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Neutron-proton interaction in odd-odd nuclei from statistical analysis

Gao Le Yang, Bin Qi ,* and Xu Dong Wang
School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai 264209, China

Chong Qi †

Department of Physics, Royal Institute of Technology (KTH), SE-10691 Stockholm, Sweden

(Received 19 April 2022; accepted 10 August 2022; published 22 August 2022)

The statistical distribution and correlation relationship of the empirical neutron-proton (np) interaction are
analyzed, whereby the interaction strengths are extracted from the binding energies using a known four-point
formula. By comparing the correlations of the data and those from numerical simulations of the random number
method, it is shown that an additional attractive np interaction persists between the last proton and last neutron
in odd-odd nuclei. It provides evidence of the residual np interaction from statistical analysis. The adopted new
analytical method might be a useful way to clarify the inherent correlation.
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I. INTRODUCTION

The atomic nucleus is a unique quantum many-body sys-
tem comprising two types of fermions, protons and neutrons.
It has been well established that there exists a strong pair-
ing correlation between like particles in nuclei, which leads
to an additional binding for systems with even Z and/or
even N [1,2]. From a general perspective, systematic studies
on nuclear binding energy have revealed rich information
on nuclear structure and the underlying effective interaction.
However, our knowledge of nuclear forces is still limited. In
particular, the possible onset of pairing interaction between
protons and neutrons is one important open question which
has been studied continuously. The proton and neutron can
form both isoscalar (T = 0) and isovector (T = 1) pairs. They
are expected to be the strongest in nuclei along the N = Z line
see, e.g., Refs. [3–6]). For most other nuclei, the pair interac-
tion between the last neutron and last proton in odd-odd nuclei
may not be negligible even though the protons and neutrons
near the Fermi surface may occupy different orbitals. Fur-
thermore, strong short-range interactions between correlated
neutron-proton (np) pairs might also be expected to be strong
at high momentum even in heavy and neutron-rich nuclei
[7,8], which is different from the traditional understanding. It
will be very interesting to study the possible pair correlation
between the last neutron and last proton for N �= Z nuclei.

It is possible to isolate the np interaction by using ap-
propriate relative mass differences; see, e.g., Refs. [9–32].
Meanwhile, it has been shown that the analysis of statistical
laws could shed additional light on the study of different
nuclear physics quantities; see, e.g., Refs. [33,34]. Thus, in
this paper, considering the fact that there are now more than
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two thousand data for nuclear mass [35], we would like to
research the np interaction from some new viewpoint, i.e., the
statistical perspective.

II. SYSTEMATICS OF np INTERACTION FROM NUCLEAR
BINDING ENERGIES

There exist essentially two different ways to extract the np
interaction from the binding energies of neighboring nuclei
(see, e.g., Eqs. (1)–(5) in Ref. [19]). In this paper we will focus
on the four-point formula which was proposed in Ref. [9],
and analyzed recently in detail in Refs. [16,17,36–38]. The
formula can be written as

V1p1n(Z, N ) = B(Z, N ) + B(Z − 1, N − 1) − B(Z − 1, N )

− B(Z, N − 1)

= Sp(Z, N ) − Sp(Z, N − 1)

= Sn(Z, N ) − Sn(Z − 1, N )

= Snp(Z, N ) − Sp(Z, N − 1)

− Sn(Z − 1, N ), (1)

where B is the binding energy and S is the separation energy
of the one-neutron, one-proton, or np pair. The above formula
is simple and works for both even-A and odd-A systems. The
other family of formulas was proposed in Ref. [10]. It was
applied recently and followed up in papers [12,15,19,23]. It
is a bit more complex since different expressions were used
for even-Z even-N (denoted as EE in this paper), even-Z odd-
N (EO), odd-Z even-N (OE), and odd-Z odd-N (OO) nuclei,
respectively.

