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Role of dynamic pairing correlations in fission dynamics. II. Fermium and nobelium isotopes
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The competition between the quenching of pairing due to the repulsive Coulomb interaction and dynamic
pairing correlations added by particle number symmetry restoration has been studied in a selected set of Fermium
and Nobelium isotopes by using a hierarchy of Hartree-Fock-Bogoliubov–based approximations and a restricted
variation after particle number projection, all of them based on the D1M∗ parametrization of the Gogny force. It
is found that Coulomb antipairing is partially compensated by beyond-mean-field pairing correlations. However,
the compensation is not perfect and a modulation of the spontaneous fission half-lives, as functions of the neutron
number, indicates that the combined effect on fission dynamics of Coulomb antipairing and restricted particle
number symmetry restoration cannot be overlooked. Neither can it be accounted for by the Coulomb Slater
approximation.
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I. INTRODUCTION

An accurate description of the evolution of the nuclear
shapes from the ground state to scission still remains a main
challenge for modern nuclear structure models of fission [1].
Within the mean-field framework, shape changes along the fis-
sion path are usually accounted for with the help of constrains
[2] on some deformation parameters Q (see, for example,
Refs. [1,3] and references therein).

In the case of least-energy approximations, each Q-
deformed configuration along the fission path is obtained
via the self-consistent Ritz-minimization [2] of the cor-
responding mean-field energy. The mean-field framework
also provides collective inertias as well as quantum zero-
point rotational and vibrational corrections [3], which are
employed to compute spontaneous fission half-lives tSF

within the Wentzel-Kramers-Brillouin (WKB) framework.
Microscopic mean-field calculations are typically carried out
with nonrelativistic Gogny [4–13], Skyrme [14–18], and
Barcelona-Catania-Paris-Madrid (BCPM) [19–21] or rela-
tivistic [22–28] energy density functionals (EDFs).

The fission properties of even-even Ra, U, Pu and selected
superheavy isotopes have been studied in recent years within
the framework of the least-energy approach using several
parametrizations of the Gogny-EDF [3,29,30]. Fission stud-
ies have also been carried out for odd-mass U, Pu, and No
nuclei [31,32] within the equal filling approximation (EFA)
[33]. Special attention has been paid to the uncertainties in
the predicted tSF values. In particular, it has been found that
modifications of a few percent in the pairing strengths can
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have a significant impact on the collective masses leading to
uncertainties of several orders of magnitude in the lifetime
values.

In the case of least-action approximations, each configu-
ration along the fission path is obtained via the minimization
of the collective action written in terms of a relevant set of
deformation parameters. It has been shown [34,35] that the
least energy and least action schemes only provide similar
results when shape deformation degrees of freedom are used
in the evaluation of the action. However, in the case of pairing
degrees of freedom, it is known that the collective action
depends on the competition between the collective inertia
(decreasing as the inverse of the square of the pairing gap
[36,37]) and the energy (increasing as the square of the pairing
gap). This competition results in a minimum of the action
located at a pairing gap larger than the one corresponding to
the minimum-energy configuration. The value of the action
at the minimum is substantially reduced as compared with
the one obtained for the minimum-energy configuration. As
shown in previous studies [34,35,38–43] the reduction of the
action leads to a decrease of a few orders of magnitude in the
computed tSF values as compared with those obtained within
the least energy approach. These effects clearly reflect the
importance of pairing degrees of freedom in the description
of fission dynamics.

The least energy and least action results already mentioned
point towards the need to better understand the impact of
pairing correlations in fission calculations. Dynamic pairing
correlations, associated with fluctuations in the pairing’s order
parameter and/or symmetry restoration of the particle number
symmetry, represent an important component of the pairing
contents of a nuclear system and therefore they are expected
to modify the conclusions extracted from a pure mean-field
calculation regarding fission dynamics. In a previous study
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[44], the impact of particle number symmetry restoration in
spontaneous fission half-lives was analyzed in a couple of nu-
clei with rather high and wide fission barriers. The conclusion
reached is that the different effects associated with the particle
number projection (PNP) method somehow compensate and
the impact on tSF values is rather limited. In this paper we
extend the previous study [44] to consider, within the same
framework, a selected set of fermium and nobelium isotopes
with much lower and narrower fission barriers. To this end,
the restoration of the U(1) gauge (particle number) symmetry,
spontaneously broken at the Hartree-Fock-Bogoliubov (HFB)
level [2], via particle number projection is considered.

Unfortunately, the computational cost of beyond-mean-
field methods prevents their systematic application to fission
studies (see, for example, Refs. [44–48]). One of the reasons is
that, in order to avoid the self-energy problem associated with
the breaking of the Pauli principle [49,50], it is not allowed to
neglect some of the direct, exchange or pairing contributions
coming from some parts of the interaction. This is particu-
larly cumbersome in the case of the Coulomb interaction, as
the quenching of pairing correlations (Coulomb antipairing),
usually neglected due to the computational effort associated
with the evaluation of Coulomb’s pairing field, have to be
taken into account explicitly. Coulomb antipairing leads to a
reduction of the pairing gap [51,52] and therefore collective
inertias, with their inverse dependence on the square of the
pairing gap, will increase when this contribution is included,
leading to an increase of the collective action and longer
spontaneous fission half-lives. On the other hand, dynamic
pairing correlations tend to increase the pairing gap reducing
thereby the collective inertias. It is the aim of this paper to
study the systematic of those competing effects, i.e., Coulomb
antipairing and dynamic pairing, in the set of nuclei 242–262Fm
and 250–264No, for which experimental data are available [53].
The choice of these isotopic chains is not accidental, in a
previous study [44] we carried out similar calculations in a
couple of isotopes with rather high and wide fission barriers.
One of the purposes of this paper is to confirm or dismiss
the conclusions reached in Ref. [44] in the present case, with
much lower and narrower fission barriers.

