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Triaxiality-induced monopole-quadrupole-hexadecupole coupling
in the isoscalar giant resonances of 86Ge
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The isoscalar giant resonances for 86Ge are studied by the quasiparticle finite amplitude method based on the
covariant density functional theory. In addition to the well-known monopole-quadrupole coupling that splits the
isoscalar giant monopole resonance in axially deformed nuclei, a monopole-quadrupole-hexadecupole coupling
is identified in the neutron-rich triaxially deformed nucleus 86Ge, leading to the emergence of a distinct resonance
peak at the low energy side of the isoscalar monopole strength function. The transition density of the triaxiality-
induced resonance peak shows a strong interplay among monopole, quadrupole, and hexadecupole vibrations.
The resonance peak responds to monopole, quadrupole, and hexadecupole perturbations simultaneously, which
could be regarded as a fingerprint of the triaxiality in 86Ge.
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I. INTRODUCTION

Giant resonances (GRs) [1] are small amplitude collective
vibrations of a nucleus which are related to nuclear bulk
properties, e.g., via certain sum rules [2], and provide valuable
information on nuclear structure such as incompressibility
[3–7], symmetry energy [8–10], and neutron skin thickness
[11–14].

The effect of axial deformation describing prolate or
oblate spheroid shapes on GRs has been extensively dis-
cussed [15–17]. In particular, shortly after the discovery of
the isoscalar giant monopole resonance (ISGMR) [18], it was
reported that the ISGMRs for well-deformed nuclei split into
two branches [19]. The splitting is caused by the coupling
between ISGMR and isoscalar giant quadrupole resonance
(ISGQR) with K = 0, namely, the monopole-quadrupole cou-
pling (E0-E2 coupling). Experimental evidence of the E0-E2
coupling is found for 150Nd [20], 154Sm [21], 181Ta [22], 238U
[23], etc. Explanations and predictions of the E0-E2 cou-
pling are made by macroscopic calculations through cranking
model [24], variational procedure [25], fluid dynamical de-
scription [26], and random phase approximation calculations
[27–29].

Apart from elongating or compressing along the symmetry
axis of the intrinsic frame, a nucleus can be further squeezed
perpendicularly to its symmetry axis, and has a triaxially
deformed shape. Triaxial deformation is thought to be the key
ingredient for a lot of interesting phenomena such as nuclear
chirality [30,31] and wobbling [32]. Triaxiality will also affect
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GRs in a significant way. For example, a recent work suggests
that triaxiality sheds light upon the softening of ISGMRs for
cadmium isotopes [33].

The microscopic random phase approximation (RPA)
method [34] is widely used in studying nuclear collective
vibrations. Combined with modern nuclear energy density
functionals [35–37], the RPA method is able to give suc-
cessful descriptions of nuclear giant resonances [38–40]. For
deformed and superfluid nuclei, the full configuration space
of RPA is huge, and solving RPA equations is extremely
challenging if no artificial truncation is applied. The finite
amplitude method (FAM) [41] provides a numerical feasi-
ble way to solve large scale RPA problems. In spherical
and axially deformed cases, FAM has been implemented on
both relativistic [27,42–45] and nonrelativistic [46–49] den-
sity functionals. In the triaxially deformed case, FAM is so
far implemented for Skyrme density functional theory in the
three-dimensional Cartesian coordinate space [50], as well as
for covariant density functional theory (CDFT) in a triaxially
deformed harmonic oscillator basis [33], making it possible
to study triaxial deformation effects on GRs in a microscopic
and self-consistent way.

Though the E0-E2 coupling in axially deformed nuclei
has been well understood, the situation in triaxially deformed
nuclei demands further study. It is also interesting to search
for possible distinctive resonance structures caused by the
triaxiality. The paper is devoted to investigating the impact of
triaxiality on the GRs by the triaxially deformed quasiparticle
finite amplitude method (QFAM) on CDFT [33]. The outline
of the paper is as follows. Section II presents the formalism
of CDFT and QFAM. In Sec. III, the triaxiality effects on the
isoscalar giant resonances for the triaxially deformed nucleus
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86Ge will be analyzed. Conclusions and remarks will be given
in Sec. IV.

II. FORMALISM

In this section, the nuclear CDFT [36] with effective
meson-exchange interaction, and the implementation of the
QFAM will be briefly introduced.