In Fig. 1(a), we plotted the np interaction V1p1n(Z, N )
extracted from the latest experimental binding energy data
compilation AME2020 [35]. The experimental binding energy
data with large error (>100 keV) are not adopted. The results
for the nuclei with |N − Z| > 1 are shown here while the
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FIG. 1. (a) Proton-neutron interactions V1p1n(Z, N ) extracted
from experimental binding energy data by using Eq. (1). The results
for the nuclei with |N − Z| > 1 are shown here. The average values
of V1p1n(A) for the same mass number A for even-A and odd-A nuclei
are plotted as red and purple lines. (b) Histogram for V1p1n(Z, N ),
where the bin values correspond to the number of nuclei within for
V1p1n ± 25 keV. V1p1n takes values of . . . , −50, 0, 50, 100, . . . keV.
Panels (c) and (d) are similar to (a) and (b) but for the results of
V ′

1p1n(Z, N ) in Eq. (4). The gray line in (d) gives an approximate
Gaussian distribution T (μ, σ ) in Eq. (6) with μ = 1, σ = 77.

|N − Z| = 0 or 1 are discussed later. One can safely assume
that all those nuclei in Fig. 1 have ground state isospin values
T = |N − Z|/2.

One may easily picture that V1p1n(Z, N ) for OO nuclei
can measure the energy gain (i.e., difference between the np
pair separation energy and the sum of the single-proton and
-neutron separation energies) as induced by the interaction
between the last odd proton and neutron. That may be com-
pared to the energy gain by the pairing interaction among like
particles, which can be extracted from the binding energy as
[2,39,40]

2�
(3)
C (N ) = B(N, Z ) + B(N − 2, Z ) − 2B(N − 1, Z )

= S2n(N, Z ) − 2Sn(N − 1, Z ), (2)

which measures the energy gain by the neutron pairing in an
even-N system relative to the neighboring odd-N system.

A striking feature one notices immediately in Fig. 1(a)
is that, as also pointed out in Refs. [11,18], V1p1n(Z, N ) for
even-A nuclei (EE and OO) are systematically larger than
those of neighboring odd-A nuclei (EO and OE). That kind
of odd-even staggering can also be seen in Fig. 1(b) where
we plotted the probability distributions for V1p1n(Z, N ). It is
found that probability distributions for V1p1n of EE nuclei are
almost same as those of OO nuclei, while the distributions of
EO nuclei are similar to those of OE nuclei. The average of
V1p1n was empirically expressed with constant term and 1/A
term [16,36,38] for the large A region. We fit a new formula
for all mass regions as

V1p1n = [9 + (−1)A × 6] × A−2/3[MeV], (3)

and show it in Fig. 1(a).
One thing one has to bear in mind is that the values for

V1p1n(Z, N ) extracted from Eq. (1) may still contain a smooth
contribution from the change in nuclear mean field when one
goes from system A to system A − 1. One may expect that
those mean field effects can be averaged out by subtracting a
smooth energy as mass number A. We therefore introduce

V ′
1p1n(Z, N ) = V1p1n(Z, N ) − V smooth

1p1n (Z, N ), (4)

with the smooth energy taken as [12]

V smooth
1p1n = [V1p1n(Z − 2, N ) + V1p1n(Z + 2, N )

+V1p1n(Z, N − 2) + V1p1n(Z, N + 2)]/4. (5)

For the nuclei in the boundary of nuclear chart which lack
complete data of fourneighboring nuclei in Eq. (5), V smooth

1p1n
takes the average value of two or three neighboring nuclei.
After the smooth energy is extracted, all data points look like
random values being scattered around zero. It is interesting
to find that all V ′

1p1n for EE, OO, OE, EO nuclei satisfy
approximately the same Gaussian distribution. The Gaussian
probability distribution is expressed as

T (μ, σ ) = 1√
2πσ

exp

{
− (x − μ)2

2σ 2

}
, (6)

where μ and σ are the mean and standard deviation,
respectively.
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FIG. 2. Two-dimensional distributions of the extracted interaction V ′
1p1n. Left panels the data distributions between the OO nuclei (Z, N )

and the neighboring EO, OE, and EE nuclei which are plotted in (a), (b), and (c), respectively. Right panels the data distributions between EE
nuclei (Z, N ) and the neighboring OE, EO, and OO nuclei which are plotted in (d), (e), and (f), respectively. The calculated coefficient of
correlation ρ is also shown.

