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The basic version of the semimicroscopic particle-hole dispersive optical model is adopted and implemented to
describe main properties of the Gamow-Teller and charge-exchange giant spin-monopole resonances in medium-
heavy closed-shell parent nuclei. Calculation results obtained for 48Ca, 90Zr, 132Sn, and 208Pb are compared with
available experimental data.
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I. INTRODUCTION

Main properties of giant resonances (GRs) related to high-
energy excitations of the particle-hole type in medium-heavy
nuclei are described by a number of characteristics. These
are the energy-averaged strength function and projected (one-
body) transition density both related to an appropriate external
field (one-body probing operator), and probabilities of direct
one-nucleon decay. The mentioned characteristics can be eval-
uated within a model, in which the main relaxation modes
of particle-hole (p-h) states associated with GRs are together
taken into account. The relaxation modes include Landau
damping, and coupling the p-h states to the single-particle
(s-p) continuum and to many-quasiparticle configurations (the
spreading effect). The recently developed particle-hole disper-
sive optical model (PHDOM) [1] can be considered as such a
model. Being formulated in a rather general form for medium-
heavy closed-shell nuclei, the PHDOM is an extension of
the continuum-random-phase-approximation (cRPA) standard
[2] and nonstandard [3] versions to taking into account the
spreading effect. Within the PHDOM, Landau damping and
coupling to s-p continuum are described microscopically in
terms of a mean field and p-h interaction, while the spreading
effect is treated phenomenologically in terms of the respective
energy-averaged p-h self-energy term. The imaginary part of
this term determines the real part via a microscopically based
dispersive relationship. For the above reasons, the PHDOM is
related to semimicroscopic models.

In recent years, the basic PHDOM version has been
adopted and then implemented for describing properties of
some isoscalar and isovector GRs in medium-heavy closed-
shell nuclei (see, e.g., Ref. [4] and references therein). In
these implementations, a realistic phenomenological (of the
Woods-Saxon type) partially self-consistent mean field (with
parameters taken from independent data), and Landau-Migdal
p-h interaction have been exploited. Two self-consistency con-
ditions used are related to isospin-symmetry and translation

invariance of the model Hamiltonian. Among references given
in Ref. [4], we point out Ref. [5], where the PHDOM-based
description of isobaric analog resonance and its overtone
(i.e., isovector giant monopole resonance in the β (−) chan-
nel) has been proposed. In the following, we use a similarity
in describing characteristics of the mentioned 0+ GRs and
Gamow-Teller resonance (GTR), its overtone [i.e., isovec-
tor giant spin-monopole resonance in the β (−) channel
(IVGSMR(−) )]. In the present work, the main characteristics
of these spin-flip 1+ GRs (together with the isobaric partner
of IVGSMR(−)–IVGSMR(+) )) in the 48Ca, 90Zr, 132Sn, and
208Pb parent nuclei are evaluated within the properly adopted
PHDOM basic version. In applying to 208Pb, preliminary re-
sults of this study are given in Ref. [6]. We note also studies
of Refs. [7,8] where, in fact, “pole” versions of PHDOM
have been exploited in describing the mentioned 1+ GRs.
Concluding this Introduction, we note possibilities to extend
the basic PHDOM version. One of the possibilities consists
in taking into account tensor correlations in GR formation.
In applying to the charge-exchange 1+ GRs in 208Pb parent
nucleus, this problem has been recently studied within the
properly extended PHDOM version in Ref. [9].

In Sec. II, the main model relations are presented. Input
quantities and choice of model parameters are described in
Sec. III. Section IV contains calculation results and discus-
sions. Summary and conclusive remarks are given in Sec. V.

II. MAIN MODEL RELATIONS

The PHDOM basic version has been originally formu-
lated in terms of the energy-averaged p-h Green function
(p-h effective propagator). However, for evaluating the GR
characteristics listed in the Introduction, it is simpler to use
the effective-field method introduced in nuclear physics by
Migdal [10]. Within the model, the effective field is defined
via a convolution of the p-h Green function with the related
external field (the s-p probing operator), leading to excitation
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of a given GR. As a result, the integral equation for the effec-
tive field follows from the Bethe-Goldstone-type equation for
the p-h Green function.

