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We report a comprehensive shell-model study of the log f t values for the forbidden β− decay transitions in the
region northeast of 208Pb. For this we have considered 210–215Pb → 210–215Bi and 210–215Bi → 210–215Po transitions.
We have performed shell-model calculation using the KHPE interaction in valence shells 82-126 for protons and
126-184 for neutrons without any truncation. We have also calculated half-lives and Q values for the concerned
nuclei. Recently several log f t values were observed corresponding to β− decay from the (8−) isomeric state of
214Bim at the CERN-ISOLDE facility [Andel et al., Phys. Rev. C 104, 054301 (2021)], and for the first time we
have reported shell-model results for these transitions.
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I. INTRODUCTION

The r process plays a significant role in the nucleosynthesis
of heavier nuclei in astrophysics [1]. It is believed to occur
in core-collapse supernovae [2] or neutron star mergers [3],
but the actual site of r-process nucleosynthesis is still an open
area for investigation [4]. The main conditions required for
the r-process nucleosynthesis [5] are high temperature and
large neutron density [6,7]. Further, the abundance pattern of
r-process nuclei shows enhanced peaks near neutron shell clo-
sures. 208Pb is the heaviest doubly magic stable nucleus with
82 protons and 126 neutrons. Due to the increased stability
of doubly magic nuclei compared to the single magic nuclei
and others, the region around these nuclei has always been
an area of great interest for investigation. The measurement
of half-lives of nuclei near N = 126 is difficult. Thus, it is
highly desirable to give theoretical predictions for half-lives
around this region. Suzuki et al. [8] have evaluated beta-decay
properties of r-process nuclei near N = 126 isotones using
shell-model calculations. First forbidden beta decay competes
with allowed Gamow-Teller (GT) and Fermi beta decay in the
region of N = 126 r-process nuclei [9,10]. It is thus crucial to
study these nuclei in this region for a better understanding of
the abundance pattern of these r-process nuclei.

Beta-decay can be divided into two categories: allowed and
forbidden, based on the value of the angular momentum of the
emitted leptons. Allowed transitions correspond to no change
in parity and the l = 0 state of the emitted leptons relative to
the nucleus, while l > 0 corresponds to the forbidden transi-
tions. Further, based on the value of spin angular momentum,
these transitions can be characterized in two categories, Fermi
and GT transitions. Fermi transitions correspond to spin non-
flip with S = 0, whereas GT transitions correspond to spin flip
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with S = 1. Further, forbidden transitions can be divided into
unique forbidden beta decay and nonunique forbidden beta
decay. In unique forbidden beta decay �J = l + 1, while in
nonunique forbidden beta decay �J = l − 1, l , where l is the
degree of forbiddenness. Change in parity for forbidden beta
decay is positive (even) for an even degree of forbiddenness,
while it is negative (odd) for an odd degree of forbiddenness.
Beta-decay properties have been evaluated using effective val-
ues of the weak coupling constants in Refs. [11,12]. Recently,
using the shell model, our group calculated first-forbidden
beta-decay properties of 207Hg → 207Tl in Ref. [13].

There are several approaches that can be used to calculate
beta-decay properties. One is the macroscopic approach, i.e.,
the gross theory of beta decay [14], and the other is the
microscopic approach, such as the quasiparticle random phase
approximation (QRPA) [15], density functional theory (DFT)
[16], Hartree-Fock-Bogoliubov method (HFB) [17], etc.
These models underestimate the residual interaction between
nucleons, which reduces the Gamow-Teller (GT) strengths
towards lower excitation energies [18–20]. There is another
approach, i.e., the shell model. We are using a large-scale
shell model in the study of beta-decay properties. Further,
in the shell model, quenching factors for the weak axial and
vector coupling constants are needed to reproduce reliable
data [21,22]. Several efforts have been made to calculate
quenching factors in the Pb region: Warburton [23] found that
the quenching factors for the axial and vector coupling con-
stants are different, and come out to be (gA/gfree

A , gV/gfree
V ) =

(0.47, 0.64) in the Pb region. Further, the mesonic en-
hancement factor was calculated in Refs. [24,25] for the
first forbidden beta decay with �Jπ = 0− for A = 205–212,
where the enhancement factor is defined as the proportion
of the axial-charge matrix element γ5 in first-forbidden beta
decay to its impulse-approximation value. This value comes
out to be εMEC = 1 + δMEC = 2.01 ± 0.05. Later, Rydstrom
et al. in Ref. [26] found two sets of quenching factors in the
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Pb region: one is (gA/gfree
A , gV/gfree

V ) = (0.34, 0.67) and the
other is (gA/gfree

A , gV/gfree
V ) = (0.51, 0.30). Furthermore, Zhi

et al. [27] performed large-scale shell-model calculations for
r-process waiting point nuclei with N = 50, 82, 126, includ-
ing both GT and first forbidden transitions. They found that
the shell model overestimate the transition strengths in the GT
and forbidden beta decays. Thus, they found the quenching
factors (gA/gfree

A , gV/gfree
V ) = (0.38, 0.51).

In the present work, the log f t values, average shape fac-
tor, and half-lives were calculated for 210–215Pb → 210–215Bi
and 210–215Bi → 210–215Po transitions and compared with the
available experimental data. These beta-decay properties were
computed using two sets of quenching factors: one calculated
from our work using the chi-squared fitting method, and the
other taken from Ref. [27]. To the best of our knowledge,
theoretical estimates for these nuclei mentioned were carried
out for the first time except for log f t values for 211Pb to 211Bi
transitions [24], which were calculated by using old exper-
imental data with a truncated model space using the KHPE
interaction [28]. In our work, we have performed large-scale
shell-model calculations without using any truncation. Since
β decay is very sensitive to the Q value, it is crucial to use a
precise Q value. Thus, we have also calculated Q values using
shell-model calculations and used them in the calculation
of beta-decay properties. The shell-model results were also
calculated where experimental data are not available. Based
on our calculated log f t values, we have confirmed spin and
parity of several states where experiments were unable to
make unique assignments.

Recently, a new experiment was performed at the CERN-
ISOLDE facility to study the 214Bi isotope using γ ray
spectroscopy, and a new isomeric state (8−) was identified.
Further, beta decay of this 214Bim isomer to various spin-
parity states of 214Po was studied, and its log f t values and
beta-decay feeding fractions were reported. Moreover, the
experimental energy spectra of 214Po and yrast and yrare
states of 214Bi were compared with the KHPE and H208
interactions, but log f t values using these shell-model inter-
actions were not calculated. Thus, for the first time, these
log f t and average shape factor values have been calculated
within the framework of shell-model and compared with the
experimental values according to the decay mode as presented
in Ref. [29].

The content of this paper is organized as follows: Section II
depicts the theoretical formalism in which the shell-model
Hamiltonian, beta-decay theory, and quenching factor are
briefly discussed. Further, the calculation of the quenching
factor with the help of the chi-squared fitting method is given
in this section. In Sec. III, log f t values, average shape factors,
and half-lives for the concerned nuclei are evaluated, and
computations of Q values are also carried out. Finally, the
conclusion is given in Sec. IV.

II. FORMALISM

A. Shell-model Hamiltonian

The nuclear shell-model Hamiltonian can be expressed
as combination of a single-particle energy term and a two-

nucleon interaction term [30]. The shell-model Hamiltonian
has the form

H = T + V =
∑

α

εαc†
αcα + 1

4

∑
αβγ δ

vαβγ δc†
αc†

βcδcγ , (1)

where α = {n, l, j, t} stands for single-particle state and the
corresponding single-particle energy is denoted by εα . c†

α

and cα stand for creation and annihilation operators. vαβγ δ =
〈αβ|V |γ δ〉 are the antisymmetrized two-body matrix ele-
ments.