One has to keep in mind that the evolution of the nuclear
shapes along the fission path affects the level density around
the Fermi energy. This is associated with a complex pattern
in the behavior of pairing correlations, including regions of
very small and/or vanishing HFB pairing interaction energies
[2]. To account for those effects, beyond-mean-field (i.e., dy-
namic) pairing correlations should be included within the PNP
scheme. Moreover, in order to gain additional correlations,
the intrinsic HFB wave functions have to be determined by
minimizing the particle-number-projected energy, a procedure
known as variation after PNP (VAP-PNP) [49].

In this paper, as in previous studies [44,54,55], we resort
to a restricted VAP-PNP (RVAP-PNP) scheme, which has
already been shown to be superior to other alternatives such as
the Lipkin-Nogami method [2,54,55]. Within the RVAP-PNP
scheme, a variational subspace is built by projecting onto good
proton and neutron number intrinsic HFB states constrained
in both the proton 〈�Ẑ2〉 and neutron 〈�N̂2〉 number fluctu-
ations separately, where 〈· · · 〉 represents an average value in

the corresponding HFB state. Each optimal Q-configuration
along the fission path is then determined by the minimum of
the PNP energy in this subspace.

The results discussed in this paper have been obtained
with the parametrization D1M∗ [56], which represents a re-
cent reparametrization of the Gogny-D1M [57] EDF. The
parametrization D1M∗ is defined as to have a larger slope
of the symmetry energy coefficient in nuclear matter than
the one in D1M. However, all the other relevant combina-
tions of parameters keep their values as to preserve most of
the properties of the Gogny-D1M EDF. The convenience of
D1M∗ has been established in a previous large-scale study
[13] of the fission properties of 435 superheavy nuclei using
this parametrization.

The paper is organized as follows: In Sec. II, we briefly
outline the methodology employed in this study. In particular,
in this section we outline a hierarchy of HFB approximations
as well as the RVAP-PNP method employed to compute the
fission paths and spontaneous fission half-lives for the con-
sidered nuclei. The results of our calculations are discussed
in Sec. III. First, in Sec. III A, we illustrate our methodology
in the case of 250Fm. The systematic of the fission paths
and lifetimes, obtained with each of the considered theo-
retical approaches, is discussed in Sec. III B for 242–262Fm
and 250–264No. Finally, Sec. IV is devoted to the concluding
remarks and work perspectives.

II. THEORETICAL FRAMEWORK

In the present study we use as a starting point the HFB
approximation, with the D1M∗ parametrization [56] of the
Gogny-EDF. Fission paths are obtained with the help of con-
strains on the mean value of the axially symmetric quadrupole
Q̂20 and octupole Q̂30 operators [13,58,59]. Constrains on
the proton �Ẑ2 and neutron �N̂2 number fluctuation two-
body operators [35,43,44] are included to implement the
RVAP-PNP approach mentioned in the introduction. The new
constraints require two additional terms in the Routhian

−λ�Ẑ2�Ẑ2 − λ�N̂2�N̂2, (1)

with the corresponding chemical potentials λ�Ẑ2 and λ�N̂2 .
The minimization process is restricted to satisfy the conditions
〈�Ẑ2〉 = fZ and 〈�N̂2〉 = fN in the mean value of proton and
neutron number fluctuation, where fZ and fN are the required
values. In the gradient method used in the minimization this
restrictions are implemented by imposing the gradient of the
Routhian to be orthogonal to the gradients of proton and neu-
tron number fluctuations. Those two-body operator gradients
are computed in analogy with the gradient of the energy.
Although it will not be mentioned explicitly, in all the HFB
calculations discussed below, aside from the usual constrains
on both the proton and neutron numbers [2], a constrain on
the operator Q̂10 is used to prevent spurious effects due to the
center of mass motion [58,59]. Note, that parity is allowed to
be broken at any stage of the calculation.

As it is customary in this kind of calculation, the HFB
quasiparticle operators are expanded in an axially symmetric
(deformed) harmonic oscillator (HO) basis containing states
with Jz quantum numbers up to 35/2 and up to 26 quanta in
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FIG. 1. The HFB(CESlater), HFB(CEE), HFB(RVAPint), and RVAP-PNP energies plus the zero-point rotational energies obtained for the
nucleus 250Fm are plotted in panel (a) as functions of the quadrupole moment Q20 of the intrinsic states. The octupole Q30 and hexadecapole Q40

moments corresponding to HFB(CESlater), HFB(CEE), and HFB(RVAPint) states are plotted in panel (b). The proton Epp,Z and neutron Epp,N

pairing interaction energies corresponding to those intrinsic states are plotted in panels (c) and (d), while the collective GCM and ATDHFB
masses are plotted in panels (e) and (f). Results have been obtained with the parametrization D1M∗ of the Gogny-EDF. For more details, see
the main text.

the z direction. More specifically, the basis quantum numbers
are restricted by the condition

2n⊥ + |m| + qnz � Mz,MAX, (2)

with Mz,MAX = 17 and q = 1.5 [3,29,32]. For the solution
of the HFB equations, an approximate second-order gradient
method [60] has been used.