We start presenting the main model relations from the
isovector component of Landau-Migdal forces responsible for
long-range correlations and leading to formation of isovector
GRs:

FIV (x1, x2) = (F ′ + G′ �σ1 �σ2)�τ1�τ2δ(�r1 − �r2). (1)

Here, (F ′, G′) = ( f ′, g′) ∗ 300 MeV fm3 are the well-
known Landau-Migdal parameters. In particular, the (dimen-
sionless) parameter f ′, determining the symmetry potential
via the isospin self-consistency condition, might be related
to mean-field parameters (see, e.g., Ref. [4]). Searching the
parameter g′ from the experimental GTR energy becomes a
certain trend (see, e.g., Ref. [11]).

Let V (−)
M (x) = τ (−)σMV (r) be the s-p external fields, lead-

ing to excitation of the monopole spin-flip GRs in the β (−)

channel (τ (−) and σM are the respective Pauli matrixes). For
describing GTR and IVGSMR(−), the radial part of the ex-
ternal fields might be taken as VGT(r) = 1 and VSM(r) =
r2−η, respectively. The parameter η is determined by the
condition of minimal GTR excitation by the probing operator
(Sec. III). In neglecting tensor correlations, the effective fields
Ṽ (−)

M (x, ω), which are different from related external fields
due to the p-h interaction of Eq. (1), have the same spin-
angular dependence [9]. Hereafter, ω = Ex + Q(−), where Ex

is the excitation energy of the isobaric nucleus and Q(−) is
the difference of ground-state energies of the isobaric and
parent nuclei, is the isobaric-nucleus (Z + 1, N − 1) excitation
energy counted off from the parent-nucleus (Z, N) ground-
state energy. The effective-field radial part obeys the equation
obtained after separation of spin-angular and isospin variables
in the above-mentioned integral equation [6,9]:

Ṽ (−)(r, ω) = V (r) + G′

2πr2

∫
A(−)

σ (r, r′, ω)Ṽ (−)(r′, ω)dr′.

(2)
Here, (4πrr′)−2A(−)

σ (r, r′, ω) is the spin-monopole ra-
dial part of the “free” p-h propagator in the β (−) channel,
A(−)(x, x′, ω). Being the PHDOM key quantity, the “free”
p-h propagator is related to the model of noninteracting and
independently damping p-h excitations. A rather cumbersome
expression (multiplied by 4π ) for the monopole radial part
of A(−)(x, x′, ω) is given in detail in Ref. [5]. The following
substitution of squared kinematic factors in this expression,

t2
(π )(ν) = (2 jπ + 1)δ(π )(ν) → (

tσ
(π )(ν)

)2 = 1
3 〈(π )‖σ‖(ν)〉2,

(3)
allows one to get the explicit expression for the quantity
A(−)

σ (r, r′, ω) in Eq. (2). Both expressions contain the occu-
pation numbers nμ for proton (μ = π ) and neutron (μ = ν)
levels with μ being the set of single-particle quantum num-
bers nr,μ, jμ, lμ [(μ) = jμ, lμ]; the bound-state energies εμ

and radial wave functions r−1χμ(r); and proton and neutron
optical-model-like Green functions of the radial Schrodinger
equations, in which the mean field has an additional term
proportional to the strength of the p-h self-energy term respon-
sible for the spreading effect [–iW (Ex ) + P(Ex )]. The proton

radial Schrodinger equation determines the optical-model-like
proton radial continuum-state wave functions, r−1χε>0,(π )(r),
used below, having the standing-wave asymptotic behavior
and obeying the δ-function energy normalization in the limit
W = P = 0.