B. β-decay theory for allowed and forbidden transitions

The theoretical formalism of beta-decay theory is briefly
explained here. Here, we will give brief details of the for-
malism about allowed and forbidden beta decay. One can find
more detailed formalisms in Refs. [31,32]. This formalism is
based on the impulse approximation [30], i.e., the decaying
nucleon does not feel strong interaction with the remaining
nucleons and only feels weak interaction at the instance of
decay. Here, the remaining nucleons will act as spectator. The
total half-life is the inverse of the decay rate, and it can be
defined as

1

T1/2
=

∑
k

1

t (k)
1/2

, (2)

where t (k)
1/2 is the partial half-life to the final state k. The partial

half-life is related to transition probability as

t1/2 = ln(2)∫ W0

mec2 P(We)dWe

, (3)

where the integrand in the denominator is the transition prob-
ability, and me is the electron mass. The probability of the
emitted beta particle to have energy between We and We + dWe

has the form

P(We)dWe = G2
F

(h̄c)6

1

2π3h̄
C(We)pecWe(W0 − We)2

× F0(Z,We)dWe, (4)

where GF is the effective coupling constant, i.e., the Fermi
coupling constant determining the strength of the beta inter-
action, and pe and We are the momentum and energy of the
emitted beta particle, respectively. W0 is the endpoint energy,
i.e., the maximum energy attained by the emitted beta parti-
cle in the beta-decay process. The C(We) is the shape factor
that depends on electron energy, and F0(Z,We) is the Fermi
function included in the expression for Coulomb interaction
between the beta particle and the remaining nucleus. For the
simplification of the integration, dimensionless quantities are
introduced such as w0 = W0/mec2, we = We/mec2, and p =
pec/mec2 = √

(w2
e − 1). Thus, the dimensionless integrated

shape function has the form

f =
∫ w0

1
C(we)pwe(w0 − we)2F0(Z,we)dwe. (5)

The shape factor does not depends on electron energy in
case of allowed transition, i.e., C(we) = B(GT), where B(GT)
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is the Gamow-Teller reduced transition probability. Thus,

C(we) = g2
A

2Ji + 1
|MGT|2, (6)

where the Ji is the initial angular momentum and gA is
the axial-vector coupling constant, and MGT stands for the
Gamow-Teller nuclear matrix element [33].

Thus, the phase-space factor becomes

f0 =
∫ w0

1
pwe(w0 − we)2F0(Z,we)dwe. (7)

For forbidden beta decay, the shape factor is given by

C(we) =
∑

ke,kν ,K

λke

[
MK (ke, kν )2 + mK (ke, kν )2

− 2γke

kewe
MK (ke, kν )mK (ke, kν )

]
, (8)

where K is the forbiddenness order as well as the angular
momentum transfer and ke and kν are the positive integers
emerging from partial wave expansion of the leptonic wave
function. The quantities MK (ke, kν ) and mK (ke, kν ) are com-
plicated combinations of the different form factors FKLS (q2)
containing nuclear structure information and the leptonic
phase space factors. They are expansions in a set of small
quantities {αZ, peR/h̄, pνR/h̄, mecR/h̄,WeR/h̄c}. Two dis-
tinct sums that satisfy ke + kν = K + 1 and ke + kν = K + 2
are taken in Eq. (8). Equation (8) is the case in which the
angular momentum transfer �J is equal to K , for example,
for the first-forbidden transition with �Jπ = 1− and K = 1.
When �J = K + 1, the additional terms MK+1(ke, kν ) with
ke + kν = K + 2 need to be included [34]. These terms cor-
respond to the first-forbidden transition with �Jπ = 2− with
K = 1, for example. When �J = 0 in the first-forbidden tran-
sition, the shape factor is given by M0(1, 1)2 + m0(1, 1)2 −
2γke
kewe

M0(1, 1) × m0(1, 1), where M0(1, 1) and m0(1, 1) are
given in Ref. [35] (see Appendix 3 also). More detail about
these quantities can be found in Refs. [34,36]. The auxiliary
quantities γke and λke can be written as

γke =
√

k2
e − (αZ )2 and λke = Fke−1(Z,we)/F0(Z,we),

where λke stands for Coulomb function and Fke−1(Z,we) is the
generalized Fermi function [34], which has the form

Fke−1(Z,we) = 4ke−1(2ke)(ke + γke )[(2ke − 1)!!]2eπy

×
(

2peR

h̄

)2(γke −ke )(∣∣�(
γke + iy

)∣∣
�(1 + 2γke )

)2

. (9)

The auxiliary quantity y = (αZwe/pec), where α = 1/137 is
the fine structure constant.

The form factor can be expanded in the form of power
series of the quantity qR/h̄, where q = |pe + pν | denotes the
momentum transfer and R denotes the nuclear radius. Thus,

form factor can be written as

FKLS (q2) =
∑

N

(−1)N (2L + 1)!!

(2N )!!(2L + 2N + 1)!!
(qR/h̄)2N F (N )

KLS

= F (0)
KLS − (qR)2

2(2L + 3)
F (1)

KLS. (10)

The higher order terms, i.e., N = 2, 3, 4, . . . can be
ignored because contributions of the momenta of the par-
ticipating leptons is small. The F (N )

KLS are the form factor
coefficients, with L, S, and K the ranks of orbital, spin,
and total transition operators, respectively. Using the impulse
approximation, the nuclear form factor coefficients can be
replaced by nuclear matrix elements (NMEs) in the form

RLV F (N )
KLS (ke, m, n, ρ) = (−1)K−LgV

VM(N )
KLS (ke, m, n, ρ),

(11)

RLAF (N )
KLS (ke, m, n, ρ) = (−1)K−L+1gA

AM(N )
KLS (ke, m, n, ρ).

(12)

Here, m is the total power of (meR/h̄), (WeR/h̄), and αZ ,
n is the total power of (WeR/h̄) and αZ , and ρ is the
power of αZ [34]. (The shape form factors for the forbid-
den transition are given in the Appendix using the NMEs.)
V/AM(N )

KLS (ke, m, n, ρ) are the NMEs [37,38], which can be
described as

V/AM(N )
KLS (pn)(ke, m, n, ρ)

=
√

4π

Ĵi

∑
pn

V/Am(N )
KLS (pn)(ke, m, n, ρ)

×( f ‖ [c†
pc̃n]K ‖ i ), (13)

where Ĵi = √
2Ji + 1 with Ji being the initial angular momen-

tum, and the summation runs over proton and neutron single-
particle states. The quantity V/Am(N )

KLS (pn)(ke, m, n, ρ) stands
for the single-particle matrix elements (SPMEs), and is inde-
pendent of the choice of nuclear models. ( f ||[c†

pc̃n]K ||i)
is the one-body transition density (OBTD), which varies for
different nuclear models. Here, (i) and ( f ) are the initial
and final nuclear states. The SPMEs are calculated with the
help of the formalism given in Ref. [35], whereas the OBTDs
are calculated from the shell-model using NUSHELLX [39] and
KSHELL [40]. The product of partial half-life and the dimen-
sionless integrated shape function is given by,

f t1/2 = κ, (14)

where κ is constant value which is expressed as [41]

κ = 2π3h̄7 ln(2)

m5
ec4(GF cos θC)2

= 6289 s, (15)

where θC is the Cabibbo angle which is the mixing angle
between two generation of quarks.

Usually, f t values are expressed in terms of log f t values
because f t values are large. Thus,

log f t ≡ log( f0t1/2).
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The phase space factor is sensitive to the Q value. There-
fore, it is essential to evaluate it precisely. Thus, the Q value
[42] can be expressed as

Q(β−) = Epar
g.s. − Edau

g.s. + δm, (16)

where δm = (mn − mp − me)c2 = 0.78 MeV. Epar
g.s. and Edau

g.s.
stand for ground state binding energies of the parent and
daughter nuclei, respectively. The binding energy of the
ground state is given by

E = ESM + Ecore + EC (Z, N ). (17)

Here ESM is the shell-model calculated binding energy and
Ecore is the binding energy of the core considered, and
EC (Z, N ) is the Coulomb energy which can be calculated from
the formalism given in Refs. [43,44].