In the RVAP-PNP approach, for each specific value of the
quadrupole and octupole moments, the HFB wave functions
|�( fZ , fN )〉 are used to compute the PNP projected energy,

EZ,N (Q20, Q30, fZ , fN ) = 〈�|Ĥ P̂Z P̂N |�〉
〈�|P̂Z P̂N |�〉 , (3)

and the fZ and fN values of the intrinsic state are chosen as
to minimize the projected energy. This is a kind of VAP-PNP
but considering a restricted set of intrinsic states. In the above
expression, P̂Z and P̂N are the standard particle number pro-
jector

P̂N = 1

2π

∫ 2π

0
dϕeiϕ(N̂−N ).

In the evaluation of the PNP energy, the direct, exchange,
and pairing channels for each of the terms of the Gogny-
D1M∗ EDF have been computed to avoid the appearance
of divergences connected with the self-energy problem and
the violation of the Pauli principle [49,50]. The Hamiltonian
and norm overlaps between intrinsic (|�〉) and gauge-rotated

(eiϕN̂ |�〉) states which are required for the calculation of
the PNP energies are obtained using the generalized Wick
theorem [61,62]. In the evaluation of the projected en-
ergy in Eq. (3), the PNP density prescription discussed in
Refs. [44,49,50] has been used for the density-dependent part
of the Gogny-D1M∗ EDF.

With these tools at hand, a series of calculations, as de-
scribed below, are carried out to understand the role of the
different ingredients considered in this work. To illustrate
the practical aspects of the methodology used, we consider
the nucleus 250Fm, as a typical example. More specifically,
we have carried out the following calculations:

Step 1. HFB(CESlater): We first obtained the (least en-
ergy) fission path for 250Fm. To this end, we have
resorted to the (Q20, Q30)-constrained HFB ap-
proximation. The two length parameters bz and
b⊥ characterizing the axially symmetric HO basis
have been optimized for each (Q20, Q30) con-
figuration [3,31]. In the calculations, Coulomb
exchange is evaluated in the Slater approximation
[63] while Coulomb and spin-orbit antipairing are
neglected. Quantum zero-point rotational and vi-
brational energies have been added a posteriori
to the HFB energy. The HFB(CESlater) plus ro-
tational correction energy is plotted in Fig. 1(a) as
a function of the quadrupole moment. The zero-
point vibrational energy is not included in the plot,
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as it is rather constant as a function of Q20. How-
ever, such vibrational correction energy is always
included in the computation of the corresponding
tSF values.

Step 2. HFB(CEE): Next, we determined the HFB(CEE)
fission path for 250Fm. To this end, we have per-
formed (Q20, Q30)-constrained HFB calculations
in which both the contribution of the repulsive
Coulomb interaction to the Hartree-Fock exchange
potential and the pairing field1 have been fully
considered. The (optimized) HFB(CESlater) in-
trinsic wave functions (Step 1) have been used
as starting input in the Ritz-variational proce-
dure. No optimization of the HO lengths has
been performed at this stage as the oscillator
lengths are strongly connected to the deformation
parameters of the configuration considered. Quan-
tum zero-point rotational and vibrational energies
have, once more, been added a posteriori to the
HFB(CEE) energies. The HFB(CEE) plus rota-
tional correction energy is plotted in Fig. 1(a).

Let us mention that in calculations where the
proton and neutron pairing strengths are indepen-
dently adjusted to experimental data in the region
of interest [64], Coulomb antipairing is taken into
account effectively by the fitted pairing strengths.
However, for Gogny-like EDFs, the neutron pair-
ing strength is fit to experimental data in tin
isotopes, while the proton pairing strength comes
from isospin invariance. As a result, Coulomb an-
tipairing should be explicitly taken into account
as to improve agreement with experimental proton
pairing gaps.

Step 3. HFB(RVAPint) and RVAP-PNP: With the
HFB(CEE) intrinsic states (Step 2) at hand, they
are used as initial input in constrained calculations
where, for each (Q20, Q30) configuration, intrinsic
HFB wave functions have been generated
constraining the proton fZ = 〈�Ẑ2〉 and neutron
fN = 〈�N̂2〉 number fluctuations, separately. The
intrinsic states HFB(RVAPint), for each (Q20, Q30)
configuration, are obtained by minimizing the
particle-number-projected energy of Eq. (3) with
respect to the particle number fluctuation variables
fZ and fN using a simple two-dimensional gradient
method. In this way we obtain two different
energies, one corresponding to the HFB energy of
the intrinsic state, denoted as HFB(RVAPint); the
other, corresponding to the PNP projected energy
for that intrinsic state, denoted the RVAP-PNP
energy. Rotational and vibrational energies,
computed with the intrinsic HFB(RVAPint) states,
have been added a posteriori to the HFB(RVAPint)
and RVAP-PNP energies. The HFB(RVAPint) and

1This contribution is usually called Coulomb antipairing due to the
repulsive character of the Coulomb interaction, which reduces the
pairing gap of protons.

