decreasing trend over the entire energy range
for 212Rn and 216Ra, while it shows a decreasing followed
by an increasing trend for 206Po and 210Rn compound nuclei.
However, τsaddle for 210Po shows only a decreasing trend with
increasing E∗ for both values of β. In order to qualitatively
explain the above observations, the chance distribution of
fission events and the corresponding saddle-time intervals are
obtained for the 206,210Po compound nuclei and will be dis-
cussed here in some detail. The excitation functions of the ith
chance relative fission probability of 206,210Po are displayed
in Fig. 15. Here, the first chance relative fission probability
corresponds to the fraction of the events where fission takes
place before any neutron (or any other particle) emission,
and similarly, the second chance fission refers to fission after
emission of one neutron and so forth. It is observed that the
first chance relative fission probability for 210Po is higher than
206Po, and consequently second and higher chance relative
fission probabilities for 210Po are smaller than those of 206Po.
The chance dependence of relative fission probabilities at
various excitation energies is given in Fig. 16. The higher
chance fission events are found to be rarer than those of
lower chance events. The lower chance fission probability,
however, decreases with excitation energy, while the higher
chance fission probability increases. The decrease of chance
probability with chance number can be accounted for by the
dependence of the fission probability Pf on E∗, where Pf =
x/(x + 1), which decreases with decreasing x and x = � f /�n.

Since each neutron emission reduces the excitation energy
of the daughter CN by about 8 MeV and � f /�n decreases
with E∗ (Fig. 14), the probability of higher chance fission
reduces. The higher first chance relative fission probability of
210Po compared to 206Po can be traced back to the different
E∗ dependence of � f /�n of the two compound nuclei. As
shown in Fig. 14, � f /�n decreases faster for 210Po than 206Po
with decreasing E∗. Since higher chance fission events occur
at lower E∗ than first chance fission, the relative probability
of higher chance fission compared to first chance fission is
smaller for 210Po than 206Po. This results in a higher relative
probability of first chance fission of 210Po compared to 206Po.
Consequently, higher chance fission events contribute more
to the τsaddle of 206Po compared to 210Po, resulting in larger
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FIG. 15. The excitation energy dependence of the relative probability of various chance fission events for the compound nuclei 206Po and
210Po.

values of τsaddle of the former than the latter, as is observed in
Fig. 11.

We next discuss the excitation functions of the saddle
time τ i

saddle for different chance (i) fission of 206Po and 210Po
compound nuclei as given in Fig. 17. It is found that τ i

saddle
decreases with increasing E∗ for a given i, which is expected
due to the increase of total width �t with E∗. Further, τ i

saddle
increases with i for a given initial excitation energy E∗, which
reflects the reduced availability of excitation energy for higher
chance fission.

It is also observed that the increase of τ i
saddle with i is higher

for 206Po than 210Po. The saddle time τ i
saddle of ith chance

fission is given by 1/(� f + �n), where � f and �n are the
fission and neutron widths of the daughter nucleus populated
after evaporation of (i − 1) neutrons. While the fission barrier
of 206Po is lower than 210Po, the neutron separation energy of
the former is higher than that of the latter, as given in Table I.
Therefore the effect of higher fission width of 206Po is com-
pensated to some extent by its lower neutron width compared
to 210Po. The same is true for 205Po in comparison to 209Po

TABLE I. Shell corrected fission barrier and neutron separation
energies for isotopes of polonium.

Shell corrected fission Neutron separation
Nucleus

barrier (MeV) for � = 0 energy (MeV)

210Po 21.8 7.66
209Po 21.5 6.97
208Po 20.5 8.40
207Po 19.6 7.03
206Po 18.5 8.74
205Po 17.4 7.25
204Po 16.3 9.10
203Po 15.3 7.44

and for other daughter nuclei formed after successive neutron
emission. However, the excitation energies of the daughter
nuclei from 206Po are smaller than those from 210Po by about
0.6 MeV on average at each stage of evaporation on account
of the higher neutron separation energies of the former than
the latter. This lowering of excitation energy causes decrease
of the widths and hence increase of fission time. All the
above factors make τ i

saddle of 206Po larger than 210Po for higher
chance fission.

