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Bubble nuclei: Single-particle versus Coulomb interaction effects
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The detailed investigation of microscopic mechanisms leading to the formation of bubble structures in nuclei
is performed in the framework of covariant density functional theory. The main emphasis of this study is on the
role of single-particle degrees of freedom and Coulomb interaction. In general, the formation of bubbles lowers
the Coulomb energy. However, in nuclei this trend is counteracted by the quantum nature of the single-particle
states: only specific single-particle states with specific density profiles can be occupied with increasing proton
and neutron numbers. A significant role of the central classically forbidden region at the bottom of the wine
bottle potentials in the formation of nuclear bubbles (via primarily the reduction of the densities of the s states at
r = 0) is revealed for the first time. Their formation also depends on the availability of low-l single-particle states
for occupation since single-particle densities represent the basic building blocks of total densities. Nucleonic
potentials disfavor the occupation of such states in hyperheavy nuclei and this contributes to the formation of
bubbles in such nuclei. Existing bubble indicators are strongly affected by single-particle properties and thus they
cannot be reliable measures of bulk properties (such as the Coulomb interaction). An additivity rule for densities
is proposed for the first time. It was shown that the differences in the densities of bubble and flat density nuclei
follow this rule in the A ≈ 40 mass region and in superheavy nuclei with comparable accuracy. This strongly
suggests the same mechanism of the formation of central depression in bubble nuclei of these two mass regions.
Nuclear saturation mechanisms and self-consistency effects also affect the formation of bubble structures. The
detailed analysis of different aspects of bubble physics strongly suggests that the formation of bubble structures
in superheavy nuclei is dominated by single-particle effects. The role of the Coulomb interaction increases in
hyperheavy nuclei but even for such systems we do not find strong arguments that the formation of bubble
structures is dominated by it.

DOI: 10.1103/PhysRevC.106.024321

I. INTRODUCTION

The basic approximation which appears in many nuclear
models is that the nuclear density is constant in the subsurface
region. The simplest example is the Fermi function which
is frequently used for the description of the density of the
nuclei in phenomenological models (see, for example, Sec. 2
of Ref. [1]). However, theoretical investigations reveal that
there is a density depletion in the central region in a number
of the nuclei. Such nuclei are typically called bubble nuclei.

The physics of bubble nuclei was first studied by Wilson
in 1946 [2] and a number of investigations of such nuclei in
different theoretical frameworks were carried out later. The
energies of spherical bubble nuclei were studied using a liquid
drop model in Ref. [3]. The investigation of bubble structures
in 36Ar and 200Hg were performed using a nonrelativistic
Hartree-Fock approach in Refs. [4,5]. Additional nuclei (such
as 68Se, 100Sn, and 138Ce) and the details of the bubble for-
mation mechanism were studied using the same formalism in
Ref. [6]. A detailed investigation of spherical bubble nuclei
in the liquid drop and spherical shell models was performed
in Ref. [7]. However, this approach is too simplistic since it
assumes zero density inside the bubble. The shell structure
of spherical nuclear bubbles was investigated in simple phe-

nomenological shell model potentials allowing partial filling
of the bubble in Refs. [8,9].

More sophisticated and realistic models which take self-
consistency effects into account have been used in detailed
studies of bubble nuclei starting from the 1990s. The bubble
structure in 34Si and the density profiles of neighbor-
ing nuclei have been extensively studied in nonrelativistic
and relativistic density functional theories (DFTs) [10–12],
ab initio approaches [13], and beyond mean field ap-
proaches [11,12,14,15]. The possibility of the existence of
deformed bubbles in light nuclei was investigated within
the relativistic mean field (RMF) approach in Ref. [16]
and the 24Ne, 32Si, and 32Ar nuclei were found to be the
best candidates. Bubble structures in the very neutron-rich
68Ar nucleus were investigated in Ref. [17] and in 22O in
Refs. [10,18]. The impact of tensor force on the formation
of bubble structures in light nuclei (Z = 20) or N = 20 nu-
clei was investigated in Ref. [19]. The bubble structures in
superheavy nuclei were studied in nonrelativistic and rela-
tivistic DFTs in Refs. [20–23]. A systematic survey of bubble
structures in spherical nuclei with N (Z ) = 8, 20, 28, 40, 50,
and 82 and N = 126 was performed in the RMF framework
in Ref. [24]. These approaches have also been used in the
studies of bubble structures in hyperheavy (Z > 126) nu-
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clei (see Refs. [21,25–27]). It is necessary to mention that
the investigations of bubble structures in hyperheavy nuclei
performed under restriction to spherical symmetry [8,21,25]
ignore two facts [26–28], namely, (1) that the toroidal shapes
are energetically more favored in such nuclei and (2) that
the most of such nuclei cannot be stabilized because of the
absence of the local minimum in total energy at spherical
shape.

These investigations significantly advanced our under-
standing of the mechanisms of the formation of the bubble
structures in nuclei. They also found that the counteracting
mechanisms of pairing correlations [11,14], beyond mean
field effects [12,14,15,29], and deformation [16,22,30] soften
fluctuations in the densities (as a function of radial coordi-
nate in spherical nuclei) and somewhat reduce the bubble
structures in the nuclei. In addition, some dependence of
the predictions for the depletion in the central density on
the model and employed functional has been found (see, for
example, Refs. [13,14,22,24]).

Most of the predicted bubble structures are located in ex-
otic nuclei which either have not been measured so far or
which are produced in very small amounts with very short life-
times. So far, only in 34Si was the formation of a proton bubble
indirectly confirmed in experiment [31]. Direct measurements
of charge density distributions via electron scattering on un-
stable nuclei with sufficient luminosity are not possible today.
However, such experiments can be feasible in light bubble
nuclei in the near future at the FRIB, FAIR, and RIKEN
facilities.

However, not in all respects of the physics of bubble nuclei
the consensus has been reached. For example, the analysis
of bubble structures in 34Si, 48Ca, and N = 82, 126, and 184
isotopic chains based on the correlation analysis performed in
Ref. [23] suggests that the central depression in medium-mass
nuclei is very sensitive to shell effects, whereas for super-
heavy nuclei it is firmly driven by the electrostatic repulsion.
The later result is in contradiction with the conclusions of
Ref. [22], which clearly illustrated that the formation of the
central depression in the density distribution is driven by
the filling of specific spherical subshells and shell structure
of superheavy nuclei. It also contradicts the observation that
spherical superheavy nuclei with Z = 126 have either no or
significantly smaller depletion of the density in the central
region as compared with the Z = 120 isotopes (see Fig. 2 in
Ref. [22]).

The main goal of the present paper is to perform a de-
tailed microscopic analysis of the mechanisms that lead to
the formation of the central depression in nucleonic densi-
ties of atomic nuclei. To achieve this goal, the pairs of light
and superheavy nuclei with and without central depression
in the densities will be compared. The detailed comparison
of the single-particle and Coulomb interaction contributions
into the proton and neutron densities of the nuclei in these
pairs allows to discriminate their role in the formation of a
central depression in nucleonic densities. This analysis will
be further collaborated by the analysis of hyperheavy nuclei
which possess pronounced bubble structure.