RVAP-PNP plus rotational correction energies are
shown in Fig. 1(a).

For each of the HFB(CESlater), HFB(CEE),
HFB(RVAPint), and RVAP-PNP approaches we have
computed the spontaneous fission half-lives tSF (in seconds)
using the WKB formalism

tSF = 2.86 × 10−21 × (1 + e2S ), (4)

where the action S along the (one-dimensional Q20-projected)
fission path reads

S =
∫ b

a
dQ20S(Q20), (5)

where the integrand S(Q20) is defined as

S(Q20) =
√

2B(Q20)[V (Q20) − (Emin + E0)]. (6)

The integration limits a and b in Eq. (5) correspond to the
classical turning points [36] of the potential-energy surface
evaluated for the energy Emin + E0. The energy Emin corre-
sponds to the absolute minimum of the considered path, while
E0 accounts for the true ground-state energy once quadrupole
fluctuations are taken into account. In this study, we have
considered the commonly employed value 1.0 MeV for this
parameter [3,30].

From its definition (4), it is evident that tSF depends
on the different approximations by means of the different
potential-energy surfaces and collective inertias. The po-
tential energy V (Q20) in Eq. (6) is given by each of the
HFB(CESlater), HFB(CEE), HFB(RVAPint), and RVAP-PNP
energies corrected by the zero-point vibrational and rotational
energies. In the case of intrinsic HFB(CESlater), HFB(CEE),
HFB(RVAPint) states, the collective mass B(Q20) as well as
the zero-point vibrational energy correction are computed
using two methods. One is the perturbative cranking ap-
proximation [65–67] to the adiabatic time-dependent HFB
(ATDHFB) scheme. The second method is based on the Gaus-
sian overlap approximation (GOA) to the GCM [2]. On the
other hand, the rotational energy correction has been com-
puted in terms of the Yoccoz moment of inertia [68–70].
Due to the lack of an appropriate theoretical framework in
the RVAP-PNP case, we have pragmatically employed the
collective masses as well as the zero-point rotational and vi-
brational energies obtained with the HFB(RVAPint) intrinsic
states [44].

III. DISCUSSION OF THE RESULTS

In this section, the results of our calculations are discussed.
First, to set the stage, the methodology employed to compute
the fission paths and other fission-related quantities in the
case of 250Fm are discussed in Sec. III A as an illustrative
example. In Sec. III B the same methodology is systematically
employed for all the studied nuclei 242–262Fm and 250–264No.

A. An illustrative example: The nucleus 250Fm

The HFB(CESlater), HFB(CEE), HFB(RVAPint), and
RVAP-PNP plus zero-point rotational energies are plotted for
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FIG. 2. The HFB(CESlater), HFB(CEE), HFB(RVAPint), and RVAP-PNP energies plus the zero point rotational energies obtained for the
nuclei 246,250,254,258,262Fm are plotted in panels (a) to (e) as functions of the quadrupole moment Q20 of the intrinsic states. Results have been
obtained with the parametrization D1M∗ of the Gogny-EDF.

the nucleus 250Fm in Fig. 1(a) as functions of the quadrupole
moment Q20 of the intrinsic states. The reflection symmet-
ric (Q30 = 0) absolute minimum of each path is located at
Q20 = 16 b. The fission isomer at Q20 = 48 b is separated
from the ground state by the inner barrier, the top of which
is located at Q20 = 32–34 b. As in the ground-state case, the
fission isomer is reflection symmetric. Octupole correlations
play a prominent role for quadrupole deformations Q20 �
62 b. Those correlations significantly affect the height of the
outer barrier, the top of which is located at Q20 = 68 b in the
HFB(CESlater) case. A second barrier with more structure
and with the top located at Q20 = 62 b is obtained within
the HFB(CEE), HFB(RVAPint) and RVAP-PNP approaches.
For large quadrupole moments (Q20 � 100 b) the HFB(CEE)
and HFB(RVAPint) paths exhibit a faster decline than the
HFB(CESlater) path. The RVAP-PNP path is around 2.5–3.0
MeV deeper than the others.

We have obtained the HFB(CESlater), HFB(CEE),
HFB(RVAPint), and RVAP-PNP values 10.25, 10.66, 10.55,
and 10.72 MeV for the height BI of the inner barrier, while for
the excitation energy of the fission isomer we have obtained
1.88, 1.77, 1.82, and 2.17 MeV, respectively. For the height BII

of the outer barrier those approaches provide the values 5.41,
5.44, 5.38, and 5.64 MeV. The octupole Q30 and hexadecapole
Q40 moments of the intrinsic states, plotted in Fig. 1(b), are
rather similar in all the approximations.

