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Quasi-deuteron model at low renormalization group resolution
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Background: The quasi-deuteron model introduced by Levinger is used to explain cross sections for knocking
out high-momentum protons in photoabsorption on nuclei. This is within a framework we characterize as
exhibiting high renormalization group (RG) resolution. Assuming a one-body reaction operator, the nuclear
wave function must include two-body short-range correlations (SRCs) with deuteronlike quantum numbers. In
Phys. Rev. C 104, 034311 (2021), we showed that SRC physics can be naturally accounted for at low RG
resolution.
Purpose: Here we describe the quasi-deuteron model at low RG resolution and determine the Levinger constant,
which is proportional to the ratio of nuclear photoabsorption to that for photodisintegration of a deuteron.
Method: We extract the Levinger constant based on the ratio of momentum distributions at high relative
momentum. We compute momentum distributions evolved under similarity RG (SRG) transformations where
the SRC physics is shifted into the operator as a universal two-body term. The short-range nature of this operator
motivates using local-density approximations with uncorrelated wave functions in evaluating nuclear matrix
elements, which greatly simplifies the analysis. The operator must be consistently matched to the RG scale and
scheme of the interaction for a reliable extraction. We apply SRG transformations to different nucleon-nucleon
(NN) interactions and use the deuteron wave functions and Weinberg eigenvalues to determine approximate
matching scales.
Results: We predict the Levinger constant for several NN interactions and a wide range of nuclei comparing to
experimental extractions.
Conclusions: The predictions at low RG resolution are in good agreement with experiment when starting with
a hard NN interaction and the initial operator. Similar agreement is found using soft NN interactions when the
additional two-body operator induced by evolution from hard to soft is included.

DOI: 10.1103/PhysRevC.106.024324

I. INTRODUCTION

Changing the renormalization group (RG) resolution is a
powerful technique for analyzing nuclear processes. In this
context, the RG resolution is the scale of the largest momen-
tum components in the wave functions of low-energy states.
It should not be confused with the experimental resolution
that is set by the kinematics of a process and which does
not change under RG evolution. In Ref. [1], we showed
how evolving to low resolution quantitatively accounts for
short-range correlation (SRC) physics phenomenology [2–11]
with a cleanly interpreted framework that enables simple yet
systematically improvable approximations. More generally,
RG evolution enhances scale separation and, hence, factor-
ization of structure and reaction mechanisms, facilitating the
extraction of process-independent quantities and correlations
between observables. Here we show how the quasi-deuteron
model fits into this framework.

The quasi-deuteron model was introduced long ago by
Levinger to explain the knock out of high-energy protons
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in photoabsorption on nuclei at energies of order 100 MeV
[12–15]. In particular, the emitted protons were argued to
originate from two-body SRCs with deuteronlike quantum
numbers (quasi-deuterons) in the nuclear wave function. The
quasi-deuterons are induced by the short-range tensor force
and repulsive core of phenomenological nucleon-nucleon
(NN) interactions. Only proton-neutron (pn) pairs are relevant
because the dipole term in the photoelectric effect is expected
to dominate at the photon energies considered [16]. The pic-
ture is that the photon is absorbed by a correlated pn pair (the
SRC), followed by the emission of the pn pair back to back
without any further interaction.

The consequence is a proportionality of the photoabsorp-
tion cross section of a nucleus with Z protons and N neutrons
A = N + Z to that for photodisintegration of the deuteron,

σA(Eγ ) = L
NZ

A
σd (Eγ ), (1)

where Eγ is the energy of the photon.1 The Levinger constant
L is independent of energy as the cross sections have the same