The paper is organized as follows. A brief outline of the
theory and the selection of the nuclei under study is given
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FIG. 1. The proton and neutron densities as a function of radial
coordinate r for indicated spherical nuclei. Light, superheavy, and
hyperheavy nuclei are shown in the top, middle, and bottom rows, re-
spectively. The results of the calculations without pairing are shown
by blue solid and red dashed lines for neutrons and protons, respec-
tively. Note that the pairing collapses in all nuclei with exception of
the 320126 nucleus. The RHB results for this nucleus are shown by
green solid (neutrons) and dashed (protons) lines in (f).

in Sec. II. The role of the Coulomb interaction in the for-
mation of bubble structure of superheavy nuclei is discussed
in Sec. III. Section IV is dedicated to the discussion of the
role of the single-particle degrees of freedom in the formation
of the central depression in the density distributions. The
mechanisms of the formation of the wine bottle potentials
are analyzed in Sec. V. The additivity rule for the densities
of the pairs of nuclei with and without central depression is
considered in Sec. VI. Other general observations obtained
in the present study are discussed in Sec. VII. Section VIII
critically analyzes existing bubble indicators and their physi-
cal content. The factors affecting the availability of the low-l
states for occupation are analyzed in Sec. IX. The potential
impact of deformation on the balance of the single-particle
and Coulomb interaction contributions to the bubble struc-
tures is discussed in Sec. X. Finally, Sec. XI summarizes the
results of our paper.

II. THEORETICAL METHOD AND THE SELECTION
OF THE NUCLEI

Theoretical calculations are performed within the frame-
work of covariant density functional theory (CDFT) [32]
employing the modified version of the computer code re-
stricted to spherical symmetry used in Ref. [22]. The pairing
correlations are neglected in the calculations in order to
better understand the underlying physical mechanisms. In
reality, the pairing collapses in all nuclei considered in the
present paper with the exception of the 310126 one (see Fig. 1
and further comments on this nucleus below) in relativistic
Hartree-Bogoliubov (RHB) calculations with separable pair-
ing interaction of two types (one from Ref. [33] and another
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one, isospin dependent, from Ref. [34]). Since the details of
the CDFT framework are widely available (see, for example,
Ref. [32]), we focus on the physical quantities of the interest.
The proton (i = π ) and neutron (i = ν) nucleonic potentials
are defined as follows:

Vπ = V + S + VCoul, (1)

Vν = V + S, (2)

where the scalar potential is given by

S(r) = gσ σ (r), (3)

the meson defined part of the vector potential is written as

V (r) = gωω0(r) + gρτ3ρ0(r), (4)

and

VCoul(r) = eA0(r) (5)

is the Coulomb potential. Note that for the sake of discus-
sion we split vector potential (see, for example, Eq. (9) in
Ref. [32]) into meson defined and Coulomb parts. In addition,
we consider only timelike components of vector mesons since
only even-even nuclei are studied in the present paper.

The calculations are performed with the NL3* covariant
energy density functional (CEDF) [35]. This functional has a
lot of similarities with the NL3 one used earlier in the study
of bubble structures in superheavy nuclei (see Ref. [22]) but
provides improved description of the masses and charge radii
on the global scale (see Refs. [33,36]). It was verified that the
main conclusions obtained in the present paper do not depend
on the selection of the functional.

In the present study the pair of light nuclei 34Si/36S and the
pair of superheavy nuclei 292120/310126 are considered. The
first nucleus in these pairs (34Si and 292120) is characterized
by substantial central depression, while such depression is
either absent or almost suppressed in the second nucleus of
the pair (see Fig. 1 and Refs. [10,11,21,22,25]). Moreover, this
feature exists in different theoretical frameworks. The detailed
comparison of the single-particle and Coulomb interaction
contributions into the differences of the proton and neutron
densities of the nuclei in the above-mentioned pairs allows to
discriminate their contribution into the formation of a central
depression in nucleonic densities. Note that significant central
depression in the density distribution of the 292120 nucleus
and flat density in the 310126 nucleus have been found both
in relativistic and nonrelativistic DFTs (see Refs. [20–22]).
The fact that rms radii of proton/neutron matter distribution
of the nuclei in these pairs are very similar (see Table I)
also simplifies the analysis of the additivity of the single-
particle densities (see Sec. VI). Note that in the 34Si, 36S,
and 292120 nuclei the spherical minimum is the lowest one
corresponding to the ground state in the RHB calculations
(see Refs. [33,37,38]). In contrast, the same calculations bring
an oblate ground state for the 310126 nucleus (see Ref. [38]).
However, the spherical solution in this nucleus is consid-
ered here in order to have a benchmark theoretical solution
with near flat density distribution in the region of superheavy
nuclei.

TABLE I. Rms radii of proton and neutron matter distributions
in the nuclei under study. The radii in the 34Si/36S and 292120/310126
pairs of nuclei are shown in bold.

Nuclei Proton rrms (fm) Neutron rrms (fm)

34Si 3.046 3.304
36S 3.171 3.297
208Pb 5.450 5.738
292120 6.223 6.386
310126 6.302 6.519
466156 7.352 7.775
592186 8.048 8.569

The 208Pb nucleus is also analyzed for the sake of compar-
ison with superheavy nuclei. In addition, hyperheavy 466156
and 592186 nuclei are investigated in detail in order to get
a better understanding of the factors affecting the profiles
of density distributions with increasing proton number Z .
These nuclei are located in the centers of the islands of
potentially relatively stable spherical hyperheavy nuclei (see
Refs. [26–28]). Note, however, that they correspond to highly
excited local spherical minima and the lowest in energy solu-
tions in axial RHB calculations have toroidal shapes.

III. SUPERHEAVY BUBBLE NUCLEI AND THE ROLE OF
COULOMB INTERACTION

Proton and neutron density distributions of the doubly
magic 208Pb nucleus and superheavy 292120 and 310126 nu-
clei are shown in Fig. 2. The 292120 nucleus shows a very
pronounced depression in central densities.

In contrast, such a depression is absent in the 208Pb and
310126 nuclei. Thus, the increase of proton number on going
from the 292120 to 310126 nucleus does not trigger the en-
hancement of the central depression as it would be expected
in the case when the central depression is firmly defined by
electrostatic repulsion (as suggested by Ref. [23]).

When considering the central depression in medium-mass
to superheavy nuclei, one should keep in mind that they are
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FIG. 2. Proton and neutron density distributions of indicated
nuclei.
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FIG. 3. The numbers of the particles in spherical shells between

rmin = j fm to rmax = j + 1 fm ( j = 0, 1, . . . , 7) of the sphere with
R = 8.0 fm with uniform density ρ. They are shown inside the bins.
The total number of particles is 120. Dashed lines show resulting
density distributions after creation of central depression (see text for
more detail).

created by the transfer of a relatively small number of par-
ticles from the central region to the near-surface region. As a
consequence, the bubble should not be considered a bulk prop-
erty [5]. The density plots as a function of radial coordinate
tend to overemphasize the importance of the central region
since they ignore the fact that the number of particles dn in
a spherical shell of thickness dr is given by 4πr2ρ(r)dr. To
illustrate that, we simplify the case of the proton subsystem
of the 292120 nucleus [see Fig. 2(a)] to the sphere of radius
R = 8.0 fm and uniform density distribution ρ. Then the
number of particles, n, in a spherical shell with inner radius
rmin and outer radius rmax is given by

n = 4πρ

∫ rmax

rmin

r2dr. (6)

The distribution of particles over spherical shells is shown
in Fig. 3. There are only 0.23 particles in the inner sphere
of radius 1.0 fm and 1.64 and 4.45 particles in the first and
second spherical shells with outer radii 2.00 and 3.00 fm,
respectively. Based on Fig. 2(a) one can assume that a central
depression with average density ρdep = 0.041 fm−3 is formed
up to radius r = 3.0 fm (see green dashed line in Fig. 3).
To create such a central depression one should move 0.061
particles from the inner sphere, 0.44 particles from the first
inner shell, and 1.19 particles from the second inner shell
into the outer shells located between 3.0 and 8.0 fm. If these
particles are redistributed uniformly among the outer shells
this would lead only to a marginal increase of densities (see
blue dashed line in Fig. 3).