Now the question is whether we can learn anything new
on the nature of the np interaction from those randomly dis-
tributed V ′

1p1n(Z, N ) values.

III. STATISTICAL ANALYSIS OF THE STAGGERING
BETWEEN EVEN-A AND ODD-A NUCLEI

The systematic staggering of np interactions between even-
A and odd-A nuclei had been tentatively explained in terms
of the additional np interaction in OO nuclei relative to the
neighboring EE and odd-A systems [19]. Before studying the
physics meaning of those V1p1n(Z, N ) values, we would like to
explore first their statistical properties.

In Fig. 2, the correlation properties between different
V ′

1p1n(Z, N ) values are given. In the left panel, we plot V ′
1p1n

for neighboring EE, EO, and OE nuclei (with one or two
particles above the corresponding OO nuclei) as a function of
V ′

1p1n for OO (Z, N ) nuclei. The right panel shows instead the
correlation between EE (Z,N ) nuclei and neighboring nuclei
with one or two particles above such EE nuclei.

A very striking feature one notices immediately is that
there exists a quite strong and positive correlation in Fig. 2(c)
between V ′

1p1n for OO nuclei and those for EE nuclei with one
more np pair on top. However, there is almost no correlation
between V ′

1p1n for OO nuclei and those for the correspond-
ing EE cores with one less np pair, as shown in Fig. 2(f).
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FIG. 3. Distribution of numerically simulated samples of no correlation [(a) and (d)], negative correlation (b) and positive correlation
(c), constructed by the random number method. T1, T2, T3 are three independent groups of random numbers. Each black dot represent a
data point (T1[i], T2[i]) in panel (a), (T1[i] + T3[i], T2[i] ∓ T3[i]) in panels (b) and (c), and (T1[i] + T3[i], T2[i] + T3[i + 1]) in panel (d), with
i = 1, 2, . . . , 5000. The blue line denotes the distribution of T1, T2, T1 ± T3, or T2 ± T3, and gray lines are Gaussian fits Tfit(μ, σ ) for the blue
lines.

Meanwhile, the EO and OE nuclei has strong negative corre-
lation to the corresponding OO nuclei with one less particle,
shown in Figs. 2(a) and 2(b), while there is almost no corre-
lation to the corresponding EE nuclei with one less particle,
shown in Figs. 2(d) and 2(e).

In statistics, the coefficient of correlation ρ for two random
variables X and Y is defined as [41]

ρ(X,Y ) = Cov(X,Y )

σxσy
= E{[X − E (X )][Y − E (Y )]}

σxσy
, (7)

where σx and σy are the standard deviations of X and Y ,
Cov(X,Y ) is the covariance of two random variables X and
Y , and E (X ) is the mean of a random variable X . Values of
ρ = ±1 imply perfect straight-line relationships between X
and Y , and ρ = 0 implies no linear relationship between X
and Y .

The coefficient of correlation ρ is calculated based on the
V ′

1p1n data and shown in Fig. 2, in which the data satisfying

V ′
1p1n < 300 keV (≈4σ ) are adopted. In the following, we

perform some numerically simulations to help to understand
the correlation properties between the V ′

1p1n in different nuclei.
With the Monte Carlo random number method, sev-

eral groups of random numbers T (μ, σ ) were produced
which satisfy a Gaussian distribution. In Fig. 3, T1, T2,
and T3 are three independent groups of random num-
bers with expected value 0 and standard deviations 100.
Tn[i] denotes the ith random number in the nth group,
where i = 1, 2 . . . , M and n = 1, 2, 3. The results with M =
5000 (about ten times the data in Fig. 2) are shown in
Fig. 3.