1We suppress here a factor that accounts for Pauli blocking in the
final state [14,17,18].
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energy dependence, dictated by factorization of short-distance
physics [1]. In Ref. [13], Levinger approximated the ratio of
cross sections as an energy-independent ratio of squared wave
functions at small separations,

|ψk|2
|ψd |2 ≈ L

NZ

A
, (2)

where ψk and ψd are the in-medium pn pair and deuteron
wave functions, respectively. The in-medium pn pair wave
function and the deuteron wave function of Ref. [13] are
proportional in the region of small separation r, hence, the
ratio yields an r-independent expression in Eq. (2). The factor
NZ/A follows from scaling by the number of pn pairs so that L
is a dimensionless measure of the density of quasi-deuterons.
Equation (2) shows that the cross-section ratio effectively
counts the relative probability of quasi-deuterons in a nucleus.
See Ref. [19] for a detailed discussion and derivation of the
quasi-deuteron model. Assuming the quasi-deuteron model is
a good approximation, L is a ratio of measurable quantities,
and is, therefore, scale and scheme independent.

A modern treatment of SRCs by Weiss and collaborators
relates the Levinger constant to so-called “nuclear contacts”
in a model called the generalized contact formalism (GCF)
[16,20,21]. In these references, the A/d photoabsorption
cross-section ratio is expressed in terms of nuclear contacts,
which measure the probability to find two unlike nucleons
close to each other. Therefore, the ratio gives the relative
probability of finding SRC pairs in the nucleus. The many-
body wave-function � is factorized into an asymptotic pair
wave-function φi j (ri j ) and Ai j , which is the regular part of
� describing the residual A − 2 system and depends on the
contacts. The φi j (ri j ) wave function is fixed in the two-body
system and, thus, cancels in the ratio of cross sections, leaving
dependence on the contacts only.

At high relative momentum, the ratio of momentum distri-
butions is given by contacts as well [20]:

Fpn(X )

np(2H)
≈ Cs2=0

pn (X ) + Cs2=1
pn (X )

Cs2=1
pn (2H)

, (3)

where X represents the nucleus and Cs2
pn are the pn contacts

with total spin s2. Using the pn contacts, L is shown to be
proportional to the ratio of the pn pair relative momentum
distribution Fpn and the proton momentum distribution of the
deuteron np(2H),

Fpn(X )

np(2H)
≈ L

NZ

A
. (4)

Consistent with the quasi-deuteron model, which assumes
only two-body contributions, Weiss et al. truncate three-body
correlations under the assumption that they contribute much
less than the two-body correlations [21].

The RG offers an alternative analysis that is simple and
universal. The picture that emerges for the considered pho-
toabsorption kinematics is that the single-nucleon reaction
operator that dominates at high RG resolution evolves to
include a dominant two-body operator at low RG resolution.
The quasi-deuteron model is now manifested as this two-
body operator that is common to nuclear photoabsorption and

deuteron photodisintegration. Factorization of reaction and
structure (rather than factorization of the many-body wave
function as in the GCF) makes clear that the Levinger con-
stant only involves long-distance physics that should be well
treated by simple approximations and amenable to systematic
corrections.

In this paper, we extract the Levinger constant using the
ratio of momentum distributions at high relative momentum
as in Eq. (4). Our predictions utilize interactions ranging
from Argonne v18 (AV18) [22] to soft χEFT interactions.
To account for the scale dependence associated with different
interactions, we must include an additional induced two-body
operator found by applying inverse-similarity RG (-SRG)
transformations of a harder potential. This is analogous to
reaction operators inheriting the RG scale and scheme of
the underlying Hamiltonian. In an exact low RG resolution
calculation, every component in the transition matrix ele-
ment must be SRG evolved: the initial and final states, and
the electromagnetic operator. Each component would change;
however, due to the unitarity of SRG transformations, the
matrix element would stay the same preserving the cross
section. In this picture, the induced two-body operator acting
on low-momentum nucleons described by an uncorrelated ini-
tial state is responsible for ejected high-momentum nucleons.
References [23,24] demonstrate these concepts for deuteron
electrodisintegration, although the consequences follow more
generally for breakup and knockout reactions.

In Sec. II we provide the necessary formalism for the
low-resolution treatment, building on the developments in
Ref. [1]. Results are given in Sec. III for several nuclei and
compared with experimental extractions. We also examine
scale and scheme dependence in extracting L under various
NN interactions. Section IV has a summary and outlook.