The Coulomb potentials VCoul(r) are shown as a function
of radial coordinate for the nuclei under study in Fig. 4. Their
absolute values and evolution with radial coordinate r are very
similar for the 292120 and 310126 nuclei [see Fig. 4(a)]. This
similarity becomes even more pronounced when normalized
values VCoul(r)/Z of the Coulomb potential per number of
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FIG. 4. Coulomb potentials of indicated nuclei as a function of
radial coordinate r. (a) Absolute (VCoul) and (b) normalized (VCoul/Z)
(to the proton number Z) Coulomb potentials.

protons are compared in Fig. 4(b). These results strongly
suggest that the formation of the bubble structure in the 292120
nucleus is not driven predominantly by the electrostatic repul-
sion since such bubble structure is absent in the 310126 nucleus
for which VCoul is larger. Note that the situation in this pair
of nuclei is very similar to the one seen in the pair of nuclei
34Si and 36S (see Fig. 4) in which the formation of the proton
bubble in 34Si is attributed solely to the single-particle effects
(see Ref. [23]).

It is also interesting to compare normalized values
VCoul(r)/Z of the Coulomb potential per number of protons
for all nuclei under study [see Fig. 4(b)]. At low radial coordi-
nate, VCoul(r)/Z has the highest value in light nuclei and then
it gradually decreases with increasing proton number. This
correlates with the evolution of the proton density with proton
number (see Fig. 1). Note that in all nuclei the asymptotic
behavior of the VCoul(r)/Z is the same at r > 10 fm.

The Coulomb potential alone in all these systems favors
the arrangement of the protons into bubble like structures
since VCoul(r = 0) − VCoul(rsurf ) > 0, where rsurf is the radial
coordinate at which the density is maximal in the near-
surface region. VCoul(r) − VCoul(rsurf ) is equal approximately
to 0.78, 1.3, 5.7, 6.8, and 7.8 MeV in the 34Si, 36S, 208Pb,
292120, and 310126 nuclei, respectively (see Fig. 4). However,
even in superheavy nuclei these contributions to the building
of the wine bottle proton potential are smaller than those
coming from nuclear interactions. For example, in the wine
bottle potential of the 292120 nucleus the difference Vπ (r =
0) − Vπ (rsurf ) ≈ 21 MeV [see Fig. 5(a)] and VCoul(r = 0) −
VCoul(rsurf ) ≈ 6.8 MeV accounts for less than one-third of
this value.

Although the role of the Coulomb potential in the
formation of the wine bottle potential increases in
hyperheavy nuclei, even in those systems it does not become
dominant. Indeed, in the 592186 nucleus Vπ (r = 1.7 fm) −
Vπ (r = 8.03 fm) = 13.79 MeV and VCoul(r = 1.7 fm) −
VCoul(r = 8.03 fm) = 6.55 MeV. A similar situation exists
in the 466156 nucleus in which Vπ (r = 1.81 fm) − Vπ (r =
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FIG. 5. Nucleonic potentials and occupied single-particle states of the ground state configurations in the 292120172 and 310126184 nuclei.
The Fermi level Ef in the calculations without pairing coincides with the last occupied state: it is shown by pink arrows.

6.84 fm) = 11.22 MeV and VCoul(r = 1.81 fm) − VCoul(r =
6.84 fm) = 5.37 MeV. The values of the proton (Vπ ) and
Coulomb (VCoul) potentials in these differences are defined at

radial coordinates corresponding to minimum and maximum
points of the wine bottle part of the proton potentials shown
in Figs. 10(a) and 10(b) below.
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FIG. 6. Single-particle neutron density distributions ρ
sp
i (r) of the states in the occupied spherical subshells of indicated nuclei.

IV. THE ROLE OF SINGLE-PARTICLE
DEGREES OF FREEDOM

To obtain better microscopic understanding of the origin of
the bubble nuclei and the role of the single-particle structure
in their formation we carry out a detailed investigation of
the single-particle properties in the pair of superheavy nuclei
292120 and 310126 and in the pair of the N = 20 isotones 34Si
and 36S.

We start from the analysis of the first pair. The nucleonic
potentials of these nuclei and their occupied states are shown
in Fig. 5. The nucleonic potentials of the 310126 nucleus
are similar to those of 208Pb (compare Figs. 3(c) and 3(d)
in Ref. [22] with Figs. 5(b) and 5(d) in the present paper):
they have flat bottom potentials. In contrast, the nucleonic
potentials of the 292120 nucleus are wine bottle shaped and
this is especially pronounced for the proton subsystem [see
Figs. 5(a) and 5(c)].

The total nucleonic density ρtot (r) in a given subsystem
(proton or neutron) is built from the contributions of individ-
ual particles as follows:

ρtot (r) =
∑

i

(2 ji + 1)ρsp
i (r). (7)

Here we consider only the nuclei in which full spherical sub-
shells (indicated by subscript i) are occupied. Thus, the sum
runs over spherical subshells i with multiplicity (2 ji + 1) and
ρ

sp
i (r) is the density of the single-particle state belonging to

the ith subshell with the normalization∫
ρ

sp
i (r)d3r = 1.0. (8)

The calculated neutron single-particle densities of the
208Pb, 292120, and 310126 nuclei are shown in Fig. 6. For
the l � 1 subshells, proton single-particle densities are very
similar to the neutron ones. Thus, they are not shown. The
single-particle densities for the neutron and proton s states are
shown in greater detail in Fig. 7.

The following general features emerge from the analysis of
these densities. First, the density at the center is built almost
entirely by the s states because centrifugal interaction does
not allow the buildup of the density at r = 0 for the l � 1
states (see discussion in Sec. 6 of Ref. [1]). In the relativistic
framework, there is some contribution to the density at r = 0
coming from the p states which is especially pronounced
for the 3p1/2 and 3p3/2 states [see Figs. 6(g) and 6(m)]. It
originates from the fact that small components of the Dirac
spinor have opposite parity to the large component. As a
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FIG. 7. The same as in Fig. 6 but only for the neutron (top
panels) and proton (bottom panels) s states. Note that the range on
the vertical axis is increased as compared with Fig. 6.

consequence, the p state has the part of a small component in
the s state which builds the density at r = 0. Note that in the
nonrelativistic framework this mechanism is absent and the
density at r = 0 is built solely by the s states (see Ref. [1]).

Second, the single-particle densities of the l � 1 states
in the 292120 and 310126 nuclei are very similar: this is a
consequence of similar rms radii in respective subsystems of
these nuclei (see Table I). The densities of the single-particle
states in the 208Pb nucleus have similar radial dependencies
as those in superheavy nuclei but they are somewhat com-
pressed in the radial direction because of smaller rms radii
(see Table I).