In CDFT, the effective nuclear forces are mediated by the
scalar meson σ , the vector meson ωμ, the vector-isovector
meson �ρμ, and the photon Aμ. The interacting part of the
Lagrangian density is

Lint = −
∑

m

gmψ̄�m · φmψ, (1)

where �m = {1, γ μ, �τγ μ, (1 − τ3)γ μ/2} is the coupling ver-
tex between the nucleon ψ and the meson (photon) φm =
{σ, ωμ, �ρμ, Aμ} with the coupling strength gm.

The state of a nuclear system |
〉 can be uniquely ex-
pressed by the density operator ρ̂. The matrix element of
density operator ρ̂ in a single particle basis has the form [34]

ρpq = 〈
|c†
qcp|
〉. (2)

The Hamiltonian density can be transformed from the La-
grangian density, its expectation value in the state |
〉 is the
following density functional:

ε[ρ̂, φ] = Tr[(−iα∇ + βm)ρ̂] +
∑

m

Tr[βgm�mφmρ̂]

±
∑

m

1

2

∫
d3r

[
(∂μφm)2 + m2

mφ2
m

]
. (3)

The equation of motion of the density operator and meson
(photon) field can be derived from the time-dependent vari-
ation principle,

δ

∫ t2

t1

dt{〈
|i∂t |
〉 − ε[ρ̂, φ]} = 0, (4)

and reads.

i∂t ρ̂ = [ĥ, ρ̂],(
∂ν∂ν + m2

m

)
φm = ∓Tr[βgm�mρ̂]. (5)

The singleparticle Hamiltonian ĥ is

ĥ[ρ̂, φ] ≡ δε[ρ̂, φ]

δρ̂
= −α(i∇ + V ) + V0 + β(m + S), (6)

with the scalar potential S and the vector potential Vμ ≡
(V0,V ) consisting of the meson and photon fields,

S = gσ σ,

Vμ = gωωμ + gρ �τ · �ρμ + e
1 − τ3

2
Aμ + �R

μ. (7)

The rearrangement term �R
μ appears when the coupling

strength gm is density dependent [51]. For even-even nuclei,
the spatial components of the vector potential vanish due to
the time-reversal symmetry.

With a pairing interaction V pp, the matrix elements of the
pairing tensor κ̂ is

κpq = 〈
|cqcp|
〉, (8)

from which the pairing energy is evaluated,

ε[κ̂] = 1
4 Tr[κ̂∗V ppκ̂], (9)

and a pairing potential �̂ can be defined:

�̂ ≡ δε[κ̂]

δκ̂
. (10)

The density and the paring tensor can be expressed in a com-
pact form via the generalized density [52]

R̂ =
(

ρ̂ κ̂

−κ̂∗ 1 − ρ̂∗

)
, (11)

and the generalized Hamiltonian is obtained accordingly:

Ĥ = δ(ε[ρ̂, φ] + ε[κ̂])

δR̂ =
(

ĥ �̂

−�̂∗ −ĥ∗

)
. (12)

Diagonalizing the generalized Hamiltonian gives the relativis-
tic Hartree-Bogoliubov (RHB) equation [34](

ĥ − λ �̂

−�̂∗ −ĥ∗ + λ

)(
Uμ

Vμ

)
= Eμ

(
Uμ

Vμ

)
, (13)

where a chemical potential λ is introduced to account for
particle number conservation [34]. Eμ is the quasiparticle
energy. The RHB equation is solved by an expansion of the
quasiparticle spinor Uμ, Vμ on a triaxial harmonic oscillator
basis [53], which is the product of three one-dimensional
harmonic oscillator wavefunction and a spin factor,

φi(x, y, z) = ϕnx (x)ϕny (y)ϕnz (z)χms , (14)

labeled by a set of quantum numbers i ≡ {nx, ny, nz; ms}.
If a nucleus is perturbed by a weak external field F (t )

with the frequency ω, its density R(t ) and Hamiltonian H(t )
vibrates slightly around the equilibrium R0 and H0. The fol-
lowing small-amplitude approximation is valid:

R(t ) = R0 + δR(ω)e−iωt + H.c.,

H(t ) = H0 + δH (ω)e−iωt + H.c. (15)