II. FORMALISM AT LOW RG RESOLUTION

SRG transformations when applied to NN potentials
decouple momentum scales, through the suppression of
off-diagonal momentum-space matrix elements [25–28]. A
common decoupling scheme is to drive the potential to band-
diagonal form in momentum space as a function of the flow
parameter λ, where λ2 roughly measures the width of the
band-diagonal potential with respect to relative momentum
squared. Unevolved potentials start at λ = ∞ and are typi-
cally evolved to some finite value of λ by integrating the flow
equation,

dVλ

dλ
= − 4

λ5
[ηλ, Hλ], (5)

where Hλ is the evolving Hamiltonian and ηλ is the anti-
Hermitian SRG generator defined as the commutator ηλ =
[Gλ, Hλ]. In practice, the operators in (5) are matrices in (dis-
cretized) relative partial-wave momentum space and the flow
is solved as coupled differential equations for each matrix el-
ement of Vλ. Choosing the operator Gλ specifies a decoupling
scheme. In this paper we set Gλ = Hd

λ , that is, the diagonal
of the evolving Hamiltonian. Other operators can be evolved
either by solving an analogous flow equation to (5) or by
applying SRG transformations directly. In the latter case, one
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can construct the transformations from the eigenvectors of the
initial and evolved Hamiltonians (see Refs. [29,30] for details
on operator evolution).

In this paper we take λ = 1.35 fm−1 as a representa-
tive low-resolution RG scale for nuclear ground states that
sets the dividing line between low and high momenta. This
separation of momentum scales has significant implications
when applying consistently evolved operators that probe a
high-momentum scale q. Decoupling in the potential leads
to suppression of momenta above λ in low-energy states,
hence, low resolution. For q � λ, high-momentum operator
expectation values are factorized into a product of a uni-
versal two-body function encompassing the high-momentum
dependence, and a state-dependent matrix element sensitive
only to low momenta. This contrasts to factorization in the
GCF where the nuclear wave function factorizes into a uni-
versal two-body wave function and a contact-dependent term.
The details of factorization from the SRG standpoint can be
found in Refs. [29,31], and a schematic version is presented
in Ref. [1]. For clarity, we will use q to denote the high-
momentum scale and k for the low-momentum scale.

At low RG resolution we calculate momentum distribu-
tions by using SRG transformations to evolve initial operators
(truncating three-body and higher contributions) and evaluate
nuclear matrix elements under simple approximations. As in
Ref. [1], we will use a local-density approximation (LDA) and
average over local Fermi momentum kτ

F (R) to evaluate nuclear
matrix elements. For brevity we will only repeat the key points
in this section whereas further details can be found in Ref. [1].

The SRG unitary transformation at flow parameter λ has
the following form in second quantization:

Ûλ = Î +
∑

δU (2)
λ a†a†aa

+
∑

δU (3)
λ a†a†a†aaa + [4-body] + · · · , (6)

where we have suppressed the single-particle indices and
combinatoric factors. In practice, δU (2)

λ is calculated in rel-
ative partial-wave momentum states of the two-body system
alone; in the present approximation, δU (3)

λ does not contribute.
As mentioned in Sec. I, it is sufficient to extract the Levinger
constant from the ratio of momentum distributions at high
relative momentum. We apply SRG transformations to the
momentum distribution operators and use Wick’s theorem in
operator form to truncate at the two-body (vacuum) level (i.e.,
omit a†a†a†aaa and higher-body operators). For example, in
evaluating the pair momentum distribution for two nucleons
with isospin projections τ and τ ′, respectively, we expand and
truncate

n̂τ,τ ′
λ (q, Q) = Ûλ n̂τ,τ ′

∞ (q, Q)Û †
λ , (7)

where the unevolved (λ = ∞) pair momentum distribution
operator is

n̂τ,τ ′
∞ (q, Q) = 1

2

∑
σ,σ ′

a†
Q/2+q,σ τ a†

Q/2−q,σ ′τ ′aQ/2−q,σ ′τ ′

× aQ/2+q,σ τ
. (8)

Here q is the relative momentum, and Q is the center-of-mass
momentum.