Third, the peaks of the single-particle density of the states
with principal quantum number n = 1 move to higher radial
coordinate r with increasing l . The analysis of the n = 2
and n = 3 states is complicated by the presence of two and
three peaks in the density distribution, respectively. However,
these densities also move to higher radial coordinate with
increasing l .

Fourth, for the majority of the states located substantially
above the bottom of the nucleonic potential the densities of
the spin-orbit partner orbitals are very similar [compare, for
example, the 2g9/2 and 2g7/2 states in Figs. 6(t) and 6(x)].
The densities of the j = l + 1/2 states of the spin-orbit dou-
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FIG. 8. The same as in Fig. 5 but for the 36S and 34Si nuclei.

blets are only slightly compressed in the radial coordinate as
compared with the ones of their j = l − 1/2 partners since
these states are located deeper in the nucleonic potential due
to spin-orbit interaction.

A specific feature of the bubble nuclei is the formation
of wine bottle shaped potentials (see Ref. [22] and Figs. 5
and 8). The transition from the 310126 nucleus, characterized
by the flat bottom potentials, to the 292120 one, characterized
by wine bottle potentials, is done by removing the protons
from the 3p1/2 and 3p3/2 spherical subshells and the neutrons
from the 3d5/2, 3d3/2, and 4s1/2 spherical subshells (see Fig. 2
in Ref. [22] and Fig. 5). These orbitals built the density in
central and near-central regions of the nuclei and their removal
leads to the depletion of central density and, as a consequence,
to the formation of wine bottle proton and neutron potentials.
In a similar fashion, the removal of two neutrons from the
2s1/2 subshell in 36S leads to the formation of the wine bot-
tle neutron potential in 34Si [compare Figs. 8(c) and 8(d)]
and flattening of proton potential in 34Si [compare Figs. 8(a)
and 8(b)].

However, the impact of wine bottle nucleonic potentials on
the single-particle states and on their densities has not been
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studied so far. The analysis of Figs. 5(a) and 5(c) reveals
that for some single-particle states located near the bottom
of potential there is a classically forbidden region at radial
coordinate r < 3.0 fm. These are proton 1s1/2, 1p3/2, 1p1/2,
1d5/2, and 1d3/2 states [see Fig. 5(a)] and neutron 1s1/2, 1p3/2,
and 1p1/2 states [see Fig. 5(c)]. The presence of this clas-
sically forbidden region leads to a substantial reduction of
the densities of the proton and neutron 1s1/2 states in the
292120 nucleus for radial coordinate r = 0 and near it as
compared with the ones in the 208Pb and 310126 nuclei, which
are characterized by near flat bottom potential [see Figs. 7(a)
and 7(e)]. In addition, the profiles of the density distributions
of the 1s1/2 states in the 292120 nucleus as a function of
radial coordinate change drastically: the peak of the density
is localized at r ≈ 4.0 fm in the 292120 nucleus while in the
208Pb and 310126 nuclei it is located at r = 0 fm [see Figs. 7(a)
and 7(e)].

Classically forbidden regions for the proton and neutron
1p3/2 and 1p1/2 states are located for radial coordinate r
which is smaller than approximately 2.0 fm [see Figs. 5(a)
and 5(c)]. However, its impact on the densities of these states
is small since in the 292120 and 310126 nuclei the peak of
their density distributions is located at r ≈ 4.0 fm and the
difference between their densities in these two nuclei is small
[see Figs. 6(e) and 6(k)]. The impact of classically forbid-
den regions of the proton potential on the densities of the
proton 1d5/2 and 1d3/2 orbitals is even smaller. This is be-
cause the peak of their density distributions [at r ≈ 5.0 fm;
see Figs. 6(n) and 6(h)] is located far away from the bound-
ary of the classically forbidden region [at r ≈ 1.0 fm; see
Fig. 5(a)].

In addition, the wine bottle potential affects the density
distributions of other states which are located above its bottom
and this effect is especially pronounced for the l = 0 s states.
For example, it has substantial impact on the densities of
the proton and neutron 2s1/2 states which for r < 1.0 fm are
substantially smaller in the 292120 nucleus than those in the
208Pb and 310126 nuclei [see Figs. 7(b) and 7(f)]. Note that
the total density of the nucleus at r = 0 fm is built almost
entirely by the s states. As a consequence, the differences in
the proton and neutron densities at r = 0 seen in the pairs
of nuclei 208Pb/292120 and 292120/310126 are predominantly
due to the impact of the change of the occupation of the s
states and the impact of wine bottle nucleonic potentials of the
292120 nucleus on the density distributions of these states. A
similar impact is also seen in the 36S/34Si pair of the nuclei for
which the removal of two protons from the 2s1/2 states in 36S
leads to the formation of a wine bottle neutron potential in 34Si
(see Fig. 8). The consequence of this process is a substantial
decrease of the single-particle densities of the neutron 1s1/2

and 2s1/2 states in the 34Si nucleus at low radial coordinate r as
compared with those in 36S [see Figs. 9(a) and 9(b)]. Note that
this reduction is almost absent in the proton subsystem since
the proton potential of 34Si has a flat bottom [see Fig. 8(b)].
Note that spherical hyperheavy 466156 and 592186 nuclei are
characterized by wine bottle nucleonic potentials (see Fig. 10
below) and the densities of low-lying states are affected by
their presence in a similar way to that discussed above for the
292120 nucleus.
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FIG. 9. Single-particle proton and neutron density distributions
of the occupied states in the 34Si and 36S nuclei as a function of radial
coordinate r.

V. THE MECHANISMS OF THE FORMATION OF THE
WINE BOTTLE POTENTIALS

To better understand the mechanisms of the formation of
wine bottle potentials we consider the evolution of nucleonic
potentials and densities along the isotopic and isotonic chains
in Fig. 11. We start from 208Pb and then sequentially occupy
spherical subshells in the order shown in Table II. In this way,
the densities and potentials are built first along Zfix = 82 (first
column in Fig. 11), then along Nfix = 172 (second column
in Fig. 11) and Zfix = 120 (third column in Fig. 11), and
finally along Nfix = 184 (fourth column in Fig. 11). Note that
the occupation of spherical subshells in the order shown in
Table II not always leads to the ground states in the nuclei of
interest. However, this is acceptable since we are interested in
understanding the mechanisms leading to the formation of the
wine bottle potentials and their dependence on the occupation
of specific single-particle states and this is easier to achieve by
considering the occupation of full spherical subshells. Note
that obtained solutions in 209Pb, 292120, and 310126 nuclei
correspond to the ground states. Let us start from the 208Pb
nucleus to see how the densities and potentials are affected by
the addition of neutrons and protons. The neutron potential of
this nucleus is a flat bottom one [see Fig. 11(i)]. However, the
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FIG. 10. The same as in Fig. 5 but for spherical hyperheavy nuclei. For simplicity, only single-particle states within approximately 25 MeV
from the bottom of the potential are shown.

proton potential shows some development of wine bottle fea-
tures but the difference between the (V + S) values at r =
0 and r = 4.2 fm is only around 6 MeV [see Fig. 11(e)].
Although some fluctuations induced by the single-particle

effects exist, the proton and neutron densities of this nucleus
in the subsurface region are close to flat ones [see Figs. 11(a)
and 11(m)]. Note that when considering the addition of par-
ticle(s) one should take into account the structure of their
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row of panels) with increasing of proton and neutron numbers along the paths discussed in the text. Note that in the columns the particle
number (indicated above the top panel) either in proton or neutron subsystem is fixed.
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TABLE II. The occupation of neutron and proton single-particle
subshells in Fig. 11 for fixed proton (neutron) particle numbers Zfix