C. Quenching factor

In beta decay, the Gamow-Teller and forbidden strengths
get overestimated in the shell-model calculations. The weak
coupling constants gV and gA are included in these Gamow-
Teller and forbidden strengths, where gV is the vector coupling
constant determined by CVC (conserved vector current) the-
ory and gA is the axial-vector coupling constant determined by
PCAC (partial axial-vector current) theory. The free nucleon
values of these weak coupling constants are gV = 1.0 and
gA = 1.27. These values get affected by many nucleon corre-
lations like model space truncation in shell-model calculations
and other nuclear medium effects. Therefore, the values of
weak coupling constants get heavily quenched in the heavier
mass region. Thus, we use effective values of these weak
coupling constants. According to Behrens and Bühring [31],
the average shape factor is given by

C(we) = f / f0. (18)

Here f is the phase space factor and f0 is the phase space
factor for allowed transitions. For allowed GT transitions, this
shape factor is independent of electron energy. However, for
nth forbidden transition, the average shape factor [24] comes
out to be

C(we)(fm2n) = 6289λ̄2n
Ce

f t
. (19)

Thus, for the first forbidden transition, the average shape
factor [45] has the form

C(we)(fm2) = 6289λ̄2
Ce

f t
= 9378 × 105

f t
, (20)

where λ̄Ce is the reduced Compton wavelength of electron.
Now, for allowed GT transitions, the operator is just στ,
whereas there are six nuclear matrix elements (NMEs) for
the first forbidden transition [30]. Out of these, four nonrel-
ativistic NMEs are extracted from wave-function expansion
of p-wave leptons, and rest two relativistic NMEs come from

the small components of Dirac spinors. These are

O(0−) : ORA = gA(σ · pe), OSA = gA(σ · r),

O(1−) : ORV = gV pe, OVA = gA(σ × r), OVV = gVr,

O(2x−) : OTA = gA[σr]2, (21)

where O(0−) is rank zero operator with �J=0. The terms ORA

and OSA are the recoil-axial matrix element and scalar-axial
matrix element, respectively. O(1−) is rank-1 operator with
�J = 1. The terms ORV, OVA, and OVV are the recoil-vector
matrix element, vector-axial matrix element, and vector-
vector matrix element, respectively. O(2−) is rank-2 operator
with �J = 2. The term OTA is the tensor-axial matrix ele-
ment. These six operators change parity during transition, i.e.,
πiπ f = −1. Further, the recoil-axial matrix element γ5 gets
enhanced over the impulse approximation with the aid of a
mesonic enhancement factor [46], which is denoted by εMEC.
We have used the value εMEC = 2.01 of mesonic enhancement
factor in these calculations for the rank-0 nuclear matrix el-
ement γ5 which corresponds to εMEC = 2.01 ± 0.05 given in
[24].

We obtained the quenching factor for 210–215Pb → 210–215Bi
and 210–215Bi → 210–215Po transitions using the chi-square
fitting method. We compared theoretical and experimental
average shape factor values for these transitions to get the
quenching factor. In our calculation for the average shape
factor, we included the next-to-leading order terms [47]. First
we performed calculations without including the quenching
factor by taking the bare values of the weak coupling con-
stant, i.e., gA = 1.27 and gV = 1.00. Corresponding results
are shown in Fig. 1(a); we can conclude that the theoretical
and experimental values of the average shape factor are very
far from each other. Hence, using the chi-square fitting method
to obtain the quenching factor, it comes out to be 0.38, such
that geff

A = qgfree
A = 0.4826 and geff

V = 1.00. Using these val-
ues of weak coupling constants, we have plotted Fig. 1(b) for
the same transitions. In this figure, the data points come close
to the central line, which means that theoretical values are ap-
proaching to the experimental ones. We also calculated values
of the average shape factor using another set of weak coupling
constants taken from Ref. [27]. Corresponding results are
shown in Fig. 1(c) for (gA/gfree

A , gV/gfree
V ) = (0.38, 0.51). This

figure shows the best fit for the average shape factor. In our
further calculations, we used these two sets of weak coupling
constants, i.e., in set I (gA/gfree

A , gV/gfree
V ) = (0.38, 1.00), and

in set II (gA/gfree
A , gV/gfree

V ) = (0.38, 0.51).

III. RESULTS AND DISCUSSION

In the present work, large-scale shell-model calculations
for the allowed and forbidden beta-decay transitions were
carried out in the region northeast of the doubly magic nu-
cleus 208Pb and compared these results with the recently
available experimental data [48]. In this work, for the first
time, we present theoretical log f t values, average shape fac-
tors, and half-lives for 210–215Pb → 210–215Bi and 210–215Bi →
210–215Po transitions. We have also calculated the quenching
factors (as discussed in the preceding section) and theoret-
ical Q values for these nuclei, and we have compared the
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FIG. 1. Comparison of calculated and experimental average
shape factors for allowed and first-forbidden transitions by using
different values of quenching factors for axial and vector coupling
constants.

shell-model results with the experimental data. In the
present work we performed shell-model calculations by
taking 208Pb as a core using the KHPE effective interac-
tion [28] given by Kuo and Herling for 208Pb (Z = 82,

N = 126). The model space for this interaction is 0h9/2, 1 f7/2,

1 f5/2, 2p3/2, 2p1/2, 0i13/2 for protons (82 < Z < 126) and

0i11/2, 1g9/2, 1g7/2, 2d5/2, 2d3/2, 3s1/2, 0 j15/2 for neutrons
(126 < N < 184).

In Table I, log f t values and average shape factors were
calculated from the ground states of 210–215Pb to the ground,
and several excited states of 210–215Bi using both sets of the
weak coupling constants. In some places, double parentheses
represents those states which are not confirmed experimen-
tally. These results have been computed using experimental
Q values taken from [48]. On comparing experimental and
theoretical results in Table I, we notice that both sets of weak
coupling constants give promising results for the log f t val-
ues. We can observe that the log f t value for the transition
from 210Pb(0+) to 210Bi(0−

1 ) at energy 46.539(1) keV is 5.469
for both sets, which agrees quite well the experimental value,
i.e., 5.4(1). In the case of 211Pb(9/2+) to 211Bi(9/2−

2 ) transi-
tion at energy 831.960(12) keV, the theoretical value of log f t
is 5.779 for set I and 5.771 for set II, which are near the exper-
imental value, i.e., 5.7330(18). Shell-model results for 211Pb
to 211Bi transitions have also been calculated by Warburton
[24] with the KHPE interaction using old data. Further, for the
transition from 213Pb ((9/2+)) to 213Bi(9/2−

1 ) the theoretical
log f t value for set I is 6.447 and for the set II it is 6.459, while
the experimental value is 6.5. In the case of the 215Pb ((9/2+))
to 215Bi ((9/2−

1 )) transition, experimentally, the log f t value
should be greater than or equal to 6.1, which is confirmed by
shell-model results as the log f t value for set I is 6.713 and for
set II it is 6.741. Also, in the 215Pb ((9/2+)) to 215Bi ((7/2−

1 ))
transition at energy 183.5(3) keV, this log f t value should
be greater than 6.6, which can be verified via theoretical
results; i.e., for set I it is 7.224 and for set II it is 8.486.
There are several such transitions for which theoretical log f t
values match very well with the experimental values, which
shows the authenticity of shell-model calculations. We have
also calculated log f t results corresponding to the transitions
for which experimental data are unavailable. For instance,
the log f t value for the 212Pb(0+) to 212Bi(2(−)

1 ) transition at
energy 115.183(5) keV is 10.143 for set I and 10.140 for set II.
In the case of the 214Pb(0+) to 214Bi(2−

1 ) transition at energy
53.2260(15) keV, this value comes out to be 9.446 for set I
and 9.445 for set II, while for the 214Pb(0+) to 214Bi ((2−

4 ))
transition at energy 377.03(4) keV this value comes out to be
10.211 for set I and 10.197 for set II. Furthermore, in case of
213Pb ((9/2+)) → 213Bi ((7/2−

2 ), (5/2−
1 )) at energy 592.72(8)

keV, experiments do not confirm one suitable spin state and
thus predict two possible spin states. Therefore, we performed
shell-model calculations for both possible spin states 7/2−

2
and 5/2−

1 . It is inferred from these results that the spin and
parity of the state at 592.72(8) keV is 7/2−

2 as its log f t value
is 8.184 for set I and 8.018 for set II, which are close to
the experimental value, i.e., 7.5. However, for the 214Pb(0+)
to 214Bi(0−

1 , 1−
3 ) transition at energy 351.9323(21) keV, our

calculated shell-model results for the log f t values give good
results for both possible spins of the state. Thus it is difficult
to distinguish the spin-parity of these two states. There are
some transitions in this table for which shell-model results
overestimate or underestimate the experimental log f t values.
For instance, for the 210Pb(0+) to 210Bi(1−

1 ) transition the ex-
perimental log f t value is 7.9(1), while for set I it is 6.719 and
for set II it is 8.517. Similarly, for 212Pb(0+) to 212Bi(1(−)

1 ),
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TABLE I. Comparison between theoretical and experimental [48] log f t values for Pb → Bi transitions. The calculations are carried out
through two sets of quenching factors in the weak coupling constants gV and gA, for set I (gA/gfree

A , gV/gfree
V ) = (0.38, 1.00), and for set II

(gA/gfree
A , gV/gfree

V ) = (0.38, 0.51). The quenching factors of set I were calculated from this work and those in set II were taken from [27].
Here, FNU and FU denotes forbidden nonunique and forbidden unique beta decay, respectively.