An SRG-evolved low-energy state, e.g., the ground state
of a nucleus, only has low-momentum components k < λ. If
we take the matrix element of the SRG-evolved distribution
(7) at high-momentum q � λ in such a state, this high-
momentum tail will be dominated by a term proportional to
δU (2)

λ (k, q)δU † (2)
λ (q, k) [1]. For k < λ � q, the SRG trans-

formation factorizes δU (2)
λ (k, q) ≈ F lo(k)F hi(q), where the

labels “hi” and “lo” in the functions F hi(q) and F lo(k) refer
to the separation of momentum scales above and below λ.
Thus, at high momentum, SRG-evolved momentum distribu-
tions factorize as discussed previously. For example, the pair
momentum distribution operator at high relative momentum,
after truncating to two-body terms, is given by

n̂λ(q, Q) ≈ |F hi(q)|2
λ∑

k,k′
F lo(k)F lo(k′)

× a†
Q/2+ka†

Q/2−kaQ/2−k′aQ/2+k′ , (9)

where we have suppressed the spin and isospin labels.
Extracting the Levinger constant involves taking a ratio of

the expectation value of the operator (9) in a specified nucleus
A with the same expectation value in the deuteron. The proton
distribution operator in the deuteron is given by a similar
expression as Eq. (9) and also factorizes for q � λ. We inte-
grate over the center-of-mass momentum Q in evaluating the
relative pair momentum distribution, leaving a ratio dependent
only on q, and after applying factorization, we obtain

nA
pn(q)

nd
p(q)

∝
∣∣F hi

pn (q)
∣∣2

∣∣F hi
d (q)

∣∣2

∫
〈A|F lo

pn(k)F lo
pn(k′)|A〉∫

〈d|F lo
d (k)F lo

d (k′)|d〉
(10)

for q � λ. The soft wave functions restrict the integrals over
k and k′ to low momenta.

All partial-wave channels contribute in the numerator of
Eq. (10) though the 3S1 – 3D1 channel dominates (see Ta-
ble I in Ref. [1]). With the denominator (deuteron) taking
contributions solely from the 3S1 – 3D1 channel, the two-body
high-momentum functions F hi

pn (q) and F hi
d (q) roughly cancel,

leaving a low-momentum ratio that is approximately scale
and scheme independent and independent of q � λ. The ratio
is a “mean-field” quantity, meaning it only depends on soft
ground-state wave functions. This is effectively the same as
a ratio of GCF contacts. We can then extract the Levinger
constant from the low-momentum ratio using Eq. (4).

III. RESULTS

In evaluating the soft matrix elements Eq. (10), we use
densities from the Gogny functional [32] for the LDA and
evolve the operators to λ = 1.35 fm−1 including only S-wave
contributions [1]. We have made the same calculations with
densities from the SLy4 Skyrme functional [33] using the
HFBRAD code [34] and found nearly identical trends. The
contribution of higher partial waves is not significant (as doc-
umented in Table I of Ref. [1]). We limit results to nuclei
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FIG. 1. Ratios of the pn momentum distribution for nucleus A
over the deuteron momentum distribution as a function of relative
momentum q using the AV18 potential. The gray line and band
indicate the average value of the Levinger constant with its error from
Ref. [16].

where extractions of L from experimental data are available,
although we can easily extend to other nuclei.