(Nfix) on going from the nucleus with Nin (Zin) to the nucleus with Nfin

(Zfin). The sequence of the states is defined by the general trends of
the evolution of the single-particle structure with proton and neutron
numbers (see Fig. 1 in Ref. [36] for 208Pb and Fig. 5 in the present
paper for superheavy nuclei). The approximate positions of the peaks
of the single-particle density of these states are shown in the last
column. They are taken from Fig. 6. Note that the number of peaks
is equal to the principal quantum number n. The states of the spin-
orbit doublets emerging from the low-l subshells [such as the (ν3d5/2,
ν3d3/2) states] are characterized by relatively small energy splitting
(see Fig. 5), very similar single-particle densities (see Fig. 6), and
a relatively moderate number of particles which can occupy them.
Thus, for simplicity, such states are occupied together in Fig. 11.

Nin (Zin) Orbital Nfin (Zfin) Peak(s) (fm)

1 2 3 4

Zfix = 82

126 ν1i11/2 138 6.2
138 ν2g9/2 148 4.4 and 8
148 ν1 j15/2 164 6.8
164 ν2g7/2 172 4.3 and 8

Nfix = 172

82 π1h9/2 92 5.7
92 π1i13/2 106 6.5
106 π2 f7/2 + π2 f5/2 120 3.8 and 7.4

Zfix = 120

172 ν3d5/2 +ν3d3/2 182 2.5, 5.8 and 8.5
182 ν4s1/2 184 0

Nfix = 184

120 π3p3/2 + π3p1/2 126 1.8, 5.0, and 8.0

single-particle density distributions shown in Fig. 6 and the
location of the maxima (peaks) of their density distributions
in the radial coordinate (rpeak(s)) (see Table II). The single-
particle density is typically localized within the r − 2.0 <

rpeak(s) < r + 2.0 fm region around the peak.
The Pb (Z = 82) isotopic chain is considered first. The

surface regions of these nuclei are located at r > 5.5 fm [see
Fig. 11(m)]. Thus, the occupation of the ν1i11/2 subshell, lead-
ing to the N = 138 isotope, builds the neutron density mostly
in the near-surface and surface regions. As a consequence,
the neutron density profile is similar for the N = 126 and
N = 138 isotopes in the subsurface region [see Fig. 11(m)].
The occupation of the ν2g9/2 subshell, leading to the N = 148
isotope, builds the density in the subsurface region around
r ≈ 4.4 (due to the first peak of the single-particle density
distribution) and in the surface region (due to the second peak
of the single-particle density at rpeak(s) ≈ 8.0 fm). As a conse-
quence, the neutron density of the N = 148 isotope is larger
than those of the N = 126 and N = 138 isotopes at r ≈ 4.4 fm

but smaller1 (and similar in radial profile) for r < 3 fm [see
Fig. 11(m)]. The occupation of the ν1 j15/2 subshell, leading
to the N = 164 isotope, contributes density mostly in the
surface region since the peak of its single-particle density is
located at rpeak(s) ≈ 6.8 fm (see Table II). As a result, in the
subsurface region the density profiles as a function of radial
coordinate are very similar for the N = 148 and N = 168
isotopes [see Fig. 11(m)]. The effect of the occupation of the
ν2g7/2 subshell is very similar to that of the ν2g9/2 subshell
discussed above [see Fig. 11(m)].

The final result of the sequence of these occupations of the
spherical subshells is the formation of the bubble structure in
the neutron density of the N = 172 isotope [see Fig. 11(m)].
It is created by the combination of two factors, namely, (i) the
buildup of the densities at r ≈ 4.4 fm due to the first peaks of
the single-particle densities of the ν2g9/2 and ν2g7/2 subshells
and (ii) the reduction of the neutron densities in the central re-
gion (in particular, at r = 0) due to a general stretching out of
the nucleus with increasing neutron number. The latter effect
is even more pronounced in the proton subsystem [compare
Figs. 11(a) and 11(m)]. Note, however, that in the subsurface
region the radial profile of the proton densities remains more
or less the same but its magnitude decreases drastically with
increasing neutron number [see Fig. 11(a)].

The consequences of these density changes for the nucle-
onic potentials are somewhat counterintuitive. The neutron
potentials of the Pb isotopes remain close to the flat bottom
ones [see Fig. 11(i)] despite the formation of the neutron
bubble structures in the N = 164 and N = 172 isotopes [see
Fig. 11(m)]. In contrast, the wine bottle features become en-
hanced in the proton potentials of the N = 164 and, especially,
N = 172 isotopes as compared with those of the N = 126
isotope [see Fig. 11(e)].

Similar features are also seen in the N = 172 isotopic
chain. The occupation of the π1h9/2 and π1i13/2 spherical
subshells builds density near r ≈ 6 fm and leads to the for-
mation of pronounced proton bubble structures in the Z = 96
and, especially, Z = 106 isotones [see Table II and Fig. 11(b)].
The subsequent occupation of the π2 f7/2 and π2 f5/2 subshells
leads to an additional buildup of the densities near r = 3.8
fm in the Z = 120 isotone but this process still preserves the
proton bubble structure [see Fig. 11(b)]. These modifications
of the proton densities feed back into proton potentials, the
wine bottle features of which become more enhanced in the
Z = 106 and Z = 120 isotones as compared with the Z = 82
one [see Fig. 11(f)]. Because of the isovector force, which
tries to keep the neutron and proton density profiles alike,
neutron bubble structures are also somewhat enhanced in the
Z = 106 and Z = 120 isotones as compared with the Z = 82
one [see Fig. 11(n)]. This feeds back into the neutron po-

1The density in the central (r < 2 fm) region of the nucleus typi-
cally decreases with increasing proton or neutron number if no new
s1/2 state(s) is (are) occupied [see Figs. 11(a), 11(m), 11(b), 11(n),
and 11(c)]. This is due to the stretching out of the radial profile of
the density distribution of the single-particle states with increasing
proton and neutron number (see Fig. 6).
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tentials of these isotones which contrary to the Z = 82 and
Z = 96 ones develop wine bottle features [see Fig. 11(n)].

The next step is along the Z = 120 line. The occupation of
the ν3d5/2 and ν3d3/2 subshells leading to the N = 182 iso-
tope builds density near r ≈ 2.5 fm, making neutron density
flat in the 2.5 < r < 6.5 fm region [see Fig. 11(o)]. However,
the neutron bubble still survives. Only the occupation of the
ν4s1/2 subshell, leading to the N = 184 isotope, eliminates
this bubble [see Fig. 11(n)]. Note that proton bubble structures
survive in these nuclei but they become less pronounced [see
Fig. 11(c)]. These neutron density changes somewhat reduce
wine bottle features of the neutron potential but do not elim-
inate them completely [see Fig. 11(k)]. The situation is more
drastic for the proton potential in which the occupation of the
neutron 1s1/2 subshell significantly reduces the wine bottle
features of the potential [see Fig. 11(g)].