The total saddle time τsaddle is the average of all τ i
saddle

weighted by the respective chance probabilities. At lower
excitation energies, first chance fission probability makes
the largest contribution to τsaddle and consequently, τsaddle

has similar E∗ dependence as τ 1
saddle. With increasing exci-

tation energy, higher chance fission events start contributing
to τsaddle, causing a change in its E* dependence. If τ i

saddle
increases substantially with i, then τsaddle can start increasing
with E∗. This happens for 206Po as shown in Fig. 11. On the
other hand, both the saddle time and probability of higher
chance fission are smaller for 210Po than 206Po (Figs. 17 and
15). As a result, no increase of τsaddle with E∗ is noticed for
210Po. Thus, the excitation energy dependence of τsaddle is
strongly influenced by the chance distribution and the saddle
time of higher chance fission events.

IV. SUMMARY AND DISCUSSIONS

In the present work we have performed statistical model
calculations for the systems 12C + 194,198Pt, 16,18O + 194Pt,
12C + 204Pb, and 19F + 197Au, leading to the compound nuclei
206,210Po, 210,212Rn, and 216Ra. The prescission neutron mul-
tiplicities, fission or ER cross sections, and the saddle times
of the above reactions are obtained. The dissipation strength
β is the only adjustable parameter to reproduce fission or ER
excitation functions. While the excitation functions of fission
or ER cross sections of the systems under study can be fitted
to the experimental data with β values in the range (1.5–3.0)
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FIG. 16. The chance number dependence of the relative proba-
bility of various chance fission events for the compound nuclei 206Po
and 210Po.

zs−1, the prescission neutron multiplicities are underesti-
mated. A saddle-to-scission transition time is used to allow
additional neutrons to evaporate to fit the experimental multi-
plicities. It turns out that a saddle-to-scission transition time of
65 zs is adequate for all the systems except for 19F + 197Au,
where quasifission events are known to be present [44]. An
additional formation time of 30 zs is required to reproduce
the experimental multiplicities of the 19F + 197Au system. Fur-
ther, investigations are necessary to find the role of dynamics
during the formation of the compound nucleus and saddle-
to-scission transition in contributing to the total multiplicity
of prescission neutrons. The calculated fission or ER cross
sections and neutron multiplicities for different systems are
found to depend on the dissipation strength differently. This
is explained in terms of the different magnitudes and differ-
ent excitation energy dependence of the � f /�n values of the
different systems. It may be mentioned here that � f /�n can
also be adjusted by tuning the level density and fission barrier.

FIG. 17. The excitation energy dependence of saddle time of
various chance fission events for the compound nuclei 206Po and
210Po.

Simultaneous reproduction of fission or ER cross sections and
prescission neutron multiplicities has been reported where two
adjustable parameters are used which effectively control the
level density and the fission barrier [26,55].

The average saddle times τsaddle for different systems are
obtained with β values which best fit the fission or ER ex-
citation functions as well as with β = 0. The distribution of
saddle time among a large number of compound nuclei shows
survival of a few nuclei up to 10 000 zs. τsaddle is found to vary
from system to system and also depends upon the dissipation
strength and the excitation energy of CN. The β dependence
of τsaddle is shown to be related to the � f /�n values of the
system. The relative probabilities of various chance fission
events and their saddle times of the compound nuclei 206,210Po
are shown to give rise to the system and excitation energy
dependence of τsaddle of the two compound nuclei. The relative
probability of a given chance fission event and its saddle time
depend sensitively on the fission and neutron widths, which in
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turn depend upon the shell effects on the level density, fission
barrier, and the neutron separation energies. This accounts
for the different excitation energy and system dependence of
τsaddle as is observed in the present work.
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