Transition log f t [C(we)]
1/2

Initial (Jπ
i ) Final (Jπ

f ) Decay mode Energy (keV) Expt. Set I Set II Expt. Set I Set II

210Pb(0+) 210Bi(1−
1 ) 1st FNU 0.0 7.9(1) 6.719 8.517 3.436 13.380 1.689

210Bi(0−
1 ) 1st FNU 46.539(1) 5.4(1) 5.469 5.469 61.102 56.422 56.422

211Pb(9/2+) 211Bi(9/2−
1 ) 1st FNU 0.0 5.990(8) 6.109 6.106 30.978 27.024 27.104

211Bi(7/2−
1 ) 1st FNU 404.866(9) 7.19(3) 6.239 7.183 7.781 23.262 7.847

211Bi(9/2−
2 ) 1st FNU 831.960(12) 5.7330(18) 5.779 5.771 41.644 39.480 39.881

211Bi(9/2−
3 ) 1st FNU 1109.485(23) 5.58(4) 5.507 5.513 49.665 54.049 53.646

212Pb(0+) 212Bi(1(−)
1 ) 1st FNU 0.0 6.73(4) 7.486 7.288 13.215 5.534 6.952

212Bi(2(−)
1 ) 1st FU 115.183(5) 10.143 10.140 0.260 0.261

212Bi(0(−)
1 ) 1st FNU 238.632(2) 5.179(10) 5.208 5.208 78.805 76.179 76.179

212Bi(1(−)
2 ) 1st FNU 415.272(11) 5.342(17) 4.551 5.156 65.321 162.418 80.915

213Pb ((9/2+)) 213Bi(9/2−
1 ) 1st FNU 0.0 6.5 6.447 6.459 17.221 18.297 18.057

213Bi ((7/2−
1 )) 1st FNU 257.63(7) 7.7 6.719 7.887 4.326 13.386 3.489

213Bi ((5/2−
1 )) 1st FU 592.72(8) 7.5 13.355 13.698 5.446 0.006 0.004

213Bi ((7/2−
2 )) 1st FNU 592.72(8) 7.5 8.184 8.018 5.446 2.477 2.998

213Bi ((9/2−
2 )) 1st FNU 977.71(8) 5.6 6.128 6.107 48.535 26.423 27.065

214Pb(0+) 214Bi(1−
1 ) 1st FNU 0.0 6.26(4) 7.873 7.144 22.701 3.545 8.205

214Bi(2−
1 ) 1st FU 53.2260(15) 9.446 9.445 0.580 0.580

214Bi ((2−
2 )) 1st FU 62.68(5) 8.087 8.098 2.772 2.756

214Bi ((3−
1 )) 3rd FNU 62.68(5) 15.860 14.949 53.652 153.140

214Bi ((2−
3 )) 1st FU 258.869(24) 8.04(12) 8.665 8.688 2.924 1.424 1.387

214Bi(1−
2 ) 1st FNU 295.2236(19) 5.250(24) 4.494 5.014 72.620 173.437 95.335

214Bi ((0−
1 )) 1st FNU 351.9323(21) 5.07(3) 5.080 5.080 89.342 88.348 88.348

214Bi ((1−
3 )) 1st FNU 351.9323(21) 5.07(3) 5.074 6.187 89.342 88.880 24.689

214Bi ((2−
4 )) 1st FU 377.03(4) 10.211 10.197 0.240 0.244

214Bi ((1−
4 )) 1st FNU 533.672(14) 6.23(4) 7.374 7.881 23.499 6.304 3.511

214Bi(1+
1 ) Allowed 838.994(22) 4.43(9) 4.251 4.251 0.483 0.594 0.594

215Pb ((9/2+)) 215Bi ((9/2−
1 )) 1st FNU 0.0 �6.1 6.713 6.741 �27.293 13.472 13.045

215Bi ((7/2−
1 )) 1st FNU 183.5(3) >6.6 7.224 8.486 <15.348 7.480 1.751

the experimental value is 6.73(4), while it is 7.486 for set
I and it is 7.288 for set II. There is one allowed transition
from 214Pb(0+) to 214Bi(1+

1 ) at energy 838.994(22) keV. The
shell-model log f t value using bare values of weak coupling
constants is 3.405, but when we are using effective values of
weak coupling constants it comes out to be 4.251 for both of
the sets, which is close to the experimental log f t value, i.e.,
4.43(9). Its branching fraction is 5.697% in the case of set II
using the experimental Q value. Experimentally this value of
branching fraction is 2.75(8)%.

Table II shows the log f t and average shape factor values
for the transitions from the ground states of 210–215Bi to the
ground and different excited states of 210–215Po, calculated
using both sets of the weak coupling constants. Decay mode
and experimental data are also included in this table. The
theoretical results are in quite good agreement with the
experimental data. For instance, the log f t value for the
210Bi(1−) to 210Po(0+

1 ) transition is 8.114 for set II, which
is close to the experimental value, i.e., 8.0. In the case of
the 211Bi(9/2−) to 211Po(9/2+

1 ) transition, the experimental
log f t value is 5.99(2), which is close to the shell-model

results; i.e., for set I it is 6.143 and for set II it is 6.140.
Also, for the 212Bi(1(−) ) to 212Po(2+

4 ) transition at energy
1805.96(10) keV, the theoretical log f t value for set I is 6.546
and for set II it is 6.926, which match with the experimental
value, i.e., 6.695(21). For the 213Bi(9/2−) to 213Po(9/2+

1 )
transition, this value is 6.367 for set I and 6.358 for set II,
which are very near the experimental value, i.e., 6.31(1). On
moving toward the transition from 214Bi(1−) to 214Po(0+

1 ),
the experimental log f t value is 7.872(11), which matches
with shell-model results, i.e., for set I it is 7.314 and for set II
it is 8.311. Further, in the 215Bi ((9/2−)) to 215Po ((11/2+

1 ))
transition at energy 293.53(10) keV, the experimental and
shell-model results for set II are in good agreement with each
other, i.e., the experimentally log f t value is 6.0(1) while for
set I it is 5.349 and for set II it is 5.813. Shell-model results for
the allowed transition from 214Bi(1−) to 214Po(1−

1 ) at energy
1994.639(13) keV were also calculated. The shell-model
log f t value is 8.126 for both set I and set II, which is
close to the experimental log f t value, i.e., 7.522(16). This
allowed transition corresponds to the branching fraction of
0.201% in the case of set II using the experimental Q value.
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TABLE II. The same as in Table I but for the Bi → Po transitions.