Let us consider the latter case of the transition from N =
182 to N = 184 in detail. This is definitely a fully self-
consistent process in which the drastic increase of the neutron
density at and near r = 0 induced by the occupation of the
ν4s1/2 state [see Fig. 11(o)] leads to a moderate increase of the
proton densities at and near r = 0 due to the isovector nature
of nuclear force [see Fig. 11(c)]. This in turn requires the
increase of the single-particle densities of the occupied proton
1s1/2, 2s1/2, and 3s1/2 states (which is seen in the detailed
analysis) that can be achieved only by the transition from wine
bottle to near flat bottom proton potential [see Fig. 11(g)].

Finally, the transition from the Z = 120 to Z = 126 iso-
tone along the N = 184 line is carried out by occupying the
π3p3/2 and π3p1/2 subshells. This leads to the flattening of
the proton density in the subsurface region [see Fig. 11(d)]
because the major peak of single-particle density of these
proton subshells is located at rpeak(s) ≈ 1.8 fm [see Table II
and Figs. 6(g) and 6(m)]. A similar effect is seen in the neutron
densities because of the isovector character of nuclear force
[see Fig. 11(p)]. However, the impact of this process on the
features of the proton potential is rather small [see Fig. 11(h)].
In contrast, it completely removes wine bottle features from
the neutron potential, which becomes a flat bottom one [see
Fig. 11(l)].

The cases discussed above reveal that the formation or
suppression of the bubble structure in the densities of one
subsystem (let us call it A) of the nucleus leads to a signifi-
cant enhancement of wine bottle (flat bottom) features of the
potential in another subsystem (let us call it B).2 Note that the
potentials of subsystem A are only moderately affected by this
process. Similar features have been seen earlier in the analysis
of the ground state and excited configurations of the 292120
nucleus (see the discussion of Fig. 3 in Ref. [22]). The fol-
lowing explanation is in place. Let us consider the case of the
formation of the bubble structure in the densities of subsystem
A. It proceeds by the occupation of the states in the vicinity of
the Fermi level and it has only minor impact on the nucleonic
potential of this subsystem. The isovector interaction tries to
keep proton and neutron densities alike. For a fixed number of
the particles in the subsystem B, the formation of the bubble

2If A = proton then B = neutron and vice versa.

structure in its densities can be achieved only by a significant
enhancement of wine bottle features of its potential.

VI. ADDITIVITY RULE FOR DENSITIES

The addition or removal of particle(s) to the nucleonic con-
figuration modifies the total physical observables. But it also
creates the polarization effects on the physical properties (both
in time-even and time-odd channels) of initial configuration.
The comparison of relative properties of two configurations
can shed important light both on the impact of the added
or removed particle(s) in specific orbital(s) on the physical
observable of interest and on the related polarization effects.
In this context the additivity rule of physical observables
plays an extremely important role since it allows to verify
whether the independent particle motion is realized in finite
nuclei [39,40]. This rule states that physical observable OB in
the configuration B can be approximated as a sum of physical
observable OA in reference configuration A and single-particle
contributions oi of the states by which the configurations A
and B differ:

O(B) = O(A) +
∑

i

oi. (9)

The additivity rule was successfully tested for the effec-
tive alignments and relative quadrupole moments of the
superdeformed rotational bands in the unpaired regime (see
Refs. [39,41–43]). This justifies the use of an extreme single-
particle model in an unpaired regime typical of high angular
momentum. Note that the basic idea behind the additivity rule
for one-body operators is rooted in the independent particle
model [39–41].

The additivity rule for densities is used here in order to
verify whether the formation of the bubbles in the nuclei is
predominantly due to single-particle degrees of freedom. This
additivity rule is given as

ρB
tot (r) = ρA

tot (r) −
∑

i

ρ i
sp−A(r). (10)

Here, reference nucleus A (either 310126 or 36S) is character-
ized by flat bottom potentials while that in compared nucleus
B (either 292120 or 34Si) is characterized by wine bottle po-
tential(s). Single-particle density contributions ρ i

sp−A(r) of the
single-particle states by which nuclei A and B differ are de-
fined in the reference nucleus A.

The application of the additivity rule is demonstrated in
Figs. 12 and 13. One can see that starting from proton and
neutron self-consistent densities ρA

tot (r) and respective single-
particle densities ρ i

sp−A(r) in the 310126 nucleus, the additivity
rule reasonably well predicts proton and neutron densities in
the 292120 nucleus (see Fig. 12). The same is true for proton
densities in the pair of nuclei 34Si and 36S. Note that the level
of the deviation of the densities obtained via the additivity
rule from self-consistent ones is similar in both pairs of nuclei.
This is due to the similarity of the relative change in total parti-
cle numbers between nuclei B and A in both pairs (5.9% in the
34Si/36S pair and 6.2% in the 292120/310126 pair). Note that
the above-discussed relative change in total particle number
is comparable with the upper limit used in the analysis of the
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FIG. 12. The comparison of the densities in the 292120 nucleus
obtained in a fully self-consistent way (black solid lines) with those
derived by means of the additivity rule [see Eq. (10)] from the self-
consistent densities of the 310126 nucleus (dashed red lines).

additivity rule for relative quadrupole moments and effective
alignments in Refs. [39,42,43].

These results strongly point to the same mechanism of
the formation of the central depression of density distribution
which is related to the single-particle degrees of freedom. In
addition, in contrast to the results of Ref. [23] they suggest
that electrostatic repulsion does not play a dominant role in
the formation of bubble superheavy nuclei.

Note that the addition or removal of particle(s) to or from
the nucleonic configuration modifies via the polarization ef-
fects the total and single-particle radii (see Refs. [36,44]). For
example, subsequent addition of neutrons leads to an increase
of total charge radii [36,44,45] and proton single-particle
radii [46] in the Pb isotopic chain. These polarization effects
are minimized in the considered pairs of the nuclei. This is be-
cause the rms radii of proton and neutron matter distributions
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FIG. 13. The same as in Fig. 12 but for the light nuclei. The
black line shows self-consistent proton densities of 34Si. The red
dashed line displays proton densities of this nucleus obtained by
means of the additivity rule from the self-consistent densities of the
36S nucleus.

are very similar in compared nuclei (see Table I). It is reason-
able to expect that with the increase of the difference of these
radii in the pairs of nuclei under comparison the accuracy of
the additivity principle for the single-particle densities will
somewhat decrease. This is because the polarization effects
will lead to a larger difference of the rms radii of proton and
neutron singe-particle states in compared nuclei.

VII. GENERAL OBSERVATIONS

To better understand the origin of the central depressions
in density distributions let us consider the contributions of
different groups of the single-particle states with given orbital
angular momentum l to the total neutron and proton densities.
They are shown in Fig. 14 for a selected set of spherical
nuclei across the nuclear chart. These nuclei include a very
light 34Si nucleus, doubly magic 208Pb nucleus, superheavy
292120 and 310126 nuclei, and hyperheavy 466156 and 592186
nuclei (located in the centers of potential islands of stability of
spherical hyperheavy nuclei; see Refs. [26,27]). The analysis
of this figure leads to several important conclusions.