From the equation of motion iṘ(t ) = [H(t ) + F (t ),R(t )],
the linear response equation can be obtained:

(Eμ + Eν − ω)Xμν (ω) + δH20
μν (ω) = −F 20

μν ,

(Eμ + Eν + ω)Yμν (ω) + δH02
μν (ω) = −F 02

μν . (16)

The quasiparticle energy Eμ, Eν , and the matrix element of
external field F 20

μν , F 02
μν are independent of the excitation en-

ergy ω. The induced Hamiltonian δH (ω) is a functional of the
transition amplitudes X (ω) and Y (ω); they are calculated via
the following finite amplitude method.

The matrix elements of the induced Hamiltonian δH (ω)
in quasiparticle basis can be calculated from the variation of
the single-particle Hamiltonian δh(ω) and the variation of the
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pairing potential δ�(ω), δ�∗(ω),

δH20
μν (ω) = [U †δh(ω)V ∗ − V †δhT (ω)U ∗

− V †δ�∗(ω)V ∗ + U †δ�(ω)U ∗]μν,

δH02
μν (ω) = [U T δhT (ω)V − V T δh(ω)U

− V T δ�(ω)V + U T δ�∗(ω)U ]μν. (17)

The transition amplitudes X (ω) and Y (ω) are used to get the
variation of the single-particle density, δρ(ω), and the varia-
tions of the pairing tensor, δκ (ω) and δκ∗(ω), whose matrix
elements in the harmonic oscillator basis read

δρi j (ω) = [UX (ω)V T + V ∗Y (ω)U †]i j,

δκi j (ω) = [UX (ω)U T + V ∗Y (ω)V †]i j,

δκ∗
i j (ω) = −[V X (ω)V T − U ∗Y (ω)V †]i j .

(18)

The variations δh(ω) [δ�(ω) and δ�∗(ω)] are calculated
from the difference between the single-particle Hamiltonian
[the pairing field] at the perturbed density and at the equilib-
rium ρ0 [κ0 and κ∗

0 ],

δh(ω) = 1

η
{h[ρ0 + ηδρ(ω)] − h[ρ0]},

δ�(ω) = 1

η
{�[κ0 + ηδκ (ω)] − �[κ0]},

δ�∗(ω) = 1

η
{�∗[κ∗

0 + ηδκ∗(ω)] − �∗[κ∗
0 ]},

(19)

with a small real parameter η = 10−6.
Once the connection from the transition amplitude to the

induced Hamiltonian is established, Eq. (16) can be solved
iteratively. The converged transition amplitudes Xμν (ω) and
Yμν (ω) are used to calculate the strength function,

SF (F̂ , ω) = − 1

π
Im

∑
μν

{
F 20∗

μν Xμν (ω) + F 02∗
μν Yμν (ω)

}
. (20)

In this work, the functional we used is DD-ME2 [51], and
the pairing interaction is a separable pairing force [54]. Due
to the numerical feasibility of QFAM, there is no artificial
truncation being applied on the two quasiparticle pairs. The
calculations are performed on a harmonic oscillator basis with
12 shells, and the amount of two-quasiparticle pairs involved
in the QFAM calculation is N2qp = 2 086 560. In fully self-
consistent QFAM calculations, the symmetry broken in the
ground state will be restored, which automatically generates a
zero-energy Nambu-Goldstone boson. For instance, the parti-
cle number conservation broken in the RHB level is recovered
in the QFAM calculation. Therefore, a spurious state with
a vanishing energy appears in the strength function for the
particle number operator N̂ , as illustrated in Fig. 1.

III. RESULTS AND DISCUSSIONS

The potential-energy surface (PES) with the deformation
parameter (β, γ ) [53] is illustrated in Figs. 2(a)–2(c) for 64Ge,
74Ge, and 86Ge, respectively. Though all of these nuclei are tri-
axially deformed, their monopole strength functions response

0 2 4 6
 (MeV)

0

2

4

6

S
F
(N

,
) 

(1
0-3

 M
eV

-1
)

86Ge

FIG. 1. Strength function for the particle number operator N̂ .
The spurious state centers at zero energy, since the particle-number
conservation has been restored by the QFAM calculation.