Transition log f t [C(we)]
1/2

Initial (Jπ
i ) Final (Jπ

f ) Decay mode Energy (keV) Expt. Set I Set II Expt. Set I Set II

210Bi(1−) 210Po(0+
1 ) 1st FNU 0.0 8.0 6.690 8.114 3.062 13.842 2.686

211Bi(9/2−) 211Po(9/2+
1 ) 1st FNU 0.0 5.99(2) 6.143 6.140 30.978 25.982 26.053

212Bi(1(−) ) 212Po(0+
1 ) 1st FNU 0.0 7.2664(16) 7.330 8.951 7.126 6.621 1.024

212Po(2+
1 ) 1st FNU 727.330(9) 7.720(11) 7.017 7.609 4.227 9.498 4.803

212Po(2+
2 ) 1st FNU 1512.70(8) 7.093(13) 6.554 6.645 8.701 16.179 14.581

212Po(1+
1 ) 1st FNU 1620.738(10) 6.748(11) 6.079 6.384 12.944 27.973 19.679

212Po(2+
3 ) 1st FNU 1679.450(14) 7.51(6) 5.850 6.447 5.383 36.411 18.295

212Po(0+
2 ) 1st FNU 1800.9(2) 8.05(9) 8.103 7.780 2.891 2.721 3.945

212Po(2+
4 ) 1st FNU 1805.96(10) 6.695(21) 6.546 6.926 13.758 16.327 10.543

213Bi(9/2−) 213Po(9/2+
1 ) 1st FNU 0.0 6.31(1) 6.367 6.358 21.235 20.068 20.287

213Po ((11/2+
1 )) 1st FNU 292.805(8) 8.45(10) 5.386 5.869 1.910 62.110 35.590

213Po ((7/2+
1 )) 1st FNU 440.446(9) 6.08(1) 9.381 9.302 28.252 0.624 0.684

213Po ((5/2+
1 )) 1st FU 600.87 (17) 10.03(9) 13.513 13.462 0.448 0.005 0.006

213Po ((13/2+
1 )) 1st FU 867.98(3) 8.64(5) 10.457 10.458 1.589 0.181 0.181

213Po ((9/2+
2 )) 1st FNU 1003.605(22) 7.49(3) 6.096 6.091 5.452 27.435 27.586

213Po ((9/2+
3 )) 1st FNU 1045.65(9) 7.85(7) 7.196 7.211 3.640 7.727 7.592

213Po ((11/2+
2 )) 1st FNU 1045.65(9) 7.85(7) 8.293 8.591 3.640 2.184 1.551

214Bi(1−) 214Po(0+
1 ) 1st FNU 0.0 7.872(11) 7.314 8.311 3.586 6.746 2.142

214Po(2+
1 ) 1st FNU 609.318(5) 9.06(7) 7.649 8.318 0.904 4.590 2.124

214Po(3−
1 ) 2nd FNU 1274.765(9) 9.5(3) 11.161 11.542 210.292 31.069 20.037

214Po(2+
2 ) 1st FNU 1377.681(7) 7.374(11) 6.695 6.978 6.296 13.754 9.934

214Po(0+
2 ) 1st FNU 1415.498(8) 8.25(3) 7.380 7.644 2.296 6.250 4.616

214Po(2+
3 ) 1st FNU 1543.370(9) 7.593(12) 6.299 6.926 4.893 21.696 10.548

214Po(2+
4 ) 1st FNU 1661.282(14) 8.21(4) 5.862 6.239 2.405 35.914 23.261

214Po(2+
5 ) 1st FNU 1729.613(7) 6.654(12) 6.506 7.167 14.423 17.094 7.992

214Po(1+
1 ) 1st FNU 1764.520(8) 6.634(13) 6.166 6.381 14.759 25.289 19.754

214Po(2+
6 ) 1st FNU 1847.446(9) 6.859(13) 6.379 6.729 11.391 19.801 13.236

214Po(1−
1 ) Allowed 1994.639(13) 7.522(16) 8.126 8.126 ≈ 0.0 ≈ 0.0 ≈ 0.0

215Bi ((9/2−)) 215Po(9/2+
1 ) 1st FNU 0.0 >6.9 6.653 6.642 <10.866 14.442 14.619

215Po(7/2+
1 ) 1st FNU 271.11(10) >8.2 10.020 8.737 <2.432 0.299 1.312

215Po ((11/2+
1 )) 1st FNU 293.53(10) 6.0(1) 5.349 5.813 30.623 64.770 38.001

215Po(5/2+
1 ) 1st FU 401.6(10) 7.7 13.796 13.714 4.326 0.004 0.004

215Po ((7/2+
2 )) 1st FNU 517.53(17) 7.8 9.041 8.965 3.855 0.924 1.008

215Po ((9/2+
2 )) 1st FNU 517.53(17) 7.8 6.619 6.608 3.855 15.024 15.20

215Po ((11/2+
2 )) 1st FNU 609.0(5) 7.4 9.058 10.090 6.110 0.905 0.276

215Po ((13/2+
1 )) 1st FU 609.0(5) 7.4 9.931 9.933 6.110 0.332 0.331

Experimentally this value of branching fraction is
1.192(21)%. There are several transitions for which our
computations overestimate or underestimate the log f t value.
For instance, there are small discrepancies in the results
of 213Bi decay. For the transition from 213Bi(9/2−) to
213Po ((5/2+

1 )) at energy 600.87(17) keV, the experimental
log f t value is 10.03(9) whereas the theoretical value for
set I is 13.513 and for set II it is 13.462. Also, for the
215Bi ((9/2−)) to 215Po(5/2+

1 ) transition at energy 401.6(10)
keV the experimental log f t value is 7.7 while the theoretical
value for set I is 13.796 and for set II it is 13.714, which
are approximately twice the experimental value. This can
be because of several reasons. First, the 9/2− state of
215Bi is not yet confirmed, and second, there are several
approximations (such as the impulse approximation) assumed
while calculating log f t and half-lives in the shell-model
calculations. Further, there are several transitions where

unique assignments of spin-parity are not possible. We
have calculated shell-model results for all possible spins
and parities of the states. However, it is difficult to make
unique assignments for these states because their results
are in close proximity to each other. For instance, in the
case of 213Bi(9/2−) to 213Po ((9/2+

3 ), (11/2+
2 )) at energy

1045.65(9) keV, the experimental log f t value is 7.85(7), and
the shell-model results for both 9/2+

3 and 11/2+
2 in 213Po

give values close to the experimental value. Thus, we can not
make a unique assignment of spin-parity for the state of 213Po
at 1045.65(9) keV.

As Q values play very important roles in the calculation
of beta-decay properties, we also calculated theoretical Q
values for the concerned nuclei; they are listed in Table III.
In this paper, we used experimental Q values for the calcu-
lation of shell-model results. Further, for better comparison,
we also used theoretical Q values to calculate log f t and
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TABLE III. Comparison between the shell-model Q values and experimental [48] Q values.

Transition E (SM) (MeV) Q value (MeV)

Initial Final Initial Final Expt. Theoretical

210Pb(0+) 210Bi(1−) −9.091 −8.403 0.0635(5) 0.092
211Pb(9/2+) 211Bi(9/2−) −12.936 −13.512 1.367(6) 1.356
212Pb(0+) 212Bi(1(−) ) −18.034 −17.882 0.5691(18) 0.628
213Pb ((9/2+)) 213Bi(9/2−) −21.762 −23.044 2.030(8) 2.062
214Pb(0+) 214Bi(1−) −26.788 −27.149 1.018(11) 1.141
215Pb ((9/2+)) 215Bi ((9/2−)) −30.370 −32.355 2.770(10) 2.765
210Bi(1−) 210Po(0+) −8.403 −8.762 1.1622(8) 1.139
211Bi(9/2−) 211Po ((9/2+)) −13.512 −13.309 0.574(5) 0.577
212Bi(1(−) ) 212Po(0+) −17.882 −19.212 2.2515(17) 2.110
213Bi(9/2−) 213Po(9/2+) −23.044 −23.598 1.422(5) 1.334
214Bi(1−) 214Po(0+) −27.149 −29.440 3.269(11) 3.071
215Bi ((9/2−)) 215Po(9/2+) −32.355 −33.661 2.189(15) 2.086

half-lives of the transitions included in this paper. Columns
1 and 2 show initial and final ground states of the transi-
tions of the concerned nuclei, and columns 3 and 4 show
shell-model binding energies of these nuclei. Column 5 shows
experimental Q values and column 6 shows calculated shell-
model Q values. It can be concluded that these shell-model
Q values are in close proximity with the experimental ones.
For instance, the theoretical Q value for the 215Pb to 215Bi
transition is 2.765 MeV while the experimental value is
2.770(10) MeV. These two values are very close to each
other.

Table IV compares theoretical and experimental half-lives
for Pb to Bi transitions using both sets of the coupling con-
stants. We calculated half-lives using experimental Q values.
Since we know beta-decay half-lives are very sensitive to the
Q values, we calculated half-lives using theoretical Q values
also. These half-lives were calculated using the property of
transition probability that it is additive in nature. It can be
concluded from this table that our calculations of half-lives
match well with the experimental half-lives in most of the
cases. For instance, the experimental half-life value for the
211Pb to 211Bi transition is 36.1(2) min while the theoretical
value for set I is 36.052 min with the experimental Q value.
In the case of the transition from 210Pb(0+) to 210Bi, the

experimental half-life does not match well with the result
of set I but matches well with the result of set II. Minor
discrepancies in the results can be explained as there are
several transitions for which unique spin-parity assignments
are not possible. Therefore, we have to exclude these tran-
sitions in our calculations, leading to some deviation in the
results.

Table V compares theoretical and experimental half-lives
for Bi to Po transitions using both sets of the weak coupling
constants. Calculations for half-lives were done using both
theoretical and experimental Q values. The theoretical results
for the half-lives agree pretty well with the experimental
half-lives in most of the cases. For instance, the experimental
half-life value for the 210Bi to 210Po transition is 5.012(5)
d while the theoretical value for set II is 5.631 d with the
experimental Q value and it comes out to be 5.894 d with the
theoretical Q value.