First, let us consider the average density ρave
i in the re-

spective ith subsystem for radial coordinate below the one
at which the surface density reaches its maximum value. The
neutron average density ρave

ν is located near saturation density
ρsat

ν ≈ 0.08 fm−3 for all these nuclei. Although there is some
trend of the decrease of this density with increasing proton
number Z , it is significantly less pronounced than the one
for proton average densities ρave

π . The neutron average density
tries to saturate at ρsat

ν ≈ 0.08 fm−3 and this forces the proton
subsystem to expand and follow the radial pattern of neutron
density distribution. Because of the imbalance between proton
and neutron numbers this can be achieved only by reduc-
ing overall proton density down to ρsat

π ≈ 0.06 fm−3 in the
208Pb, 292120, and 310126 nuclei and down to ρsat

π ≈ 0.04 fm−3

in very neutron-rich hyperheavy 466156 and 592186 nuclei.
Similar features are seen in the nuclei of the isotopic chains
with Z = 82, 106, 120, and 126 (see Fig. 2 in Ref. [22]) and
in the global survey of Ref. [24]: neutron average densities
stay close to ρsat

ν ≈ 0.08 fm−3 while average proton densities
decrease with increasing neutron number. These observations
(in particular, the saturation of neutron density ρave

π near
ρsat

ν ≈ 0.08 fm−3) suggest that overall behavior of the nuclear
system is predominantly defined by nuclear forces and not by
the Coulomb interaction.

Second, the proton and neutron densities in the center of
the nucleus, in its central and surface regions, depend sensi-
tively on the availability for occupation of the single-particle
states with respective radial properties. The densities at r = 0
are built almost entirely by the s states. However, with in-
creasing particle numbers additional s states are not always
available (see, for example, Fig. 5 in the present paper and
Figs. 5 and 8 in Ref. [26]). The most striking example is the
proton subsystem in which only six s states are available for
occupation in the ground states of the nuclei with Z � 82
[see Figs. 14(e), 14(f), 14(j), 14(k), and 14(l)]. Indeed, the
transition from the 208Pb nucleus to the 592186 one (which is
equivalent to an addition of 104 protons to the 208Pb nucleus)
does not provide any additional s state. As a consequence, the

024321-13



U. C. PERERA AND A. V. AFANASJEV PHYSICAL REVIEW C 106, 024321 (2022)

0.02

0.04

0.06

0.08

0.1

N
eu

tr
o
n
  
d
en

si
ty

  
� �

  
[f

m
-3

]

s =
  4

p 
= 

6
d 

= 
10 34Si

(a)

s =
  6 p 
= 

18
d 

= 
20 208Pbf =

 2
8

g 
= 

18
h 

= 
22

i =
 1

4

(b)

s =
  6 p 
= 

18
d 

= 
20

292120

f =
 2

8
g 

=3
6

h 
= 

22
i =

 2
6

j =
 1

6

(c)

2 4 6 8 10
Radius  r  [fm]

0.02

0.04

0.06

0.08

0.1

P
ro

to
n
  

d
en

si
ty

  
� �

  
[f

m
-3

]

s =
  2 p 

= 
6

d 
= 

6 34Si

(d)
2 4 6 8 10

Radius  r  [fm]

s =
  6

p 
= 

12
d 

= 
20

208Pb

f =
 1

4
g 

= 
18

h 
= 

12

(e)
2 4 6 8 10

Radius  r  [fm]

s =
 6 p 

= 
18

d 
= 

20

292120

f =
 2

8

g 
= 

18
h 

= 
22

i =
 1

4

(f)

0.02

0.04

0.06

0.08

0.1

N
eu

tr
o
n
  
d
en

si
ty

  
� �

  
[f

m
-3

]

s =
  8

p 
= 

18
d 

= 
30 310126

f =
 2

8
g 

= 
36

h 
= 

22
i =

 2
6

j =
 1

6

(g)

s =
  8

p 
= 

24
d 

= 
30

466156

f =
 4

2
g 

= 
36

h 
= 

44
i =

 4
2

j =
 3

0
k 

= 
34

l =
 2

0

(h)
s =

  1
0

p 
= 

24
d 

= 
40

592186

f =
 4

2
g 

= 
54

h 
= 

44
i =

 5
2

j =
 4

6
k 

= 
34

l =
 3

8
m

 =
 2

2

(i)

2 4 6 8 10
Radius  r  [fm]

0.02

0.04

0.06

0.08

0.1

P
ro

to
n
  
d
en

si
ty

  
� �

  
[f

m
-3

]

s =
  6 p 
= 

18
d 

= 
20

310126

f =
 2

8

g 
= 

18
h 

= 
22

i =
 1

4

(j)
2 4 6 8 10

Radius  r  [fm]

s =
  6

p 
= 

18
d 

= 
20

466156

f =
 2

8

g 
= 

28
h 

= 
22 i =
 1

4
j =

 1
6

(k)
2 4 6 8 10

Radius  r  [fm]

s =
  6

p 
= 

18
d 

= 
20

592186
f =

 2
8

g 
= 

36
h 

= 
22

i =
 2

6

j =
 3

0
(l)

FIG. 14. The buildup of total density from the contributions of spherical subshells with given orbital angular momentum l . These
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In these labels l stands for the orbital angular momentum (s for l = 0, p for l = 1, and so on) and “number” indicates the number of particles
in such subshells.

density at r = 0 falls down from 0.07 fm−3 in the 208Pb nu-
cleus to 0.02 fm−3 in the 592186 nucleus [compare Figs. 14(e)
and 14(l)]. The same features are also seen in the neutron
subsystem: the transition from the 208Pb nucleus to the 292120
one [both of them have six occupied s states; see Figs. 14(b)
and 14(c)] and from the 310126 nucleus to the 466156 one
[both of them have eight occupied s states; see Figs. 14(g)
and 14(h)] do not bring additional occupation of the s states
which results in the reduction of the density at r = 0.

This significant reduction of the density at the center of
super- and hyperheavy nuclei is also facilitated by two factors
which affect the magnitude of the single-particle density of the

s states at r = 0. The first factor is the presence of classically
forbidden regions in the nucleonic potentials which leads to
a decrease of the density of the 1s1/2 and 2s1/2 states at r =
0 [see Figs. 15(a), 15(b), 15(d), and 15(e)]. This decrease is
especially drastic in the 292120, 466156, and 592186 nuclei and
for the 1s1/2 states. For example, the density at the center of
the proton subsystem of the 592186 nucleus is built only by the
3s1/2 and 2s1/2 states and the contribution of the 1s1/2 state
is almost zero. Note that 77% of the total proton density at
r = 0 is built by only two 3s1/2 protons. Another factor is the
stretching out of the radial profile of the density distribution of
a given single-particle state with increasing proton number or
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FIG. 15. Single-particle densities ρ
sp
i of the s states occupied in

the bubble nuclei ranging from light 34Si up to hyperheavy nuclei.

mass of the nucleus (see Fig. 15). It leads to the decrease of the
density of the s states at r = 0 because of the normalization
condition of Eq. (8).

Third, the densities in the central 0 < r < 2 fm regions of
proton and neutron subsystems are built by the occupation of
the s, p, and d states in all nuclei under study (see Fig. 14).
Again the availability of such states for occupation plays a
critical role. For example, the number of occupied proton s,
p, and d states is 6, 18 and 20, respectively, in the 292120,
310126, 466156, and 592186 nuclei [see Figs. 14(f), 14(j), 14(k),
and 14(l)]. As a consequence, the process of the increase
of the radius of the nucleus with increasing Z (see Table I)
leads to a reduction of the proton density in the central region
with increasing Z . A similar example is seen in the neutron
subsystem of the 208Pb and 292120 nuclei in which the number
of occupied s, p, and d states is exactly the same (6, 18,
and 20, respectively) [see Figs. 14(b) and 14(c)]. Again the
increase of mass number triggers the reduction of neutron
density in the central region.