In Fig. 1 we show ratios for several nuclei of the pn
relative momentum distribution to the proton distribution in
the deuteron, scaled by A/NZ . We apply the LDA to both
the numerator and the denominator to help cancel systematic
errors. At high momentum the ratio plateaus to a constant
value, that is, the Levinger constant. The ratio maintains a rel-
atively constant value across high-momentum values despite
the momentum distributions individually dropping several or-
ders of magnitude. In the low RG resolution framework, both
the numerator and the denominator factorize to a product of
a high-momentum two-body function which carries the q de-
pendence, and a low-momentum nuclear matrix element [see
Eq. (10)]. The q-dependent functions approximately cancel in
the ratio leaving a flat curve where factorization holds (q �
λ = 1.35 fm−1) as seen in Fig. 1 for all nuclei. The gray band
shows the average value of L = 5.5 with its uncertainty across
several nuclei [16]. The ratio tends to increase with heavier
nuclei. The behavior of the ratio near q ∼ 1.5 fm−1 depends
on the details of the individual momentum distributions near
the Fermi surface.

Figure 2 shows our extracted values of L compared to
extractions of Refs. [17,35] constrained by cross sections of
nuclear photoabsorption experiments [36–39]. In extracting L,
we take the average value of the momentum distribution ratios
(shown in Fig. 1) over q from 4 to 5 fm−1 as in Ref. [20].
Analysis with other potentials indicates that the factorization
holds strongly in the momentum range of 2.5 to 3.4 fm−1 and,
consequently, we average over this lower-momentum range
as well. Figure 2 shows results from both extraction schemes
where the spread from the two schemes is within the black
AV18 circles. The low RG resolution calculations are in good
agreement with the data and their uncertainties. Calculated
values of L monotonically increase with larger mass number

FIG. 2. Average Levinger constant for several nuclei with AV18
comparing to extractions from experiment. The change in predicted
L from varying the interval of momentum q over which L is averaged
(see the text for details) is smaller than the the black AV18 circles.

A similar to the behavior found in calculating the SRC scaling
factor a2 in Ref. [1].

In Fig. 3 we compare Levinger constants between several
NN interactions. We show results for AV18 [22], Nijmegen
II [40], CD-Bonn [41], SMS N4LO [42], and GT+ N2LO
[43] averaging over the momentum range of 2.5 to 3.4 fm−1.
We find that the hard potentials (e.g., AV18) produce the
highest values of L whereas the soft potentials (e.g., SMS
N4LO 450 MeV) produce relatively low values. L is extracted
from the ratio of inclusive cross sections which, as an ob-
servable quantity, is RG invariant; hence, we should not find
any significant discrepancies in calculations of L when using

FIG. 3. Average Levinger constant for several nuclei comparing
different NN interactions.
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FIG. 4. Deuteron momentum distributions from SMS N4LO 550
MeV (blue) and 450 MeV (red) potentials. The dashed lines show the
distributions of the 550-MeV potential but SRG evolved to some λ

value indicated by the legend.

different NN interactions. However, it is incorrect to assume
the same initial operator for interactions at different RG reso-
lution scales.

The momentum distribution is resolution dependent, but
we can seek to match the results of L using a reference
momentum distribution, in this case that of the AV18 interac-
tion. To do so, we must transform the momentum distribution
operators of the other potentials for a consistent extraction.
For instance, if we take the usual one-body single-nucleon
momentum distribution operator when using a hard potential,
such as AV18, then we must include an additional two-body
contribution in the momentum distribution operator corre-
sponding to the RG resolution scale of the soft potential. In the
following, we transform the initial operators of soft potentials
to approximately match the results of the hard potentials using
the SRG.

We can use SRG transformations to establish an approx-
imate connection between two potentials of different RG
resolution scales. To illustrate this, we show the deuteron
momentum distributions of the SMS N4LO potential at two
different regulator cutoffs in Fig. 4. We include snapshots of
the deuteron momentum distribution from the SRG-evolved
hard potential (550-MeV cutoff). Around λ = 4–4.5 fm−1

the SRG-evolved deuteron momentum distribution begins to
overlap the 450-MeV distribution indicating a rough con-
nection between the two potentials. We find matching scales
λ ∼ 3.5–5 fm−1 in comparing other potentials.