In Fig. 3(a), we show a sample of 5000 pairs of values
(T1[i], T2[i]), in which each black dot represents a data point.
T1 and T2 are produced independently, thus they have no
correlation, and the coefficient of correlation ρ should be 0.
In Fig. 3(b), we construct two new variables T2[i] − T3[i] and
T1[i] + T3[i]. They are both still groups of random numbers
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FIG. 4. The expected correlation relationship between neighboring nuclei (EE, EO, OE, OO nuclei) for scenario I (a) and scenario II (b). Z
and N are odd numbers in the figure. The red (blue) lines represent positive (negative) correlation relationship. (c) The coefficient of correlation
ρ of Z ± 1 or/and N ± 1 nuclei calculated based on the V ′

1p1n data. (d) Similar to (c) but for Z ± 3 or/and N ± 3 nuclei.

which satisfy the Gaussian distribution with expected value
0 and standard deviations 100 × √

2. Due to both groups
involving the same component of T3, the coefficient of correla-
tion ρ(T2 − T3, T1 + T3) could be proved as −0.5 [41]. More
black dots (data points) are in the upper left or lower right
quadrant of Fig. 3(b). The distribution is similar to an oblique
ellipse, and the major axis is in the direction of y = −x. Simi-
larly to Fig. 3(b), we construct new variables to show the pos-
itive correlation in Fig. 3(c). As shown in Fig. 3(d), we con-
struct two new variables T1[i] + T3[i] and T2[i] + T3[i + 1].
As T3[i] and T3[i + 1] are random, these two variables have no
correlation.

Figure 3 provides a visualized picture of two physical
quantity with no correlation, positive correlation, or negative
correlation. By comparing the two-dimensional distributions
of the data shown in Fig. 2 with the ideal cases in Fig. 3, the

correlation relationship between different V ′
1p1n can be clearly

analyzed.

IV. PHYSICAL ORIGINS

From a binding energy perspective V1p1n(Z, N ) =
B(Z, N ) + B(Z − 1, N − 1) − B(Z − 1, N ) − B(Z, N − 1) as
shown in Eq. (1), it is easy to infer that, if an extra interaction
�x(Z, N ) exists in binding energy of nucleus (Z, N ), it will
only contribute to the V1p1n of the four neighboring nuclei.
The contribution will be

V1p1n(Z, N ) involve [+�x(Z, N )],

V1p1n(Z, N + 1) involve [−�x(Z, N )],

V1p1n(Z + 1, N ) involve [−�x(Z, N )],

V1p1n(Z + 1, N + 1) involve [+�x(Z, N )]. (8)
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FIG. 5. Schematic diagram of single proton separated energy Sp in OO, EO, OE, EE nuclei shown in (a), (b), (c), and (d), respectively.
Z and N are odd numbers in the figure. S′

p represent the mean field part of the interaction between last proton and inner core.

The systematic larger V1p1n values for even-A nuclei can be
related to three different scenarios:

I. Extra energy gain by the last np pair in OO nuclei,
such as a residual interaction between two independent
particles (denoted as �np).

II. Extra energy gain by the last two np pairs in EE nuclei,
such as an alpha or quartet correlation (denoted as
�α).

III. Energy gain in both EE and OO nuclei induced by the
pairing correlation among valence np pairs around the
Fermi surface.

Scenario III may be safely ruled out by the fact that there
is almost no correlation between V1p1n for EE and those of
neighboring OO with one more pair. One may expect a rather
smooth behavior among neighboring odd-odd and even-even
systems if there is a strong np pairing correlation. In ad-
dition, the np pairing correlation may not be expected to
be strong when one goes away from the N = Z line. There
have been significant efforts in recent years studying the pos-
sible influence of np pairing correlation and quartetlike np
correlation on nuclear mass as well as the low-lying spec-
trum of even-even nuclei, in particular those around N = Z
[3–6,14,17,20,22,42].