The effective-field radial part of Eq. (2) determines the
following energy-averaged GTR and IVGSMR(−) character-
istics considered for a wide excitation energy interval: (i) the
strength function, S(−)

V (ω),

S(−)
V (ω) = − 1

π
Im

∫
V (r)A(−)

σ (r, r′, ω)Ṽ (−)(r′, ω)drdr′ (4)

(ii) the radial part of the projected transition density,
r−2ρ

(−)
V (r, ω),

r−2ρ
(−)
V (r, ω) = −2Im Ṽ (−)(r, ω)

G′
√

S(−)
V (ω)

(5)

(iii) the partial strength function and related branching ratio
for direct one-proton decay accompanied by population of
the product-nucleus neutron-hole state ν−1, S(−),↑

V,ν and b(−),↑
V,ν ,

respectively,

S(−),↑
V,ν (ω) =

∑
(π )

nν

(
tσ
(π )(ν)

)2

×
∣∣∣∣
∫

χ∗
ε=εν+ω,(π )(r)Ṽ (−)(r, ω)χν (r)dr

∣∣∣∣
2

(6)

and

b(−),↑
V,ν

(
δ(−)

) =
∫

δ(−)
S(−),↑

V,ν (ω)dω/

∫
δ(−)

S(−)
V (ω)dω. (7)

In Eq. (7), δ(−) is the excitation-energy interval that in-
cludes the considered GR.

The main characteristics of IVGSMR(+) (spin monopole
1+ GR in the β (+) channel), namely, the strength func-
tion S(+)

V (ω), the radial part of the projected transition
density r−2ρ

(+)
V (r, ω), and the partial strength function and

related branching ratio for direct one-neutron decay accom-
panied by population of the product-nucleus proton-hole state
π−1, S(+),↑

V,π and b(+),↑
V,π , respectively, are determined by the

radial part of the effective field, Ṽ (+)(r, ω), corresponding
to the external field V (+)

M (x) = τ (+)σMV (r). The equation
for the mentioned effective field and the expressions for the
above-listed characteristics of IVGSMR(+) can be obtained
by the interchange (π ) ↔ (ν) in, Eq. (2) and relations (4)–(7),
respectively. In such a case, ω = Ex + Q(+) is the isobaric-
nucleus (Z − 1, N + 1) excitation energy counted off from
the parent-nucleus (Z, N) ground-state energy (Ex is the exci-
tation energy of the isobaric nucleus, Q(+) is the difference of
ground-state energies of the isobaric and parent nuclei). The
statements given in this paragraph are formally related also
to weak Gamov-Teller-type excitations in the β (+) channel.
These excitations are taken into consideration in evaluation of
the respective sum rule (see below).

We now provide comments to the above-given expressions
for main characteristics of the considered charge-exchange 1+
GRs:
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TABLE I. The model parameters used within PHDOM in evaluation of GR characteristics for nuclei under consideration (notations are
given in the text). The parameters r0 = 1.21 fm and 
 = 3 MeV are taken as universal quantities. The g′ values deduced by the use of cRPA
are given in brackets.

Nucleus U0 (MeV) Uls (MeV fm2) a (fm) f ′ g′ η (fm2) α (MeV−1) B (MeV)

48Ca 54.34 32.09 0.58 1.13 0.85 (0.84) 17.74 0.25 5.34
90Zr 55.06 34.93 0.61 1.05 0.68 (0.58) 23.67 0.51 5.24
132Sn 55.53 35.98 0.63 1.00 0.71 (0.77) 30.85 0.26 5.84
208Pb 55.74 33.35 0.63 0.98 0.73 (0.78) 40.16 0.24 5.12

(1) The strength functions S(∓)
V (Ex ) obey the non-energy-

weighted sum rule (NEWSRV ):

NEWSRV =
∫ ∞

0
S(−)

V (Ex )dEx −
∫ ∞

0
S(+)

V (Ex )dEx

= 4π

∫ ∞

0
V 2(r)n(−)(r)r2dr, (8)

where n(−)(r) is the neutron-excess density in the par-
ent nucleus. In particular, the well-known Ikeda sum
rule for GT excitation (NEWSRGT = N−Z ) follows
from this relation, which is also valid within cRPA
(W = P = 0). To verify the strength function calcula-
tions, we compare with unity the value of the fraction
parameter x∗

V defined for a large cut-off excitation en-
ergy E∗

x :

x∗
V =

(∫ E∗
x

0
S(−)

V (Ex )dEx −
∫ E∗

x

0
S(+)

V (Ex )dEx

)/

NEWSRV . (9)

This relation makes it reasonable to consider the
reduced strength functions

y(∓)
V (Ex ) = S(∓)

V (Ex )/NEWSRV , (10)

determining the fraction parameters x(∓)
V (δ) =∫ Ex1

Ex2
y(∓)

V (Ex )dEx for a given excitation-energy interval
δ = Ex1 –Ex2 .