The proton and neutron pairing interaction energies [2]
Epp,τ = 1

2 Tr(�τκτ ) (with τ = Z, N) of the intrinsic states are
plotted in Figs. 1(c) and 1(d). Note that these quantities are
meaningless in the RVAP-PNP case. As can be seen from
Fig. 1(c), Coulomb antipairing severely quenches the pro-
ton pairing energies in the HFB(CEE) states as compared
with the corresponding HFB(CESlater) values. However, the
RVAP-PNP method softens this quenching of the proton

pairing energies as can be observed in the results for the
HFB(RVAPint) intrinsic state. As can be seen from Fig. 1(d),
the HFB(CESlater) and HFB(CEE) neutron pairing energies
are, as expected, rather similar. On the other hand, larger Epp,N

energies are obtained at the HFB(RVAPint) level.
The collective GCM and ATDHFB masses, computed in

the perturbative cranking approximation [65–67] for the in-
trinsic states, are plotted in Figs. 1(e) and 1(f). A three-point
filter has been employed to soften the wiggles in the masses
[3]. Both kinds of masses display a similar trend but the
ATDHFB masses are, on the average, larger than the GCM
masses. Such differences can lead to differences of several
orders of magnitude in the predicted spontaneous fission
half-lives [3,29–32]. This is the reason to consider both the
GCM and ATDHFB collective inertias in the computation
of the tSF values. Regardless of the considered GCM and/or
ATDHFB scheme, the HFB(CEE) collective inertia is larger
than the HFB(CESlater) inertia and exhibits pronounced high
peaks. This is a consequence of the quenched proton pairing
correlations in the former as compared with the latter [see
Fig. 1(c)]. Nevertheless, the increased pairing correlations in
the HFB(RVAPint) states lead to GCM and ATDHFB collec-
tive masses close to the corresponding HFB(CESlater) values.

The spontaneous fission half-lives are computed us-
ing Eq. (4) with both the GCM and ATDHFB iner-
tias. For E0 = 1.0 MeV, the values obtained with the
HFB(CESlater), HFB(CEE), HFB(RVAPint), and RVAP-PNP
approaches are log10 tGCM

SF = 9.88, 15.22, 10.81, and 11.84
and log10 tATDHFB

SF = 12.53, 21.71, 14.43, and 15.66, respec-
tively. It is observed that the tATDHFB

SF values are larger than the
tGCM
SF due to the systematic differences in the collective inertias

obtained in each approach. In both the GCM and ATDHFB
schemes the increase observed in the HFB(CEE) collective
inertias, due to Coulomb antipairing, leads to a pronounced
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FIG. 3. The HFB(CESlater), HFB(CEE), HFB(RVAPint), and RVAP-PNP energies plus the zero point rotational energies obtained for the
nuclei 250,254,258,262No are plotted in panels (a) to (d) as functions of the quadrupole moment Q20 of the intrinsic states. Results have been
obtained with the parametrization D1M∗ of the Gogny-EDF.

increase in the spontaneous fission half-lives. However, this
huge increase is, to a large extent, canceled out by dynamic
pairing correlations coming from particle number restoration.
As a consequence, the HFB(RVAPint) and RVAP-PNP life-
times get closer to the HFB(CESlater) values.

The results discussed in this section illustrate the com-
petition between Coulomb antipairing and dynamic pairing
effects in 250Fm. Such a competition has also been found for
a selected set of nuclei with wide fission paths, in a previous
study [44]. It is therefore interesting to examine the impact of
those competing effects on the systematic of the spontaneous
fission half-lives and other fission related quantities along
isotopic chains with lower barrier heights. This analysis is
presented in the next section for the nuclei 242–262Fm and
250–264No. In the isotopic chains considered we find examples
with wide fission paths as well as other cases where the cor-
responding fission paths display a faster decline in their more
elongated sections.

B. Systematic of fission paths and spontaneous fission
half-lives in 242–262Fm and 250−260No

In Figs. 2 and 3 we have plotted the HFB(CESlater),
HFB(CEE), HFB(RVAPint), and RVAP-PNP energies plus
the zero-point rotational energies obtained for the nuclei
246,250,254,258,262Fm and 250,254,258,262No, as functions of the
quadrupole moment Q20 of the intrinsic state. A similar pat-
tern is exhibited by other Fm and No nuclei and due to this,

they are not shown in the figures. For all of the studied nuclei,
the RVAP-PNP path is around 2.0–3.5 MeV deeper than the
others and the absolute minima of all the fission paths corre-
spond to Q20 = 12–16 b.

In Fig. 4 we have plotted the proton Epp,Z,GS and neutron
Epp,N,GS pairing interaction energies, as functions of the neu-
tron number N , for the intrinsic ground states in 242–262Fm and
250–264No (these quantities are meaningless in the RVAP-PNP
case). From Figs. 4(a) and 4(c), one realizes that Coulomb
antipairing leads to a severe reduction of the HFB(CEE)
Epp,Z,GS energies in comparison with the proton pairing ener-
gies obtained neglecting Coulomb antipairing. For example,
the reduction amounts to 5.85, 6.00, 6.68, 7.44, and 8.27
MeV (5.63, 5.48, 5.98, and 6.83 MeV) in 246,250,254,258,262Fm
(250,254,258,262No). Such a reduction is to a large extent can-
celed out, via RVAP-PNP, by dynamic pairing correlations.
For example, we have found the energy differences �Epp,Z,GS

between the HFB(CESlater) and HFB(RVAPint) proton pair-
ing energies to be 1.08, 1.11, 1.83, 2.63, and 4.16 MeV (1.09,
1.12, 1.98, and 2.57 MeV) for the nuclei already mentioned.
On the other hand, as can be seen from Figs. 4(b) and 4(d)
the neutron pairing energies in the HFB(RVAPint) ground
states are larger than in the other mean-field approaches not
incorporating dynamic pairing correlations. This illustrates
the competition between Coulomb antipairing and dynamic
pairing effects along the fission paths of the studied nuclei.