to the triaxiality differently, as shown in Figs. 2(d)–2(f). For
64Ge which has a prominent triaxial minimal in the PES, the
monopole strength function is fragmented by the triaxiality.
For 74Ge whose PES is γ -soft, the monopole strength func-
tion shifts to low energy side slightly when the triaxiality is
considered. For 86Ge, the effect of triaxiality on monopole
strength function seems extremely interesting as it induces a
distinct low-lying resonance peak. Since monopole resonance
involves 2h̄ω particle-hole transitions [1] whose energies are
large for stable nuclei, the low-lying monopole resonances
could be hardly expected for nuclei close to the stability line.
In contrast, in nuclei far from the stability line the low-lying
monopole resonance may appear, because in these nuclei
nucleons near Fermi surface could have small-energy 2h̄ω

transitions. Therefore, 86Ge could provide us the chance to
learn how triaxiality impacts the low-lying monopole reso-
nance. In the following, the details will be analyzed by the
state-of-the-art triaxial QFAM.

The PES of 86Ge shows a minimum at β = 0.234 and
γ = 20.9◦; namely, the ground state of 86Ge is triaxially
deformed. In the axial deformation calculation, there are
a prolate minumum at β = 0.209 with E = 0.62 MeV and
an oblate minimum at β = 0.191 with E = 1.70 MeV; the
ground state is prolate deformed. Compared to the axially
deformed case, the existence of triaxial deformation makes
86Ge more elongated in the z direction.

The lifetime of the nucleus 86Ge is about 226 ms [55],
which might make study of its giant resonances possible with
the rapid development of radioactive beam facilities. In order
to look for possible vibration properties peculiar to triaxiality,
both triaxial QFAM calculation and axial QFAM calculations
are preformed to study the giant resonances for 86Ge, with
the density functional DD-ME2 [51] and the separable pair-
ing force [54]. In Fig. 3, the strength functions of ISGMR,
ISGQR with K = 0, and isoscalar giant hexadecupole res-
onance (ISGHR) with K = 0 for 86Ge are presented. The
strength functions are obtained by perturbing the nucleus with
monopole, quadrupole, and hexadecupole vibrations, using
the corresponding external field operators Q̂00 = r2, Q̂20 =
r2Y20, and Q̂40 = r4Y40. A smearing width of 2 MeV is used to
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FIG. 2. Potential-energy surfaces [(a)–(c)] and monopole strength functions [(d)–(f)] of 64,74,86Ge calculated by CDFT with DD-ME2 and a
separable pairing force. The PES is illustrated by contours spacing 1 MeV, with a red pentagram denoting the minimal. The monopole strength
functions with (solid blue line) and without (dotted red line) the effect of triaxiality are smeared with � = 2 MeV.
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FIG. 3. (a) ISGMR, (b) ISGQR with K = 0, and (c) ISGHR with
K = 0 for 86Ge with (solid blue line) and without (dotted red line)
the effect of triaxial deformation. The arrow in each panel denotes
the peak due to the triaxial deformation, which is also highlighted in
the corresponding inset with a smearing width � = 1 MeV.

take into account the spreading effects [33]. The results for the
triaxially deformed case and for the axially deformed case are
drawn with solid blue lines and dotted red lines, respectively.

For the ISGMR, two branches of resonances can be identi-
fied when axial deformation is considered. The main peak of
ISGMR locates higher and a pronounced peak appears at the
lower excitation energy. The monopole vibration has no direc-
tional projection, so that the ISGMR cannot split itself. The
reason for the splitting is the monopole-quadrupole coupling
between the ISGMR and the ISGQR with K = 0 [27–29].
As can be identified in panel (a) and (b), the lower branch
of ISGMR locates at the same position as the ISGQR with
K = 0. When the triaxial deformation is considered, the loca-
tions of the aforementioned peaks remain nearly unchanged,
but the strength is slightly promoted for the lower one and
reduced for the higher one. Because in the triaxially deformed
case 86Ge is more elongated in the z direction, the E0-E2
coupling is stronger and pumps more strength to the lower
peak.