For better comparison of half-lives, we have plotted cal-
culated and experimental half-lives, with the use of both
the experimental and shell-model Q values, in Fig. 2 on a
logarithmic scale for Pb to Bi transitions. This plot shows
half-lives for both sets of the weak coupling constants using
both experimental and theoretical Q values. It can be con-
cluded from Fig. 2 that set II with the experimental Q values

TABLE IV. Comparison between theoretical and experimental [48] half-lives values for Pb → Bi transitions for experimental and
theoretical Q values. The calculations are carried out through two sets of quenching factors in the weak coupling constants gV and gA. The
values of quenching factor are for set I (gA/gfree

A , gV/gfree
V ) = (0.38, 1.00) and for set II (gA/gfree

A , gV/gfree
V ) = (0.38, 0.51). The quenching

factors of set I were calculated from this work and those of set II were taken from [27].

Transition Half-life

Initial Final Expt. Set I (Expt. Q) Set I (Theor. Q) Set II (Expt. Q) Set II (Theor. Q)

210Pb(0+) 210Bi 22.20(22) yr 5.974 yr 0.886 yr 23.087 yr 1.350 yr
211Pb(9/2+) 211Bi 36.1(2) min 36.052 min 40.534 min 41.743 min 43.157 min
212Pb(0+) 212Bi 10.622(7) h 8.804 h 4.069 h 11.004 h 4.476 h
213Pb ((9/2+)) 213Bi 10.2(3) min 15.452 min 16.246 min 19.542 min 18.661 min
214Pb(0+) 214Bi 27.06(7) min 10.733 min 10.558 min 33.306 min 33.792 min
215Pb ((9/2+)) 215Bi 147 s 617.223 s 675.112 s 3486.387 s 813.294 s
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TABLE V. The same as in Table IV but for the Bi → Po transitions.

Transition Half-life

Initial Final Expt. Set I (Expt. Q) Set I (Theor. Q) Set II (Expt. Q) Set II (Theor. Q)

210Bi(1−) 210Po 5.012(5) d 0.212 d 0.227 d 5.631 d 5.894 d
211Bi(9/2−) 211Po 2.14 (2) min 2.769 min 2.750 min 2.754 min 2.736 min
212Bi(1(−) ) 212Po 60.55(6) min 56.694 min 79.610 min 297.021 min 466.002 min
213Bi(9/2−) 213Po 45.59(6) min 13.461 min 27.040 min 28.880 min 49.984 min
214Bi(1−) 214Po 19.71(2) min 4.261 min 7.786 min 12.033 min 23.224 min
215Bi ((9/2−)) 215Po 7.6(2) min 2.103 min 3.409 min 5.275 min 8.152 min

matches extremely well with the experimental half-lives up
to N = 130. Further, at N = 131, there is a good agreement
between the experimental half-lives and those obtained for
set I with both the experimental and theoretical Q values.
There is a slight deviation at N = 133. However, set I using
both the experimental and theoretical Q values approaches the
experimental value significantly better than the others.

In Fig. 3, half-lives have been plotted for Bi to Pb transi-
tions for both sets of the weak coupling constants using both
Q values. For N = 127 and 128, results of set II obtained with
experimental and theoretical Q values agree very well with
the experimental results. However, set I using experimental
Q values is more favorable than the others at N = 129, while
there is a good agreement between the experimental values
and set II values for both theoretical and experimental Q
values at N = 130 to 132.

For a better and more detailed comparison of the shell-
model and experimental half-lives, we calculated the error in
the theoretical half-lives compared to the experimental ones.
Table VI shows the deviation in calculated half-lives com-
pared to the experimental half-lives on a logarithmic scale
because the magnitudes of half-lives listed in Tables IV and
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FIG. 2. Comparison of calculated and experimental [48] half-
lives for allowed and first-forbidden transitions for Pb → Bi with ex-
perimental and shell-model Q values. For set I (gA/gfree

A , gV /gfree
V ) =

(0.38, 1.00) and for set II (gA/gfree
A , gV /gfree

V ) = (0.38, 0.51) were
used.

V vary in a wide range. Therefore in this table we have tried
to show the mean deviation and fluctuation [49–51] from
the experimental data on a logartihmic scale for both sets of
the weak coupling constants, including both theoretical and
experimental Q values. Here, r is the measure of deviation,
which is defined as

r = log10

(
T Calc

1/2 /T exp
1/2

)
, (22)

where T Calc
1/2 is the theoretically calculated half-life value and

T exp
1/2 is the experimental half-life value. Its mean value is

denoted by r̄ and standard deviation is denoted by σ . These
quantities are defined as

r̄ = 1

n

n∑
i=1

ri, (23)

σ =
[

1

n

n∑
i=1

(ri − r̄)2

]1/2

, (24)

where n is the number of transitions taken to calculate the half-
lives and the index i goes from 1 to n. In these calculations, the
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FIG. 3. Comparison of calculated and experimental [48] half-
lives for allowed and first-forbidden transitions for Bi → Po with ex-
perimental and shell-model Q values. For set I (gA/gfree

A , gV /gfree
V ) =

(0.38, 1.00) and for set II (gA/gfree
A , gV /gfree

V ) = (0.38, 0.51) were
used.
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TABLE VI. Error in calculated half-life values in comparison to
experimental [48] half-lives. Comparison is given for both sets of the
weak coupling constants using both experimental and shell-model Q
values.

Using Q (Expt.) Using Q (Theor.)

Set I Set II Set I Set II

r̄ −0.274 0.177 −0.284 0.066
σ 0.487 0.431 0.577 0.486
10r̄ 0.532 1.503 0.520 1.164
10σ 3.069 2.701 3.780 3.059

value of n is 12. The mean error value and standard deviation
should be equal to zero for minimal deviations because we
have calculated them on a logarithmic scale. Our results are
approaching zero for both experimental and theoretical Q
values, so we can conclude that our calculations show good
agreement with the experimental data. Use of experimental Q
values is generally better than the case of theoretical Q values.
Use of set II improves the agreement with the experimental
data compared with set I. We have also shown the mean and
standard deviation in powers of 10 to eliminate the logarithmic
scale.

Recently, a new beta-decaying isomeric state (8−) for
214Bim was predicted at the CERN-ISOLDE facility, decay-
ing to various excited states of 214Po listed in Table VII
with a half-life of 9.39(10) min. In Ref. [29], experimental
energy spectra are compared with shell-model results, but
shell-model results for beta-decay properties such as log f t
are not reported. We here give theoretical estimates for these
results. Table VII shows the log f t and average shape factor
for the 214Bi ((8−)) isomer. Computations were carried out
for various transitions from the 214Bi ((8−)) isomer to dif-
ferent excited states of 214Po by using theoretical Q values.

All the transitions in this table are first forbidden nonunique
transitions except one transition that is a first forbidden unique
transition. Thus, we have compared our shell-model results
according to the decay mode with the experimental data
available in the reference mentioned above. Good results
are obtained for the shell-model calculations. For instance,
at excitation energy 1584.4(4) keV for a transition from
214Bi ((8−)) to 214Po ((8+

1 )), the experimental log f t value
is 6.25(12) and the theoretical values are 6.264 for set I
and 6.255 for set II. We computed log f t values for all the
transitions where more than one spin-parity assignment is
possible. Based on shell-model results it is possible to predict
one suitable spin-parity for the state at that energy level. It
can be inferred that the spin-parity for the state at energy
1633.5(4) keV can be 8+

2 because its theoretical log f t values
are 6.466 for set I and 6.518 for set II, which are close to
the experimental value, i.e., 6.62(14). Also, at energy level
1843.0(4) keV, the experimental log f t will be decided based
on whether the decay is unique first forbidden or nonunique
first forbidden beta decay. As a result, the state is predicted to
be 7+

1 out of two possible spin-parity states, 6+
1 and 7+

1 , be-
cause the calculated log f t value of the 7+

1 state is close to the
experimental value as compared to that for 6+

1 . At energy level
1969.1(4) keV, it is difficult to assign a unique spin-parity for
the state out of two 8+

4 and 9+
2 states, because both spin-parity

assignments give good results. At energy 2059.5(4) keV, 8+
5

can be suitable as its log f t value for set I is 6.771 and for set
II it is 7.558, whereas its experimental value is 6.04(13). Also,
at energy 2197.6(4) keV, the 8+

6 state can be predicted because
its theoretical log f t value is 7.297 and the experimental value
is 6.40(14).