(2) Calculations of the (one-dimensional) radial part of
the projected one-body transition densities ρ

(∓)
V (r, ω)

performed in accordance with Eq. (5) might be verified
by the relations

S(∓)
V (Ex ) =

(∫ ∞

0
V (r)ρ (∓)

V (r, Ex )dr

)2

. (11)

These relations follow from the definition of the
projected transition densities, which are determined
by a convolution of the energy-averaged double tran-
sition densities with the respective probing operator
(see, e.g., Ref. [4]). The one-body transition densi-
ties considered within cRPA are independent of V.
The relation (11) allows one to expect that tran-
sition densities ρ

(∓)
V (r, Ex ) are mainly proportional

to [S(∓)
V (Ex )]

1/2
. In other words, the reduced tran-

sition densities ρ̄
(∓)
V (r, Ex ) = ρ

(∓)
V (r, Ex )/[S(∓)

V (Ex )]
1/2

are expected to be slightly dependent on Ex.

(3) The total branching ratios for direct one-nucleon de-
cay,

b(−),↑
V,tot =

∑
ν

b(−),↑
V,ν , b(+),↑

V,tot =
∑
π

b(+),↑
V,π , (12)

determine the branching ratios for statistical (mainly
neutron) decay of GTR and IVGSMR(∓), b(∓),↓

V =
1−b(∓),↑

V,tot . In the absence of the spreading effect

(i.e., within cRPA), when
∑

ν S(−),↑
V,ν (ω) = S(−)

V (ω)

and
∑

π S(+),↑
V,π (ω) = S(+)

V (ω) (the unitary condition),

b(∓),↑
V,tot = 1 and, naturally, b(∓),↓

V = 0.

FIG. 1. The GTR strength functions calculated within PHDOM
for parent nuclei under consideration. The reduced strength function
evaluated within cRPA for 208Pb is also shown near the resonance
maximum (the thin line).
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FIG. 2. The same as in Fig. 1, but for IVGSMR(−).

III. INPUT QUANTITIES. MODEL PARAMETERS

For describing within PHDOM main characteristics of
GTR and IVGSMR(∓) in medium-heavy doubly closed-shell
parent nuclei, the following input quantities and model param-
eters are used:

(1) The isovector part of the Landau-Migdal p-h in-
teraction of Eq. (1). For the parent nuclei under
consideration, the parameter g′ of this interaction is
adjusted to describe, in model calculations of the
GT strength function, the observable GTR peak en-
ergy E expt

x,peak [together with the total width �expt (point
3)]. Apart from possibilities to describe characteris-
tics of IVGSMR(∓) in these nuclei, such a procedure
allows us to see how the g′ value is changed with
A. The choice of the f ′ value is explained in the
next point. The deduced values of the Landau-Migdal
parameters are given in Table I, including two sets
of g′ values obtained within PHDOM and its cRPA
limit.

(2) The realistic (Woods-Saxon type) phenomenological
partially self-consistent mean field, described in detail
in Refs. [4,12]. The mean field contains phenomeno-
logical isoscalar central and spin-orbit parts, U0(r) and
Uls(r), with intensities U0 and Uls, respectively; the
symmetry potential Usym = 1

2v(r)τ (3) and the mean

FIG. 3. The same as in Fig. 1, but for IVGSMR(+).

Coulomb field UC (r), both calculated self-consistently
via the neutron-excess and proton densities (n(−) =
nn − np and np), respectively. Due to the isospin self-
consistency condition, v(r) = 2F ′n(−)(r), the Landau-
Migdal parameter f ′ might be related to mean-field
parameters. The set of mean-field parameters con-
tains the intensities U0 and Uls, Woods-Saxon size and
diffuseness parameters (r0 and a, respectively), and
Landau-Migdal parameter f ′. Employing the method
used in Refs. [12,4], we found the above-listed param-
eters for doubly closed-shell nuclei 48Ca, 132Sn, 208Pb
by reproducing the observable single-quasiparticle
spectra in the respective even-odd and odd-even nu-
clei. The obtained values1 are used as a base to get
the mean-field parameters for 90Zr by means of the
interpolation procedure described in Ref. [13]. The
mean-field parameters used in calculations of char-
acteristics of GTR and IVGSMR(∓) in parent nuclei
under consideration are given in Table I.