Since the lower branch of the ISGMR is aroused by the
E0-E2 coupling, it should contain considerable contributions
from quadrupole vibrations. To see this, in Fig. 4, the transi-
tion density, defined via

δρ(ω, x, y, z) =
∑
i, j

φ
†
i (x, y, z)δρi j (ω)φ j (x, y, z), (21)

for the lower branch of ISGMR near 16.5 MeV is presented,
with the distributions on the z = 0, y = 0, and x = 0 planes
in panels (a)–(c). The transition density for the ISGQR with
K = 0 are also presented in panels (d)–(f) for comparison,
from which it is clear that the vibration along the z axis is
out of phase with the vibration perpendicular to the z axis.
The transition density for the ISGMR has a similar feature, but
shows a strong mixture from the monopole vibration in the in-
terior of the nucleus. Therefore, triaxiality seems to introduce
no substantial difference to the main peaks of ISGMR, and the
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FIG. 4. Normalized transition densities at 16.5 MeV in 86Ge for
the resonance peaks of ISGMR [(a)–(c)], and the ISGQR with K = 0
[(d)–(f)]. Contours with positive (negative) values are drawn with
solid (dashed) lines.

monopole-quadrupole coupling is still valid for the triaxially
deformed nucleus 86Ge.

The most notable observation about the ISGMR in the
triaxially deformed case is that a small peak emerges near
ω ≈ 11.5 MeV in the strength function, as denoted by the
arrow in Fig. 3(a). The same resonance peak can also be found
in the strength function of ISGQR presented in Fig. 3(b).
As for the ISGHR in Fig. 3(c), it appears as a shoulder
at the low energy side of the main peak and enhances the
strength function between 10 to 12 MeV. Indeed, triaxiality
also impacts the low-energy strengths for ISGQR and IS-
GHR, e.g., quenching the strength functions around 2.5 and
7 MeV. However, as this work is devoted to investigating
the effect peculiar to triaxiality, we would like to focus on
the resonance peak at around 11.5 MeV, which will vanish
if the triaxiality is not considered. In the insets of Fig. 3, a
small smearing width � = 1 MeV is used to show the details
of the strength functions, and the peak near 11.5 MeV is high-
lighted. This triaxiality-induced resonance peak is discernible
for ISGMR, and is pronounced for ISGQR and ISGHR. The
fraction of the energy weighted moment exhausted by the
triaxiality-induced resonance peak, calculated by accumulat-
ing the energy weighted strength function from 10 to 12 MeV
for the triaxially deformed case and then subtracting that for
the axially deformed case, varies from 0.55% for ISGMR to
1.02% for ISGQR to 2.58% for ISGHR.

In a deformed nucleus, the monopole vibration may couple
to the K = 0 component of other even-J vibrations. Since the
resonance peak at 11.5 MeV responds to the monopole, the
quadrupole, as well as the hexadecupole perturbations simul-
taneously, it should contains a mixture from the monopole,
quadrupole, and hexadecupole vibrations. In close analogy to
the ISGMR splitting that manifests the monopole-quadrupole
(E0-E2) coupling, the triaxiality-induced resonance peak
might be an indicator of the coupling of the ISGMR and the
ISGQR as well as the ISGHR with K = 0, i.e., the monopole-
quadrupole-hexadecupole (E0-E2-E4) coupling. To verify
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FIG. 5. Normalized transition densities at 11.5 MeV in 86Ge
for the resonance peaks of ISGMR [(a)–(c)], ISGQR with K = 0
[(d)–(f)], and ISGHR with K = 0 [(g)–(i)]. Contours with positive
(negative) values are drawn with solid (dashed) lines.