We can make similar comparisons in matching interactions
by considering Weinberg eigenvalues [44]. These eigenvalues
reflect the perturbativeness of a potential and have been ana-
lyzed in several RG and EFT studies [25,45–48]. Consider the
Born series for the T matrix at energy E given a Hamiltonian
H = H0 + V ,

T (E ) = V + V
1

E − H0
V + · · · . (11)

TABLE I. Largest repulsive Weinberg eigen-
values at zero energy for AV18 and SMS N4LO
550 MeV evolved to several SRG resolution scales
λ. The corresponding eigenvalue for the unevolved
SMS N4LO 450 MeV potential is −0.70.

λ (fm−1) AV18 550 MeV

∞ −3.06 −1.22
12 −2.94 −1.27
6 −1.81 −1.10
5.5 −1.61 −1.05
5 −1.40 −0.98
4.5 −1.19 −0.88
4 −0.98 −0.78
3.5 −0.79 −0.66
3 −0.62 −0.54

Solving for the eigenvalues ην (E ) and eigenvectors |ν〉 of the
operator (E − H0)−1V ,

1

E − H0
V |ν〉 = ην (E )|ν〉, (12)

and applying T (E ) on the eigenvectors gives a power series in
terms of the Weinberg eigenvalues ην (E ),

T (E )|ν〉 = (
1 + ην (E ) + η2

ν (E ) + · · · )V |ν〉. (13)

Nonperturbative behavior at energy E is signaled by, at least,
one eigenvalue |ην (E )| > 1 [44]. For negative energies, purely
attractive potentials give positive Weinberg eigenvalues and
vice versa for purely repulsive potentials. We refer to positive
(negative) eigenvalues with E � 0 as attractive (repulsive); for
E > 0 the eigenvalues become complex.

In comparing interactions, we evolve the harder of the two
potentials, compute the Weinberg eigenvalues at zero energy
using Eq. (12) in momentum space, and do the same for
several SRG-evolved versions of the same potential. Then we
compute the corresponding Weinberg eigenvalues of the softer
potential and compare to the largest repulsive eigenvalues to
determine the matching scale. We document our results for the
Weinberg eigenvalues in Table I. This analysis gives roughly
the same matching scales as found with comparing deuteron
momentum distributions.

In the following, we extract the Levinger constant match-
ing two potentials of different RG resolution scales. We use a
scale denoted as λm associated with the matching scale from
the previous analysis to apply inverse-SRG transformations
of the harder potential onto the softer of the two potentials.
Figure 5 compares deuteron wave functions of AV18 and
SMS N4LO 550 MeV, including several inverse-SRG evolved
snapshots of the SMS wave function. These are inverse-
SRG transformations from the AV18 interaction; hence, the
deuteron wave function gains a stronger short-range modifi-
cation as λm decreases. At r = 0 the inverse-evolved deuteron
wave function matches AV18 for λm in between 5 and
4.5 fm−1, in agreement with the scale found from analyzing
Weinberg eigenvalues.

Taking the inverse-SRG-evolved soft Hamiltonian as the
initial Hamiltonian, then evolving that Hamiltonian down to
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FIG. 5. Deuteron wave functions of AV18 (black) and SMS
N4LO 550 MeV (red) in coordinate space. Additionally, we show
deuteron wave functions of SMS N4LO 550 MeV but inverse SRG
transformed with AV18 at several λm values. The solid lines corre-
spond to the S states, and the dashed lines correspond to the D states.

λ = 1.35 fm−1 in calculating the momentum distribution, is
equivalent to applying transformations of the hard potential
on the initial operator,

Ôλm = Ûλm
ÔÛ †

λm
. (14)

Here Ô is the initial operator to be used with the hard poten-
tial, Ûλm corresponds to transformations of the hard potential
(λm ≈ 4.5 fm−1), and Ôλm is the initial operator to be used
with the soft potential. Consequently, the soft potentials start

FIG. 6. Average Levinger constant for several nuclei comparing
the SMS N4LO 550 MeV (black) and 450 MeV (red) potentials.
Results are also shown for the SMS N4LO 450-MeV potential with
an additional two-body operator due to inverse-SRG transformations
from SMS N4LO 550 MeV at several values of λm.