In Figs. 4(a) and 4(b), we exhibit the expected correlation
relationship between adjacent nuclei (EE, EO, OE, OO nuclei)
for scenarios I and II, where Z, N are odd numbers in these
panels. If scenario I is reasonable, according to Eq. (8), V1p1n

of the neighboring four nuclei (Z, N ), (Z + 1, N ), (Z, N +
1), (Z + 1, N + 1) involve the same term �np(Z, N ), thus
these four nuclei have correlations between each other. To

make an analogy with the ideal cases in Fig. 3, if �np(Z, N )
corresponds to the random group T3, V ′

1p1n corresponds to
T1 ± T3 or T2 ± T3. The blue (red) line in Fig. 4 corresponds
to correlation shown in Fig. 3(b) [3(c)]. Then, because the
V1p1n of OO nuclei (Z, N ) and of the EE nuclei (Z − 1, N −
1) involve different terms �np(Z, N ) and �np(Z − 2, N −
2), they should have no correlation, similarly to the case
in Fig. 3(d).

If scenario II is reasonable, according to Eq. (8), V1p1n

of the neighboring four nuclei (Z − 1, N − 1), (Z, N − 1),
(Z − 1, N ), (Z, N ) involve the same term �α (Z − 1, N − 1),
thus they have correlations between each other. Similarly to
the above discussion in Fig. 4(a), we should get a correlation
relationship like that in Fig. 4(b).

In order to distinguish and clarify these scenarios, we cal-
culate all the coefficients of correlation based on the V ′

1p1n
data and shown them in Fig. 4(c). The negative, positive, and
no-correlation relationships in Fig. 4(c) are nicely agreement
with the scenario I in Fig. 4(a), and basically in contradiction
with scenario II in Fig. 4(b). Thus, we can conclude the
systematic staggering of np interactions between even-A and
odd-A nuclei should mainly be attributed to the additional
np interaction existing only in odd-odd nuclei. This provides
evidence of the residual np interaction in odd-odd nuclei from
statistical analysis.

Another thing one should bear in mind is that, as deduced
from Eq. (8), the correlation relationships of V ′

1p1n should only
appear between neighboring nuclei. In Fig. 4(d), we further
give the results for cases of Z ± 3 and/or N ± 3. There are
indeed no obvious correlations in this figure, which strongly
supports the above idea.
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FIG. 6. Experimental V1p1n values of N = Z nuclei and the ad-
jacent odd-A nuclei with |N − Z| = 1. For N = Z odd-odd nuclei,
we choose the data of the lowest T = 0 state. The average of V1p1n

for odd-A and even-A nuclei with |N − Z| > 1 are also plotted for
comparison. The formulas listed in the figure are deduced from
Eq. (10).

In Fig. 5, we illustrate schematically the difference be-
tween V1p1n for even-A and odd-A nuclei induced from the
additional np interaction. Z and N are odd numbers in the
panels. The one-proton separation energy Sp for the OO, EE,
OE, and EO nuclei are shown in panels (a)–(d), respectively.
From the properties of Sp, we can deduce easily the difference
of V1p1n according to V1p1n(Z, N ) = Sp(Z, N ) − Sp(Z, N − 1).
S′

p in the figure represents the mean field parts of the inter-
action between the last proton and inner core. The pairing
correlations between like particles have higher pairing energy
(≈12A−1/2 MeV), far more than the odd-even staggerings
with np pairing [≈6A−2/3 MeV, as in Eq. (8)]. In case of
even Z , the “pp pair” will break when the last proton is
separated, as shown in (b) and (d), and this term will be
canceled in the calculation of V1p1n. In the right panel of (b),
the remaining unpaired proton and the unpaired neutron which
does not participate in the like-particle pairing will contribute
an additional binding energy due to the np pair correlation,
namely the inner core is dramatically altered by the np pair
when the last proton is separated.