IV. CONCLUSION

In the present work, we calculated various beta-decay
properties such as log f t values, shape factors, and half-lives

TABLE VII. Comparison between theoretical and experimental [29] log f t values for 214Bim ((8−)) transitions to the different excited
states in 214Po transitions. The calculations are carried out through two sets of quenching factors in the weak coupling constants gV and gA.
The values of quenching factors are for set I (gA/gfree

A , gV/gfree
V ) = (0.38, 1.00) and for set II (gA/gfree

A , gV/gfree
V ) = (0.38, 0.51). The quenching

factors of set I were calculated from this work and those of set II were taken from [27].

Final state log f t [C(we)]
1/2

Jπ
f (Expt.) Jπ

f (SM) Decay mode Energy (keV) Expt. Set I Set II Expt. Set I Set II

(8+) 8+
1 1st FNU 1584.4(4) 6.25(12) 6.264 6.255 22.964 22.587 22.834

(8+, 9+) 8+
2 1st FNU 1633.5(4) 6.62(14) 6.466 6.518 14.999 17.917 16.867

(8+, 9+) 9+
1 1st FNU 1633.5(4) 6.62(14) 5.468 5.941 14.999 56.523 32.786

(8+) 8+
3 1st FNU 1824.5(4) 6.25(12) 5.945 6.018 22.964 32.607 30.006

(6+, 7+) 6+
1 1st FU 1843.0(4) 8.69(17) 11.130 11.147 1.384 0.083 0.082

(6+, 7+) 7+
1 1st FNU 1843.0(4) 7.86(13) 9.643 8.726 3.598 0.462 1.328

(8+, 9+) 8+
4 1st FNU 1969.1(4) 6.93(13) 6.371 6.757 10.497 19.973 12.813

(8+, 9+) 9+
2 1st FNU 1969.1(4) 6.93(13) 7.005 7.517 10.497 9.631 5.341

(8+, 9+) 8+
5 1st FNU 2059.5(4) 6.04(13) 6.771 7.558 29.245 12.610 5.096

(8+, 9+) 9+
3 1st FNU 2059.5(4) 6.04(13) 10.183 10.148 29.245 0.248 0.258

(9) 9+
4 1st FNU 2159.0(4) 7.80(16) 7.743 7.895 3.855 4.118 3.454

(8+, 9+) 8+
6 1st FNU 2197.6(4) 6.40(14) 7.297 7.297 19.322 6.877 6.883

(8+, 9+) 9+
5 1st FNU 2197.6(4) 6.40(14) 8.372 9.657 19.322 1.995 0.455
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of nuclei in the region northeast of 208Pb nucleus. These
computations were performed for 210–215Pb → 210–215Bi and
210–215Bi → 210–215Po transitions using the KHPE effective
interaction without any truncation. First, we computed the
quenching factor using the chi-square fitting method. Then,
using this value of the quenching factor and another set taken
from Ref. [27], we calculated log f t , shape factors, and half-
lives of these transitions. We also calculated shell-model Q
values of the concerned nuclei, and used both experimental
and theoretical Q values to study these beta-decay properties
for better comparison. Our results for the log f t values and
half-lives obtained by the shell-model calculations show good
agreement with the available experimental data. Use of ex-
perimental Q values and inclusion of the quenching in both
the axial and vector couplings is generally better compared
with the case of theoretical Q values and the quenching in
the axial coupling only. We have also calculated log f t values
for the 214Bim ((8−)) isomer recently predicted at the CERN-
ISOLDE facility. We used shell-model Q values for these
calculations. We also confirmed spins and parities of various
states with the help of shell-model calculations, where unique
assignments of spin-parity are not possible experimentally.
Also, we calculated log f t values of the transitions whose
experimental data are not available. These shell-model results
will add more information to the present data and will be very
helpful for future experiments. Further, shell-model results
can be improved with the inclusion of core polarization effects

[23] by allowing nucleon excitation across the 208Pb core and
tuning effective interactions.
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APPENDIX

1. The quantities MK (ke, kν ) and mK (ke, kν )

Here, we have introduced MK (ke, kν ) and mK (ke, kν ) in or-
der to obtain the final expression of the shape factor in Eq. (8).
As in the earlier works [11,12,34,47,52], we have included the
next-to-leading order (NLO) corrections to the shape factor.
In this way, the number of NMEs increases drastically, and,
in the case of the second-forbidden nonunique β− decay, the
number of NMEs is increased from 8 to 27 (see the full details
about the NLO corrections in Refs. [34,47]). The explicit
expressions of the quantities MK (ke, kν ) and mK (ke, kν ) can
be expressed in the following way (also see Ref. [34]) that
includes both the leading order and next-to-leading order cor-
rections in the shape factor.

(1) In the case of the summation ke + kν = K + 1, the
quantity M(ke, kν ) is given by

MK (ke, kν ) = KKξ ke+kν−2
(√

w2
e − 1

)ke−1
(w0 − we)kν−1 ×

[√
2K + 1

K
R−(K−1)gV

VM(0)
KK−11

−
(

we

2ke + 1
+ w0 − we

2kν + 1

)
ξR−K gV

VM(0)
KK0 − αZ

2ke + 1
R−K gV

VM(0)
KK0(ke, 1, 1, 1)

+
√

K + 1

K

(
we

2ke + 1
− w0 − we

2kν + 1

)
ξR−K gA

AM(0)
KK1 +

√
K + 1

K

αZ

2ke + 1
R−K gA

AM(0)
KK1(ke, 1, 1, 1)

− 2

√
K + 1

2K + 1

we

2ke + 1

w0 − we

2kν + 1
ξ 2R−(K+1)gV

VM(0)
KK+11 − 2

√
K + 1

2K + 1

αZ

2ke + 1

w0 − we

2kν + 1
ξR−(K+1)gV

× VM(0)
KK+11(ke, 1, 1, 1) + 1√

K (2K + 1)

we

2ke + 1

w0 − we

2kν + 1
ξ 2R−(K−1)gV

VM(1)
KK−11

+ 1

2

√
2K + 1

K

(
1

2ke + 1
− w2

e

2ke + 1
− (w0 − we)2

2kν + 1

)
ξ 2R−(K−1)gV

VM(1)
KK−11

+ 1√
K (2K + 1)

αZ

2ke + 1

w0 − we

2kν + 1
ξR−(K−1)gV

VM(1)
KK−11(ke, 1, 1, 1) −

√
2K + 1

K

αZwe

2ke + 1
ξR−(K−1)gV

× VM(1)
KK−11(ke, 2, 2, 1) − 1

2

√
2K + 1

K

(αZ )2

2ke + 1
R−(K−1)gV

VM(1)
KK−11(ke, 2, 2, 2)

]
, (A1)

and the quantity m(ke, kν ) is given by

mK (ke, kν ) =KKξ ke+kν−1
(√

w2
e − 1

)ke−1
(w0 − we)kν−1 1

2ke + 1

[
−R−K gV

VM(0)
KK0 +

√
K + 1

K
R−K gA

AM(0)
KK1

−2

√
K + 1

2K + 1

w0 − we

2kν + 1
ξR−(K+1)gV

VM(0)
KK+11
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+ 1√
K (2K + 1)

w0 − we

2kν + 1
ξR−(K−1)gV

VM(1)
KK−11

−1

2

√
2K + 1

K
αZR−(K−1)gV

VM(1)
KK−11(Ke, 2, 1, 1)

]
. (A2)

(2) In the case of the summation ke + kν = K + 2, the quantities are given by

MK (ke, kν ) = K̃Kξ ke+kν−2(
√

w2
e − 1)ke−1(w0 − we)kν−1

√
K + 1

(2ke − 1)(2kν − 1)

[
R−K gV

VM(0)
KK0 + ke − kν√

K (K + 1)

×R−K gA
AM(0)

KK1 +
√

1

(K + 1)(2K + 1)

(
2ke − 1

2ke + 1
we + 2kν − 1

2kν + 1
(w0 − we)

)
ξR−(K+1)gV

VM(0)
KK+11

+
√

1

(K + 1)(2K + 1)

2ke − 1

2ke + 1
αZ−(K+1)gV

VM(0)
KK+11(ke, 1, 1, 1)

+
√

1

K (2K + 1)

(
2(kν − 1)

2ke + 1
we + 2(ke − 1)

2kν + 1
(w0 − we)

)
ξR−(K−1)gV

VM(1)
KK−11

+
√

1

K (2K + 1)

2(kν − 1)