the E0-E2-E4 coupling, and to check which vibration dom-
inates, the microscopic structure of the triaxiality-induced
resonance peak at 11.5 MeV is analyzed in the following. The
distributions of the transition density on the z = 0, y = 0, and
x = 0 planes are presented for ISGMR, ISGQR, and ISGHR
in Fig. 5. Since 86Ge is of a triaxial shape with γ = 20.9◦,
the density distribution is stretched in the x direction and
compressed in the y direction. Along the z axis, the phase
of the transition density in the interior region is different
from those spread outside. The transition densities show three
nodes right next to each other in the interior region, which
is a characteristic feature of hexadecupole vibrations. The
three-node pattern is prominent in the transition densities
of ISGMR, ISGQR, and ISGHR for the triaxiality-induced
resonance peak, hence the contributions from hexadecupole
vibrations are very strong and dominate. It should be noticed
that, typically, for a quadrupole vibration, the phase of the
transition density in the toroid on the z = 0 plane is opposite
to that in the top (bottom) lobe along the z axis; but for a
hexadecupole vibration, they have the same phase. Around
the z axis, according to different phases, both constructive
and destructive interference of the monopole, quadrupole, and
hexadecupole vibrations can be identified for the triaxiality-
induced peak in 86Ge. For instance, the transition densities
of ISGQR in panels (d)–(f) show significant mixture between
quadrupole and hexadecupole vibrations, with both in-phase
and out-of-phase vibrations between the peripheral region and
the interior region on the z = 0 plane. The transition density
of ISGMR in panels (a)–(c) is the result of the mixing of
monopole, quadrupole, and hexadecupole vibrations.
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FIG. 6. Single neutron levels of 86Ge; the odd-parity orbits are
omitted for simplicity. Particle-hole configurations with energy close
to 10 MeV which are prohibited (dashed arrows) in the axial case
may contribute (solid arrow) to J = 4 transitions in the triaxial
case.

In weakly bound neutron-rich nuclei, there may be low-
lying resonance peaks which are ascribed to the excitation of
excess neutrons [45,56–58]. For 86Ge, affected by the pairing
correlations, the four neutrons outside the N = 50 magic core
occupy the even-parity sdg shell. Since ISGMR has an even
parity and involves 2h̄ω particle-hole transitions [1], in the
deformed case the lowest available state a neutron in the sdg
shell can be excited to is 1i13/2, which is an intruder state to
the p f h shell and thus has a desired even parity. In princi-
ple, J = 4 transitions can be obtained through particle-hole
configuration 2d5/2 → 1i13/2, and 1g7/2 → 1i13/2, etc. In the
axially deformed case, the single-particle level with the an-
gular momentum j splits into (2 j + 1)/2 twofold degenerate
orbits; those with larger absolute values of angular momen-
tum projection � locate higher in energy when a nucleus
is elongated. As illustrated in Fig. 6, though the particle-
hole (ph) configurations 2d5/2 (�h = 5/2) → 1i13/2 (�p =
1/2) and 1g7/2 (�h = 7/2) → 1i13/2 (�p = 1/2) have ener-
gies close to 11.5 MeV (which are 12.21 and 8.99 MeV,
respectively), the transitions are forbidden by the selection
rule �p − �h = K = 0. In the triaxially deformed case, the
projection of the angular momentum K of a nucleus is not a
good quantum number. The aforementioned ph configurations
are no longer hindered, which will contribute a J = 4 compo-
nent to the resonance peak near 11.5 MeV.

Indeed, the J = 4 component of the vibration itself might
be too weak to give noticeable effects alone. However, for
the nucleus 86Ge, affected by the particle-hole configurations
provided by the triaxiality, the hexadecupole vibrations inter-
play with monopole and quadrupole vibrations dramatically,
and eventually lead to a strong E0-E2-E4 coupling where
hexadecupole vibration plays a dominate role.

IV. CONCLUSIONS

The isoscalar giant resonances for the triaxially deformed
nucleus 86Ge are studied with the quasiparticle finite am-
plitude method based on the covariant density functional
DD-ME2 and a separable pairing force. The ISGMR for 86Ge
splits into three components when the triaxial deformation
is considered. The deformation-induced double-peak struc-
ture for the ISGMR is clearly manifested when triaxiality
is considered, so that the well-known monopole-quadrupole
coupling is still valid for the triaxially deformed nucleus. In
addition, a small resonance peak appears at ω ≈ 11.5 MeV
in the strength functions of the ISGMR when the triaxiality
is taken into account. The absence of similar phenomena in
64Ge and 74Ge shows that the triaxiality-induced low-lying
monopole resonance peak may be significant only in neutron-
rich nuclei. For 86Ge, the triaxiality-induced resonance peak
also appears at the same energy in the strength functions of
ISGQR and ISGHR, implying the coupling among monopole,
quadrupole, and hexadecupole vibrations. Evidence for the
monopole-quadrupole-hexadecupole coupling is found by an-
alyzing the spatial distribution of the transition density. The
contribution from hexadecupole vibration is enhanced by the
triaxiality. The emergence of the resonance peak at 11.5 MeV
in the neutron-rich 86Ge is a peculiar effect induced by the
triaxiality. Therefore, it could serve as a fingerprint to identify
the triaxiality of 86Ge in future experiments.
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Sümmerer, and W. Waluś (LAND Collaboration), Phys. Rev. C
76, 051603(R) (2007).