V. LIGHT NUCLEI AND N = Z NUCLEI

To understand the np interaction, we consider a system
with nπ protons and nν neutrons in a single- j shell. The
two-body interaction are assumed to obey a simple form [43],

V̂ = a + bt1 · t2 − GP0, (9)

where P0 denotes the monopole pairing interaction. G is
the corresponding (positive) coupling strength. The first two
terms, which do not depend on the angular momentum J ,
define the “averaged” monopole interaction. The isovector
and isoscalar channels of the monopole interaction are given
by Vm;T =1 = a + b/4 and Vm;T =0 = a − 3b/4.

In usual shell-model Hamiltonians the values of Vm;T =1 are
around zero while those of Vm;T =0 are strongly attractive (see,
e.g., Refs. [44,45]), indicating that b should have a positive
sign [46]. The J = 0 two-body matrix element is given as
〈 j2|V | j2〉J=0,T =1 = a + b/4 − (2 j + 1)G. The total energy of
the system can be written analytically as

E = εn + a

2
n(n − 1) + b

2

[
T (T + 1) − 3n

4

]

−G
[n − ν

4
(4 j + 8 − n − v) − T (T + 1) + s(s + 1)

]
,

(10)

where ε denotes the single-particle energy. The total number
of nucleon pairs is n(n − 1)/2 with n = nπ + nν [43]. T is the
total isospin of the system. ν and s denote the seniority and the
reduced isospin.

For the |N − Z| > 1 nuclei, we have T = |nπ − nν |/2 =
|N − Z|/2 for the ground state. s = 0 and v = 0 for EE nuclei,
s = 1/2 and v = 1 for EO/OE nuclei, while s = 1 and v = 2
for OO nuclei. Thus, based on Eqs. (1) and (10), it is easy to
obtain that

V1p1n = b

4
− a + G for EE and OO nuclei,

V1p1n = b

4
− a − G for EO and OE nuclei. (11)

The first and second terms in the above expressions could be
understood from 1

4V2p2n [15]:

b

4
− a = −4Vm;T =1 + 2(Vm;T =0 − Vm;T =1)

4
. (12)

On the other hand, in the case of EE nuclei with nπ = nν ,
s = 0, ν = 0 (i.e., N = Z), we have

V1p1n = 3
4 b − a = −Vm;T =0. (13)

The ground state of odd-odd N = Z nuclei may carry isospin
quantum numbers T = 0 or 1. For the lowest T = 0 state, s =
0, ν = 2, the same values as in Eq. (13) in the case of N = Z
OO nuclei.

For an I = j, T = 1/2 system with three particles in a
single- j shell, we have ν = 1 and s = 1/2. The V1p1n could
be obtained from Eq. (10):

V1p1n(Z,Z − 1) = V1p1n(Z − 1,Z ) = b

4
− a + G,

V1p1n(Z,Z + 1) = V1p1n(Z + 1,Z ) = b

4
− a − G, (14)

where Z takes even values. Thus, the odd-A nuclei with
|N − Z| = 1 will separate into two sequences, which is also
proved by the data in Fig. 6. All the above analyses are in nice
agreement with the bulk properties of the extracted V1p1n.

VI. SUMMARY

The empirical np interactions are extracted from the bind-
ing energies of nearly 2000 nuclei using a known four-point
formula. Statistical analyses are used to explore their prop-
erties and physical origin. By comparing the correlations of
the data for the neighboring nuclei and those from numerical
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simulations using the random number method, it is shown
that an additional attractive np interaction persists between
the last proton and last neutron in odd-odd nuclei. It provides
evidence of the residual np interaction from statistical analy-
sis. Searching for the underlying rules of a complex system is
one important goal for both physics and statistics. The present
work uses this idea, and the adopted new analytical method
might be a useful way to clarify the inherent correlation.
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