2ke + 1
αZR−(K−1)gV

VM(1)
KK−11(ke, 1, 1, 1)

]
(A3)

and

mK (ke, kν ) = K̃Kξ ke+kν−1(
√

w2
e − 1)ke−1(w0 − we)kν−1

√
K + 1

(2ke − 1)(2kν − 1)

1

2ke + 1

[√
1

(K + 1)(2K + 1)

×(2ke − 1)R−(K+1)gV
VM(0)

KK+11 + 2

√
1

K (2K + 1)
(kν − 1)R−K gA

AM(1)
KK1

]
. (A4)

In addition to Eqs (A3) and (A4), one additional term MK+1(ke, kν ) is also included in the shape factor for the summation
ke + kν = K + 2, which is given by

MK+1(ke, kν ) = K̃Kξ ke+kν−2(
√

w2
e − 1)ke−1(w0 − we)kν−1

[
− R−K gA

AM(0)
K+1K1

+
√

K + 1

2K + 3

(
we

2ke + 1
+ w0 − we

2kν + 1

)
ξR−(K+1)gA

AM(0)
K+1K+10

+
√

K + 1

2K + 3

αZ

2ke + 1
R−(K+1)gA

AM(0)
K+1K+10(ke, 1, 1, 1)

−
√

K + 2

2K + 3

(
we

2ke + 1
− w0 − we

2kν + 1

)
ξR−(K+1)gV

VM(0)
K+1K+11

−
√

K + 2

2K + 3

αZ

2ke + 1
R−(K+1)gV

VM(0)
K+1K+11(ke, 1, 1, 1)

]
, (A5)

where the auxiliary quantity ξ = mec2R/(h̄c) and the prefactors KK and K̃K in Eqs. (A1)–(A5) are expressed as

KK =
√

1

2

√
(2K )!!

(2K + 1)!!

√
1

(2ke − 1)!(2kν − 1)!
, (A6)

K̃K =
√

(2K )!!

(2K + 1)!!

√
1

(2ke − 1)!(2kν − 1)!
, (A7)

where the NMEs V/AM(N )
KLS (ke, m, n, ρ) contains all the nuclear-structure information of the nuclear β decay transitions, and

these are discussed in the next section.
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2. Nuclear matrix elements

To calculate the Eq. (13), we need the corresponding SPMEs that comes from the β decay transition operator between the
initial and final single-particle wave functions:

V m(N )
KLS (pn)(ke, m, n, ρ) = 1

K̂

(
p

∥∥∥∥TKLS

(
r

R

)2N

I (ke, m, n, ρ; r)

∥∥∥∥n

)
, (A8)

Am(N )
KLS (pn)(ke, m, n, ρ) = 1

K̂

(
p

∥∥∥∥γ5TKLS

(
r

R

)2N

I (ke, m, n, ρ; r)

∥∥∥∥n

)
, (A9)

Inside the NMEs, the coefficients I (ke, m, n, ρ; r) are a function of r and depend on the nuclear charge distribution. More
information on these coefficients is found in Ref. [35]. The TKLS is the transition operator, which is defined as

TKLS =
{

iLrLYLMδLK , S = 0,

iLrL(−1)L−K+1rL[YLσ]KM, S = 1,
(A10)

where YLM are spherical harmonics functions and σ is the Pauli matrix.
In Eqs. (A1)–(A5), the required all NMEs can be obtained from only four kinds of single-particle matrix elements, which are

the vector or axial-vector character. Now we define the single-particle expression for all the nuclear matrix elements for Eq. (13):

V m(N )
KK0(ke, m, n, ρ) =

√
2

2Ji + 1

{
GKK0(k f , ki )

∫ ∞

0
g f (r, k f )

(
r

R

)2N+K

I (ke, m, n, ρ; r)

× gi(r, ki )r
2dr + sgn(k f )sgn(ki )GKK0(−k f ,−ki )

×
∫ ∞

0
f f (r, k f )

(
r

R

)2N+K

I (ke, m, n, ρ; r) fi(r, ki )r
2dr

}
, (A11a)

Am(N )
KL1(ke, m, n, ρ) =

√
2

2Ji + 1

{
GKL1(k f , ki )

∫ ∞

0
g f (r, k f )

(
r

R

)2N+L

I (ke, m, n, ρ; r)

× gi(r, ki )r
2dr + sgn(k f )sgn(ki )GKL1(−k f ,−ki )

×
∫ ∞

0
f f (r, k f )

(
r

R

)2N+L

I (ke, m, n, ρ; r) fi(r, ki )r
2dr

}
, (A11b)

V m(N )
KL1(ke, m, n, ρ) =

√
2

2Ji + 1

{
sgn(ki )GKL1(k f ,−ki )

∫ ∞

0
g f (r, k f )

(
r

R

)2N+L

× I (ke, m, n, ρ; r) fi(r, ki )r
2dr + sgn(k f )GKL1(−k f , ki )

×
∫ ∞

0
f f (r, k f )

(
r

R

)2N+L

I (ke, m, n, ρ; r)gi(r, ki )r
2dr

}
, (A11c)

Am(N )
KK0(ke, m, n, ρ) =

√
2

2Ji + 1

{
sgn(ki )GKK0(k f ,−ki )

∫ ∞

0
g f (r, k f )

(
r

R

)2N+K

× I (ke, m, n, ρ; r) fi(r, ki )r
2dr + sgn(k f )GKK0(−k f , ki )

×
∫ ∞

0
f f (r, k f )

(
r

R

)2N+K

I (ke, m, n, ρ; r)gi(r, ki )r
2dr

}
, (A11d)

where gi(r, k)/ fi(r, k) and g f (r, k)/ f f (r, k) are the radial wave functions for the initial and final states, respectively and the
quantity GKLS (k1, k2) is defined in [53] as

GKLS (k1, k2) =
√

(2S + 1)(2K + 1)(2l1 + 1)(2l2 + 1)(2 j1 + 1)(2 j2 + 1)

× il1+l2+L(−1)( j1− j2 )〈l1l200|L0〉
⎧⎨⎩

K S L
j1

1
2 l1

j2
1
2 l2

⎫⎬⎭. (A12)

The above equations (A11a)–(A11d) are written in the Biedenhan-Rose phase convention [31].
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To evaluate the above single-particle matrix elements of (A8) and (A9), we used the relativistic single-particle spinor wave
functions [34] for initial and final states, that are given by

φnl jm(r) =
[Gnl jm(r)
Fnl jm(r)

]
, (A13)

where the large component Gnl jm(r) is taken as a solution of the nonrelativistic Schrödinger equation for a harmonic oscillator,
which is defined as

Gnl jm(r) = iLgnl (r)[Ylχ1/2] jm, (A14)

and here χ1/2 is the nonrelativistic spinor of spin 1
2 . The small component of (A13) is

Fnl jm(r) = σ.p
2MNc

Gnl jm(r)

= il+1h̄

2MNcb
(−1)l+ j− 1

2

[
r

b
gnl (r) − 2

√
n + j + 1gnl+1(r)

]
[Yl+1χ1/2] jm, (A15)

where the MN = 940 MeV/c is the nuclear mass and b is the harmonic-oscillator size parameter. The final expression of the
above equation is the analytic form of the Fnl jm when gnl is taken to be a harmonic-oscillator wave function.

3. First forbidden nonunique β− decay with �J = 0

In the case of the first forbidden nonunique β− transitions with zero angular momentum change, i.e., K = 1 and �J = 0, the
shape factor of Eq. (8) is expanded with two more nuclear matrix elements. The additional part of the shape factor is expressed
as

C(we) = ζ 2g2
A

[(
1

ζ

AM(0)
000 + w0

3
AM(0)

011 − α̃Z

3
AM(0)

011(ke, 1, 1, 1)

)2

+
( AM(0)

011

3

)2

− 2γ1

we

(
1

ζ

AM(0)
000 + w0

3
AM(0)

011 − α̃Z

3
AM(0)

011(ke, 1, 1, 1)

)( AM(0)
011

3

)]
, (A16)

where the auxiliary quantities are ζ = mec2/h̄c and α̃Z = αZ/ξ . The new matrix elements are now expressed as

AM(0)
000 =

√
4π

Ĵi

∑
pn

Am(0)
000(pn)( f ‖[c†

pc̃n]0‖i ), (A17)

AM(0)
011 =

√
4π

Ĵi

∑
pn

Am(0)
011(pn)( f ‖[c†

pc̃n]0‖i ). (A18)
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