(3) The imaginary part of the strength of the energy-
averaged p-h self-energy term responsible for the

1These parameters are found in collaboration with M. L. Gorelik
and B. A. Tulupov.
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TABLE II. The GTR parameters evaluated within PHDOM for parent nuclei under consideration. The reference values E expt
x,peak and �expt are

taken from Refs. [11,13–17].

δ(−)
max x(−)

max x(−),∗

Nucleus Ex,peak (MeV) E expt
x,peak (MeV) Г (MeV) �expt (MeV) (MeV) (%) (%) x∗ (%) b(−),↑

tot (%)

48Ca 9.99 10.0 2.0 2.0 4.50–14.50 78 89 88 0.6
90Zr 8.80 8.8 4.80 4.8 6.10–13.10 59 88 83 2.5
132Sn 16.31 16.31 4.7 4.7 10.31–24.81 75.6 98 97 1.9
208Pb 15.60 15.60 3.72 3.72 10.44–20.34 69.2 101 99 4.3

spreading effect, W (Ex ) (Sec. II). Following previ-
ous PHDOM implementations (Ref. [4] and references
therein), we take this phenomenological quantity as the
universal three-parametric function of excitation en-
ergy (counted off the compound-nucleus ground-state
energy):

2W (Ex ) =
{

0, Ex < 


α(Ex −
)2/[1+(Ex −
)2/B2], Ex � 

.

(13)

Here the spreading parameters α, 
, and B can be
called the strength, gap, and saturation parameters, re-
spectively. As in previous PHDOM implementations,
we take for nuclei under consideration the gap pa-
rameter as universal quantity. The parameters α and
B (together with the parameter g′) are adjusted to
describe within the model the observable total width
of GTR, �expt, [together with the peak energy E expt

x,peak
(point 1)] in the parent nuclei under consideration.
Obtained values of the adjusted spreading parameters
are also given in Table I. The real part of the strength
of the energy-averaged p-h self-energy term, P(Ex ), is
determined by the imaginary part, W (Ex ), via the mi-
croscopically based dispersive relation [1]. For W (Ex )
of Eq. (13), the expression for P(Ex ) is rather cumber-
some and can be found in Ref. [14].

(4) The parameter η in the expression for the SM probing-
operator radial part, VSM (r) (see Sect. II), is found
from the condition of minimal GTR excitation by the
respective external field. This condition might be taken
in the form min ∫ S(−)

SM (Ex )dEx, where integration is
performed over the GTR region. The values of the
parameter η obtained for nuclei under consideration
are given in Table I.

IV. CHARACTERISTICS AND PARAMETERS
OF GTR, IVGSMR(∓)

In this section we present the main characteristics and
parameters of GTR, IVGSMR(∓) calculated within PHDOM
for the 48Ca, 90Zr, 132Sn, and 208Pb parent nuclei, using the
model parameters listed in Table I. The GR strength functions
S(∓)

V (Ex ) (a) and y(∓)
V (Ex ) (b) calculated by employing Eqs. (4)

and (10), respectively, in a large excitation-energy interval
δ∗ = 0–E∗

x are shown in Figs. 1–3 (E∗
x + Q = 80 MeV).

The calculated strength functions allow us to evaluate the
following parameters of considered GRs: the peak energy and
total width, Ex,peak and �, respectively (both found by means
of the Lorentz-type parametrization of the strength function
SV (Ex ) near its main maximum); the fraction parameters x(∓)

max
defined for the excitation-energy interval δ(∓)

max in the vicinity
of the strength-function main maximum, x(∓),∗ defined for
the excitation-energy intervals considered in Figs. 1–3, and
x∗ = x(−),∗ − x(+),∗. The above-listed parameters are given in
Tables II–IV.