FIG. 7. Same as Fig. 6 but comparing SMS N4LO 550 MeV to
AV18.

with an additional two-body contribution in the operator,
whereas hard potentials (such as AV18) start with solely the
momentum projection operator (8). Figure 6 compares the
two SMS N4LO potentials showing results for several λm

values. We see that the Levinger constants computed from the
450-MeV potential are raised to match the values from the
550-MeV potential around λm = 4–4.5 fm−1, consistent with
the deuteron and Weinberg eigenvalue comparisons. These
results confirm that an additional two-body operator is nec-
essary in calculating consistent values of L for potentials of a
low RG resolution.

In Fig. 7 we make the same comparison as in Fig. 6 but
for AV18 and SMS N4LO 550 MeV. Here we see that λm ≈
4.5 fm−1 gives the matching scale between the two poten-
tials. Note, this method only serves as an approximate tool in
matching interactions, but, in general, there will be additional
differences in comparing interactions due to scheme depen-
dence (regulator differences, coordinate- or momentum-space
formulations, and so on.)

IV. SUMMARY AND OUTLOOK

We have shown how the Levinger constant can be
quantitatively calculated at low RG resolution with simple
approximations. This analysis relied on our previous work
in using LDA estimates to calculate evolved momentum
distributions. The observed scale (and scheme) dependence
of the extracted Levinger constants reflects in part insuffi-
cient matching of the reaction operator, either to experiment
or a more accurate [high-resolution] theoretical description.
Additional two-body contributions induced by inverse-SRG
transformations on the initial operator restores approximate
scale independence.

This strategy demonstrates a more general concept: NN
interactions can be “smoothly” connected by RG transforma-
tions. The matching can be performed by comparing deuteron
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wave functions or Weinberg eigenvalues with consistent re-
sults for the matching scale. It may be adequate to incorporate
only a contact interaction instead of applying inverse-SRG
transformations to match the initial operator to its associated
interaction. We leave this point as a follow-up for future
work.

The path to more precise determinations is clear. In par-
ticular, there are several classes of corrections that need to be
examined going forward:

(1) Incorporating improved many-body physics to test the
limits of LDAs and enable uncertainty quantification.
The LDA approximation here is implemented as the
leading-term in a density-matrix expansion [49]. In-
cluding next-to-leading terms is the next step.

(2) Solving the many-body problem with SRG-evolved
operators at different λ values allows for an indi-
rect method in estimating three-body contributions.
Residual λ dependence indicates the size of ne-
glected contributions from induced three-body and
higher-body terms [50,51]. However, computational
restrictions may limit this approach to light nuclei.

(3) Understanding the impact of long-range correlations
and isolating from short-range correlations.

(4) Better understanding and exploiting the SRG resolu-
tion (λ) dependence (e.g., optimal value of λ given our
approximations).

To better quantify the impact of common approximations
we will directly calculate photoabsorption cross sections,
following the low RG resolution calculation of deuteron elec-
trodisintegration [23,24].

A natural follow-up to the present paper is a general exam-
ination of level depletion in the RG framework. The results
here and in Ref. [1] have explicitly established how processes
with particular types of high-energy final states are directly
accounted for at low RG resolution by the evolution of ba-
sic reaction operators. The converse task is to quantitatively
understand at low RG resolution the physics associated at
high resolution with depletion of single-particle states [52,53],
given that these states are largely occupied in the mean-field
picture at low resolution. Here the role of mid-to-long-range
correlations are particularly important to understand. This task
will involve extending the low RG resolution framework to
knockout reactions with electron or nucleon probes. In either
case optical potentials play an important role in modeling
these processes, and, consequently, we must understand how
optical potentials change under RG evolution, which will
build on Ref. [54].
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