In Figs. 2 and 3, one notices that the maxima of the in-
ner barriers are located in the interval Q20 = 28–38 b. The
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FIG. 4. The HFB(CESlater) (red), HFB(CEE) (green), and
HFB(RVAPint) (blue) proton Epp,Z,GS and neutron Epp,N,GS ground-
state pairing interaction energies obtained for 242–262Fm and 250–264No
are plotted as functions of the neutron number N . Results have been
obtained with the parametrization D1M∗ of the Gogny-EDF.

corresponding heights are plotted in Fig. 5 as functions of
the neutron number N . Regardless of the employed approx-
imation, the height BI increases up to a maximum value in
252Fm (254No) and decreases for larger neutron numbers. For
Fm isotopes [Fig. 5(a)], the HFB(CEE), HFB(RVAPint), and
RVAP-PNP barrier heights are larger than the HFB(CESlater)

FIG. 5. The HFB(CESlater) (red), HFB(CEE) (green),
HFB(RVAPint) (blue), and RVAP-PNP (black) inner barrier
heights BI obtained for 242–262Fm and 250–264No are plotted as
functions of the neutron number N . Results have been obtained with
the parametrization D1M∗ of the Gogny-EDF.

ones up to N = 156. For larger neutron numbers the situation
is reversed, with larger HFB(CESlater) BI values. On the
other hand, for the considered No isotopes [Fig. 5(b)] the
HFB(CEE), HFB(RVAPint), and RVAP-PNP barrier heights
are always larger than the HFB(CESlater) values. The barriers
heights BI displayed in Fig. 5 have been obtained keeping
axial symmetry as a self-consistent symmetry. Previous stud-
ies have shown that triaxial solutions can reduce the barrier
heights by a few MeV (see, for example, Refs. [3,5,22]).
However, it has also been found [18,26] that the lowering
of the inner barrier comes together with an increase in the
collective inertia that tends to compensate, in the calculation
of the action, the reduction due to the lower triaxial barrier
height. This result suggests that the axially symmetric path
would be the preferred one in fission dynamics. Moreover, it
has also been shown, that pairing fluctuations can restore axial
symmetry along the fission path [41,71]. Therefore, the im-
pact of triaxiality in the spontaneous fission half-lives seems
to be very limited and it has not been considered in this study.
If the triaxial degree of freedom were relevant, it would lead to
a reduction of the spontaneous fission lifetime, and therefore
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FIG. 6. The HFB(CESlater) (red), HFB(CEE) (green),
HFB(RVAPint) (blue) and RVAP-PNP (black) outer barrier
heights BII obtained for 242–262Fm and 250–264No are plotted as
functions of the neutron number N . Results have been obtained with
the parametrization D1M∗ of the Gogny-EDF.

the results presented in the present study should be considered
as upper limits.

The large quadrupole sections of the fission paths shown
in Figs. 2 and 3 also display fission isomers, located around
Q20 = 50 b, as well as second barriers. The fission isomers
are less pronounced in heavier isotopes as the outer barriers
progressively disappear with increasing neutron number. The
heights BII of the second barriers are plotted in Fig. 6 as func-
tions of the neutron number. For both Fm and No isotopes,
regardless of the employed approximation, the height BII

reaches a peak at the neutron number N = 152 and decreases
for larger neutron numbers. For Fm isotopes [Fig. 6(a)], the
HFB(CEE), HFB(RVAPint), and RVAP-PNP barrier heights
BII are smaller than the HFB(CESlater) ones for N � 154, be-
ing the HFB(CEE) heights the smallest. The HFB(CEE) outer
barrier disappears at N = 156 while it disappears at N = 158
in the other cases. For No isotopes [Fig. 6(b)], the HFB(CEE)
barrier heights BII are the smallest for N � 152. In this
case, the HFB(CEE), HFB(RVAPint), and RVAP-PNP second
barriers disappear at N = 158 while the HFB(CESlater) one
disappears at N = 160.