[12] A. Carbone, G. Colò, A. Bracco, L.-G. Cao, P. F. Bortignon, F.
Camera, and O. Wieland, Phys. Rev. C 81, 041301(R) (2010).

[13] T. Inakura, T. Nakatsukasa, and K. Yabana, Phys. Rev. C 84,
021302(R) (2011).

[14] X.-W. Sun, J. Chen, and D.-H. Lu, Chin. Phys. C 42, 014101
(2018).

[15] Y. Gupta, U. Garg, J. Matta, D. Patel, T. Peach, J. Hoffman,
K. Yoshida, M. Itoh, M. Fujiwara, K. Hara, H. Hashimoto, K.
Nakanishi, M. Yosoi, H. Sakaguchi, S. Terashima, S. Kishi, T.
Murakami, M. Uchida, Y. Yasuda, H. Akimune et al., Phys.
Lett. B 748, 343 (2015).

[16] M. Itoh, H. Sakaguchi, M. Uchida, T. Ishikawa, T. Kawabata, T.
Murakami, H. Takeda, T. Taki, S. Terashima, N. Tsukahara, Y.
Yasuda, M. Yosoi, U. Garg, M. Hedden, B. Kharraja, M. Koss,
B. Nayak, S. Zhu, H. Fujimura, M. Fujiwara et al., Phys. Lett.
B 549, 58 (2002).

[17] T. Peach, U. Garg, Y. K. Gupta, J. Hoffman, J. T. Matta,
D. Patel, P. V. Madhusudhana Rao, K. Yoshida, M. Itoh, M.
Fujiwara, K. Hara, H. Hashimoto, K. Nakanishi, M. Yosoi, H.
Sakaguchi, S. Terashima, S. Kishi, T. Murakami, M. Uchida, Y.
Yasuda et al., Phys. Rev. C 93, 064325 (2016).

[18] M. N. Harakeh, K. van der Borg, T. Ishimatsu, H. P. Morsch,
A. van der Woude, and F. E. Bertrand, Phys. Rev. Lett. 38, 676
(1977).

[19] U. Garg, P. Bogucki, J. D. Bronson, Y. W. Lui, C. M. Rozsa,
and D. H. Youngblood, Phys. Rev. Lett. 45, 1670 (1980).

[20] U. Garg, P. Bogucki, J. D. Bronson, Y.-W. Lui, and D. H.
Youngblood, Phys. Rev. C 29, 93 (1984).

[21] D. H. Youngblood, Y.-W. Lui, and H. L. Clark, Phys. Rev. C 60,
067302 (1999).

[22] M. Buenerd, D. Lebrun, P. Martin, P. de Saintignon, and C.
Perrin, Phys. Rev. Lett. 45, 1667 (1980).

[23] S. Brandenburg, R. De Leo, A. G. Drentje, M. N. Harakeh,
H. Janszen, and A. van der Woude, Phys. Rev. Lett. 49, 1687
(1982).

[24] Y. Abgrall, B. Morand, E. Caurier, and B. Grammaticos, Nucl.
Phys. A 346, 431 (1980).

[25] S. Jang, Nucl. Phys. A 401, 303 (1983).
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[44] A. Bjelčić and T. Nikšić, Comput. Phys. Commun. 253, 107184

(2020).
[45] X. Sun, Phys. Rev. C 103, 044603 (2021).
[46] T. Inakura, T. Nakatsukasa, and K. Yabana, Phys. Rev. C 80,

044301 (2009).
[47] P. Avogadro and T. Nakatsukasa, Phys. Rev. C 84, 014314

(2011).
[48] M. T. Mustonen, T. Shafer, Z. Zenginerler, and J. Engel, Phys.

Rev. C 90, 024308 (2014).
[49] M. Kortelainen, N. Hinohara, and W. Nazarewicz, Phys. Rev. C

92, 051302(R) (2015).
[50] K. Washiyama and T. Nakatsukasa, Phys. Rev. C 96, 041304(R)

(2017).
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