The next main GR characteristic, which might be calcu-
lated within PHDOM, is the one-body (projected) transition
density ρ

(∓)
V (r, Ex ) of Eqs. (5) and (11). The transition den-

sities calculated at the peak energy of GTR, IVGSMR(∓) in
the parent nuclei under consideration are shown in Figs. 4(a)–
6(a). As expected for main-tone and overtone GRs, the
transition density exhibits nodeless (for GTR) and one-node
(for IVGSMR(∓)) radial dependence. The transition-density
energy dependence is also the subject of interest in view of the
possibility to use the transition density for describing nuclear
reactions of GR excitation. In Figs. 4(b)–6(b), we show the
reduced transition densities ρ̄

(∓)
V (rmax, Ex ) (Sec. II) calculated

at the maximum of the transition densities ρ
(∓)
V (r, Ex, peak )

presented in Figs. 4(a)–6(a).
A possibility to evaluate the branching ratios for direct one-

nucleon decay of GRs belongs to unique features of PHDOM.
In Tables II–IV, we give the total branching ratios for direct
one-nucleon decay of GTR, IVGSMR(∓) in parent nuclei

TABLE III. The IVGSMR(−) parameters evaluated within PHDOM for parent nuclei under consideration.

Nucleus Ex,peak (MeV) Г (MeV) x(−),∗ (%) x∗ (%) δ(−)
max (MeV) b(−),↑

tot (%)

48Ca 31.58 18.96 165 99 24.50–40.50 75
90Zr 26.99 26.17 301 92 14.10–43.10 54
132Sn 33.83 19.42 124 99 23.31–54.31 51
208Pb 34.60 16.80 124 95 18.34–46.34 51
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TABLE IV. The same as in Table III, but for IVGSMR(+).

δ(+)
max

Nucleus Ex,peak (MeV) Г (MeV) x(+),∗ (%) x∗ (%) (MeV) b(+),↑
tot (%)

48Ca 19.10 16.22 66 99 17.84–29,84 70
90Zr 20.14 17.40 208 92 14.51–41.51 59

132Sn 11.06 8.26 25 99 9.65–15.65 57
208Pb 12.95 6.19 29 95 9.78–17.78 44

under consideration, calculated using Eqs. (6), (7), and (12).
In the calculations, only decays from the excitation-energy
interval δ(∓)

max (Tables II–IV) related to the GR main maximum
are taken into account.

The calculated results given above demonstrate the abil-
ities of PHDOM in describing main characteristics and
parameters of charge-exchange giant spin-flip monopole res-
onances in medium-heavy closed-shell parent nuclei. The
Landau-Migdal parameter g′ and the spreading parameters
α and B are adjusted to describe the observable peak energy
and total width of GTR in each considered parent nucleus
(Fig. 1 and Tables І and II). Then, other characteristics and

FIG. 4. The one-body (projected) transition density taken at the
strength-function peak energy (a) and the reduced transition density
ρ̄

(−)
V (rmax, Ex ) taken at the maximum of ρ

(−)
V (r, Ex, peak ) and shown in

the excitation-energy interval δ(−)
max (b). Both densities are calculated

for GTR in parent nuclei under consideration.

parameters of GTR (Fig. 4, Table II) and the main prop-
erties of IVGSMR(−) and IVGSMR(+) (Figs. 2, 5, and 3,
6, Tables III and IV) are described without using additional
adjusted model parameters. A rather weak A dependence of
parameters g′ and B should be noted. For nuclei from 90Zr
to 208Pb, the values of the Landau-Migdal parameter g′ used
also in astrophysical applications are found to be close to the
values deduced from an analysis of GTR excitation in direct
charge-exchange reactions, g′ = 0.68 ± 0.07 [11]. Conclud-
ing the discussion of specific model parameters deduced by
the use of respective experimental data, we note the relatively
large value of the spreading parameter α for 90Zr (Table I).
This anomaly is due to the large Q(−) value (about 7 MeV) and
therefore the relatively low GTR peak energy for this parent
nucleus (Table II).