We have computed the spontaneous fission half-lives
Eq. (4) for the considered Fm and No isotopes. The
HFB(CESlater), HFB(CEE), HFB(RVAPint), and RVAP-PNP
spontaneous fission half-lives, predicted within the GCM
[Fig. 6(a)] and ATDHFB [Fig. 6(b)] schemes, are depicted as
functions of the neutron number in Figs. 7 and 8. Calculations
have been carried out with a zero point energy E0 = 1.0 MeV.
One notices that the ATDHFB lifetimes are always larger than
the GCM ones. For example, for 252No we have obtained
the HFB(CESlater), HFB(CEE), HFB(RVAPint), and RVAP-
PNP values log10 tGCM

SF = 5.15, 12.05, 6.68, and 7.68, while
log10 tATDHFB

SF = 6.78, 15.16, 9.19, and 10.50. Increasing the
value of E0 (taken here as a free parameter) always leads
to smaller tSF values. Let us mention, that calculations have
also been carried out with a zero-point energy E0 estimated
in terms of the curvature K of the fission path around the
ground state and the ground-state collective quadrupole inertia
M as E0 = 1

2

√
K/M. In all cases, we have found that the trend

observed in the spontaneous fission half-lives, as functions of
the neutron number N , is robust and qualitatively independent
of the employed E0 value. The trend in tSF with neutron num-
ber closely follows the one obtained for the barrier heights
in Figs. 5 and 6. Note, however, that the transmission prob-
ability through the fission barrier depends on several other
ingredients, such as the barrier shape (mostly its width) and
the behavior and size of the collective inertia, and is not solely
determined by the barrier height as it is commonly argued.

It is also important to note that the impact of Coulomb
antipairing gets approximately canceled out by the dynamic
pairing correlations, induced via the RVAP-PNP procedure.
One might get the wrong impression that the results obtained
with Coulomb Slater are equivalent to the more sophisticated
ones. However, there is clear modulation in the results and
the RVAP-PNP values are higher than the Coulomb Slater
ones up to N = 152 but the tendency changes at that point
and the differences are pretty large for larger neutron numbers
where the fission barriers are low and tSF small. This effect
was not observed in Ref. [44] due to the choice of nuclei.
We therefore conclude that the impact of Coulomb antipairing
plus RVAP-PNP cannot be taken into account by the far more
simple Coulomb Slater approximation. As already mentioned,
the results discussed in this paper have been obtained with the
Gogny-D1M∗ EDF. However, for the studied nuclei, calcula-
tions have also been carried out with other parametrizations,
such as D1M [57] and D1S [4], of the Gogny-EDF. In all cases
the results are similar to those obtained with the parameter set
D1M∗.

One has to take into account also that the intrinsic collec-
tive inertias have been used for the RVAP-PNP calculation. In
principle, one could compute the exact GCM inertias with the
PNP wave functions but unfortunately this is not the case for
the ATDHFB approach. The inclusion of the “projected iner-
tias” is out of the scope of the present study. Work along these
lines is in progress and will be reported in future publications.

IV. SUMMARY AND CONCLUSIONS

In this work, we have considered a hierarchy of HFB
based approximations as well as the RVAP-PNP method,
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FIG. 7. The HFB(CESlater), HFB(CEE), HFB(RVAPint), and RVAP-PNP spontaneous fission half-lives, predicted within the GCM [panel
(a)] and ATDHFB [panel (b)] schemes, for the isotopes 242–262Fm are depicted as functions of the neutron number. Calculations have been
carried out with E0 = 1.0 MeV. The available experimental values [53] are included in the plots. Results have been obtained with the
parametrization D1M∗ of the Gogny-EDF.

based on the parametrization D1M∗ of the Gogny-EDF, to
study the competition between Coulomb antipairing and dy-
namic pairing correlations along the fission paths of a selected
set of Fermium and Nobelium isotopes. The considered iso-

topic chains include examples with wide fission paths as
well as other cases where the fission paths exhibit a faster
decline in their outer sections. The results obtained for the
fission paths and other fission related quantities, such as

FIG. 8. The HFB(CESlater), HFB(CEE), HFB(RVAPint) and RVAP-PNP spontaneous fission half-lives, predicted within the GCM [panel
(a)] and ATDHFB [panel (b)] schemes, for the isotopes 250–264No are depicted as functions of the neutron number. Calculations have been
carried out with E0 = 1.0MeV . The available experimental values [53] are included in the plots. Results have been obtained with the
parametrization D1M∗ of the Gogny-EDF.
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the spontaneous fission half-lives tSF , reveal that the impact
of Coulomb antipairing (required to have a particle number
restoration process free from self-energy problems) is par-
tially compensated by dynamic pairing correlations induced
via the RVAP-PNP procedure. The cancellation of both ef-
fects is, however, not perfect and a modulation of the tSF

values with respect to the plain mean-field is observed as a
function of neutron number in the isotopic chains analyzed.
Similar results have also been found with other parametriza-
tions of the Gogny-EDF. The phenomenon is traced back

to the relatively low fission barriers found in some of the
Fm and No isotopes. This situation is different from the
one encountered in a previous analysis with the same tech-
niques where nuclei with high barriers and wide fission paths
were considered. We therefore conclude that the cancellation
effect due to RVAP-PNP and Coulomb antipairing cannot
be neglected in the most general situations. More general
conclusions could be reached when the collective inertias
would be computed in a consistent symmetry-restoration
framework.

[1] N. Schunck and L. M. Robledo, Rep. Prog. Phys. 79, 116301
(2016).

[2] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer, Berlin, 1980).

[3] R. Rodríguez-Guzmán and L. M. Robledo, Phys. Rev. C 89,
054310 (2014).

[4] J. F. Berger, M. Girod, and D. Gogny, Nucl. Phys. A 428, 23
(1984).

[5] J.-P. Delaroche, M. Girod, H. Goutte, and J. Libert, Nucl. Phys.
A 771, 103 (2006).

[6] S. Perez-Martin and L. M. Robledo, Int. J. Mod. Phys. E 18,
788 (2009).

[7] N. Dubray, H. Goutte, and J.-P. Delaroche, Phys. Rev. C 77,
014310 (2008).

[8] V. Martin and L. M. Robledo, Int. J. Mod. Phys. E 18, 861
(2009).

[9] W. Younes and D. Gogny, Phys. Rev. C 80, 054313 (2009).
[10] M. Warda, J. L. Egido, L. M. Robledo, and K. Pomorski, Phys.

Rev. C 66, 014310 (2002).
[11] L. Egido and L. M. Robledo, Phys. Rev. Lett. 85, 1198 (2000).
[12] M. Warda and J. L. Egido, Phys. Rev. C 86, 014322 (2012).
[13] R. Rodríguez-Guzmán, Y. M. Humadi, and L. M. Robledo, Eur.

Phys. J. A 56, 43 (2020).
[14] N. Nikolov, N. Schunck, W. Nazarewicz, M. Bender, and J. Pei,

Phys. Rev. C 83, 034305 (2011).
[15] J. D. McDonnell, W. Nazarewicz, and J. A. Sheikh, Phys. Rev.

C 87, 054327 (2013).
[16] J. Erler, K. Langanke, H. P. Loens, G. Martínez-Pinedo, and

P.-G. Reinhard, Phys. Rev. C 85, 025802 (2012).
[17] A. Staszczak, A. Baran, and W. Nazarewicz, Phys. Rev. C 87,

024320 (2013).
[18] A. Baran, K. Pomorski, A. Lukasiak, and A. Sobiczewski, Nucl.

Phys. A 361, 83 (1981).
[19] M. Baldo, L. M. Robledo, P. Schuck, and X. Viñas, Phys. Rev.

C 87, 064305 (2013).
[20] S. A. Giuliani and L. M. Robledo, Phys. Rev. C 88, 054325

(2013).
[21] S. A. Giuliani, G. Martí nez-Pinedo, and L. M. Robledo, Phys.

Rev. C 97, 034323 (2018).
[22] H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C 82,

044303 (2010).
[23] H. Abusara, A. V. Afanasjev, and P. Ring, Phys. Rev. C 85,

024314 (2012).
[24] B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 85,

011301(R) (2012).
[25] S. Karatzikos, A. V. Afanasjev, G. A. Lalazissis, and P. Ring,

Phys. Lett. B 689, 72 (2010).

[26] M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, and W.
Greiner, Phys. Rev. C 58, 2126 (1998).

[27] Z. Shi, A. V. Afanasjev, Z. P. Li, and J. Meng, Phys. Rev. C 99,
064316 (2019).

[28] A. Taninah, S. E. Agbemava, and A. V. Afanasjev, Phys. Rev. C
102, 054330 (2020).

[29] R. Rodríguez-Guzmán and L. M. Robledo, Eur. Phys. J. A 50,
142 (2014).

[30] R. Rodríguez-Guzmán and L. M. Robledo, Eur. Phys. J. A 52,
12 (2016).

[31] R. Rodríguez-Guzmán and L. M. Robledo, Eur. Phys. J. A 52,
348 (2016).

[32] R. Rodríguez-Guzmán and L. M. Robledo, Eur. Phys. J. A 53,
245 (2017).

[33] S. Pérez-Martín and L. M. Robledo, Phys. Rev. C 78, 014304
(2008).

[34] J. Sadhukhan, K. Mazurek, A. Baran, J. Dobaczewski, W.
Nazarewicz, and J. A. Sheikh, Phys. Rev. C 88, 064314 (2013).

[35] S. A. Giuliani, L. M. Robledo, and R. Rodríguez-Guzmán,
Phys. Rev. C 90, 054311 (2014).

[36] M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M
Strutinsky, and C. Y. Wong, Rev. Mod. Phys. 44, 320 (1972).

[37] G. F. Bertsch and H. Flocard, Phys. Rev. C 43, 2200 (1991).
[38] M. Urin and D. Zaretsky, Nucl. Phys. 75, 101 (1966).
[39] K. Urin and D. Pomorski, Int. J. Mod. Phys. E 16, 237 (2007).
[40] A. Staszczak, S. Pilat, and K. Pomorski, Nucl. Phys. A 504, 589

(1989).
[41] J. Sadhukhan, W. Nazarewicz, and N. Schunck, Phys. Rev. C

93, 011304(R) (2016).
[42] J. Zhao, B.-N. Lu, T. Niksic, D. Vretenar, and S.-G. Zhou, Phys.

Rev. C 93, 044315 (2016).
[43] R. Rodríguez-Guzmán and L. M. Robledo, Phys. Rev. C 98,

034308 (2018).
[44] R. Bernard, S. A. Giuliani, and L. M. Robledo, Phys. Rev. C 99,

064301 (2019).
[45] M. Bender, P.-H. Heenen, and P. Bonche, Phys. Rev. C 70,

054304 (2004).
[46] M. Samyn, S. Goriely, and J. M. Pearson, Phys. Rev. C 72,

044316 (2005).
[47] T. V. Nhan Hao, P. Quentin, and L. Bonneau, Phys. Rev. C 86,

064307 (2012).
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