All the strength-function calculations are verified by the
use of the respective non-energy-weighted sum rules: the

FIG. 5. The same as in Fig. 4, but for IVGSMR(−).
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FIG. 6. The same as in Fig. 4, but for IVGSMR(+).

calculated fraction parameters x∗ are close to 100% (see
Tables II–IV). As expected, the GTR(+) relative strength
x(+)∗ = x(−)∗ − x∗ is very small for all nuclei under consider-
ation (Table II). For this reason, the GTR total strength might
be directly compared with the Ikeda sum rule. The relative
strength of IVGSMR(+) is not too small for heavy nuclei and
unexpectedly large for medium-mass nuclei (Table IV). The
parameter x(−)

max calculated for GTR in 208Bi (Table II) is found
in acceptable agreement with the respective experimental
value 60 ± 15 [15,18]. It should be noted that this quantity as
well as the deduced g′ value are slightly dependent on taking
tensor correlations into account [9]. Concluding the descrip-
tion of GTR parameters, we note the reasonable description of
the measured total branching ratio for direct one-proton decay
of GTR in 208Bi, b(−),↑

tot = 4.9 ± 1.3%, Ref. [15] (Table II).
Experimental data concerned with the IVGSMR(−) parame-
ters are available only for 208Bi: E expt

x,peak = 37 ± 1 MeV, � =
14 ± 3 MeV and b(−),↑

tot = 52 ± 12%, Ref. [19]. The calcu-
lated peak energy is somewhat underestimated, while the total
width and total one-proton direct-decay branching ratio are
in agreement with the experimental data (Table III). Reasons
for theoretical underestimation of the peak energy and the
missing of some main channels of direct one-proton decay of
IVGSMR(−) in 208Bi in Ref. [19] are unclear at present.

Coming to the projected transition density taken at the
peak energy of considered GRs, we note the expected

nodeless transition-density radial dependence for GTR [main-
tone GR, Fig. 4(a)] and the one-node radial dependence for
IVGSMR(∓) [overtone GRs, Figs. 5(a) and 6(a)]. As follows
from Figs. 4(b)–6(b), the use of the reduced projected tran-
sition density in describing nuclear reaction of GR excitation
allows one to get direct information on the respective strength
function.

A comparison of calculation results obtained within PH-
DOM and cRPA allows one to estimate the contribution
of the spreading effect in formation of giant resonances in
closed-shell nuclei. This contribution is somewhat different
for low-energy well-formed GRs (like GTR, or isoscalar giant
monopole resonance [4]) and high-energy GRs, having a large
Landau damping and strong coupling to the s-p continuum
(like IVGSMR(−) and its non-spin-flip partner [5]). The values
of Landau-Migdal parameter g′ deduced by the use of the
GT strength functions evaluated within PHDOM and cRPA
(Sec. III) are proved to be close (Table I). That means there
is a proximity of the GTR peak energies evaluated within
the mentioned approaches for a given g′ value, whereas the
evaluated GTR total widths are substantially different. Indeed,
the total branching ratio for direct one-proton decay of GTR
is decreased from 100% within cRPA (Sec. III) up to several
percent within PHDOM (Table II). In other words, the GTR
total width is mainly determined by the spreading effect. For
IVGSMR(∓), the direct one-nucleon decay branching ratios
are decreased up to several tens of percent (Tables III and
IV). That means a not-too-large contribution of the spreading
effect to formation of these high-energy GRs. The statements
made in this paragraph are illustrated by Figs. 1(b)–3(b),
where the reduced strength functions evaluated within PH-
DOM and cRPA for GTR and IVGSMR(∓) in the 208Pb parent
nucleus (taken as an example) are compared in the vicinity of
the resonance peak energies.

V. SUMMARY AND CONCLUSIVE REMARKS

In this work, we present a description of main properties
of Gamow-Teller and charge-exchange giant spin-monopole
resonances in medium-heavy closed-shell parent nuclei. The
description is realized within the semimicroscopic particle-
hole dispersive optical model, which is a direct extension
of the continuum-random-phase-approximation to taking into
account (phenomenologically and in average over the en-
ergy) the spreading effect. Being “economic” in the practical
use, the model allows us to describe for the mentioned reso-
nances the strength function and projected transition density,
both related to the appropriated probing operator, and proba-
bilities of direct one-nucleon decay. Methods of verification of
the calculated characteristic mentioned above are used within
the model. As a rule, a reasonable description of the exper-
imental data concerned with giant-resonance parameters is
obtained. Extension of the model to taking into account tensor
correlations in formation of the considered giant resonances in
medium-mass closed-shell parent nuclei is in order.
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