Fourth, the densities at higher radial coordinate r and in
the surface and near-surface regions are built predominantly
by the groups of medium- and high-l orbitals, respectively
(see Figs. 6 and 14). However, the attribution of the orbitals
to these two groups depends on the nucleus and in many cases

TABLE III. Depletion factor Fi for proton and neutron subsys-
tems obtained in the calculations for indicated nuclei.

Nuclei Fπ (%) Fν (%)

34Si 34.8 0
36S 0 0
40Ca 0 0
208Pb 0 8.2
292120 27.7 34.0
310126 16.7 0
466156 36.3 20.4
592186 53.8 16.0

it is not unique. This is because the contribution of the groups
of the orbitals with specific orbital angular momentum l to the
nucleonic density stretches over a considerable range of radial
coordinate (see Fig. 14). In addition, the groups of the states
with fixed l are built from a number of the subshells with dif-
ferent principal quantum numbers n which differ significantly
in the nodal structure of density distribution (the number of
the peaks of single-particle density is equal to n) and in the
localization of density in radial coordinate (see Fig. 6).

The nucleonic density profiles in these regions depend also
on the availability of specific groups of the orbitals for occu-
pation. To illustrate that let us compare the proton densities
of the 466156 and 592186 nuclei [see Figs. 14(k) and 14(l)].
The number of the s, p, d , and f states building the density
in the r < 3.0 fm region is the same in both nuclei. However,
the transition from the 466156 nucleus to the 592186 one leads
to the increase of mass number which triggers the increase of
the size of the nucleus (see Table I) and as a consequence the
lowering of the density in the r < 3.0 fm region of the 592186
nucleus as compared with the 466156 one. This transition is
also associated with the addition of 8 g, 8 i, and 14 j protons
to the proton subsystem of the 466156 nucleus: these orbitals
build density mostly in near-surface and surface regions of the
592186 nucleus [see Fig. 14(l)]. However, the maximum den-
sity at the surface of the latter nucleus is smaller than that in
the former one because of the increase of the size of the proton
subsystem [compare Figs. 14(k) and 14(l)]. As a consequence
of these self-consistent processes, the proton depletion factor
Fπ [see definition in Eq. (11) below] of the 592186 nucleus is
significantly larger than that of the 466156 one (see Table III).
Interestingly enough, the neutron depletion factor Fν shows an
opposite trend (see Table III) and this is predominantly due to
occupation of two additional s neutrons leading to an increase
of the density at r = 0 in the 592186 nucleus as compared with
the 466156 one [see Figs. 14(k) and 14(l)].

VIII. BUBBLE INDICATORS AND
THEIR PHYSICAL CONTENT

Two measures of the central depression in nucleonic densi-
ties are used in the literature. The first one, called the depletion
factor F , is defined by [10,47]

F = ρmax − ρc

ρmax
, (11)
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FIG. 16. Proton and neutron densities of selected N = Z nuclei.

where ρc and ρmax represent the central (r = 0) and maxi-
mum densities, respectively. This is the simplest measure and
numerical values of F for the nuclei of interest are shown in
Table III. A more complicated measure of central depression
was introduced in Ref. [23] and it is defined as

ρ̄t,c = ρt,av − ρt,c

ρt,av

, (12)

where t = (π, ν), ρt,c is the density at the center of the re-
spective subsystem, and ρt,av = Nt/(4/3πR3

d ) is the average
density of the nucleus assuming a constant density up to
diffraction radius Rd [48]. The authors of Ref. [23] use this
radius instead of the rms radius since it is not affected by
surface thickness.

Both indicators are strongly affected by the single-particle
degrees of freedom. For example, ρc in both definitions is
determined almost entirely by the s states and their availability
for occupation across the nuclear chart. The second ingre-
dient entering into Eqs. (11) and (12) is also not free from
single-particle degrees of freedom. Let us first consider the
depletion factor F . In the cases when the density in the center
is larger than the one at the surface [see Figs. 1(a), 1(b), 1(c),
and 1(f)] then ρmax = ρc and F = 0 (see Table III). In other
cases, ρmax is defined by the single-particle states which
build maximum density in the region near the surface [see
Figs. 1(a), 1(d), 1(e), 1(f), 1(g) and 1(h), Fig. 14, and the dis-
cussion in the second part of Sec. VII]. ρt,av used in Eq. (12)
also depends on the underlying single-particle structure and
availability of the single-particle states for occupation despite
the fact that it averages densities up to diffraction radius Rd .

These facts strongly suggest that both indicators cannot be
reliable measures of bulk properties (such as those related to
the Coulomb interaction). This is especially true because in
wine bottle nucleonic potentials the densities of the s states,
their magnitudes at r = 0, and their radial profiles are affected
strongly by classically forbidden regions of the potentials (see
Secs. IV and VII). Thus, the conclusions of Ref. [23] that the
central depression in superheavy nuclei is firmly driven by the
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onic potentials in indicated N = Z nuclei. Horizontal solid and
dashed lines show proton and neutron Fermi levels, respectively.

electrostatic repulsion should be treated with extreme caution
since they are based on the bubble indicator of Eq. (12).

In nuclei the protons feel combined nuclear and Coulomb
potentials which lead to proton single-particle states with
specific density distributions over the radial coordinate. In
addition, there is a nuclear interaction between protons
and neutrons which further complicates the situation. As a
consequence, there is no straightforward procedure for the
separation of nuclear and Coulomb interaction effects on the
central depression in density distributions. However, in light
of the conclusions of Ref. [23] it is important to estimate
the possible magnitude of the Coulomb interaction effects on
these depressions. From our point of view, the only possible
way to get that is by comparing proton and neutron depres-
sions in symmetric N = Z nuclei with the same nucleonic
configurations in proton and neutron subsystems.

Proton and neutron densities of a selected set of the nuclei
are shown in Fig. 16. Most of these nuclei belong to isotopic
chains discussed above, but we also added 56Ni and 100Sn.3

One can see in Fig. 16 that in a given nucleus the proton
densities closely follow the radial profiles of the neutron
densities but with somewhat reduced absolute magnitudes.
This is due to the fact that Coulomb interaction (by means

3The majority of these nuclei are proton unbound (see Fig. 17) and
there is no local minimum at spherical shape in deformation energy
curves of hyperheavy nuclei. The lowest in energy solutions of the
hyperheavy 312156 and 372186 nuclei in the axial RHB calculations
correspond to toroidal shapes. Thus, spherical solutions in these two
hyperheavy nuclei are used here as theoretical benchmarks for the
investigation of the impact of single-particle degrees of freedom and
Coulomb interaction on the formation or suppression of the bubble
structures in hyperheavy nuclei.
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TABLE IV. Depletion factors Fi for proton and neutron subsys-
tems obtained in the calculations for indicated N = Z nuclei.

Nuclei Fπ (%) Fν (%)

56Ni 0 0
100Sn 24.31 21.84
164Pb 0 0
240120 26.12 20.88
252126 15.91 17.39
312156 34.45 28.23
372186 58.25 51.36

of electrostatic repulsion) somewhat increases the radius of
the proton density as compared with the neutron one. This
corresponds to transfer of protons from the subsurface region
into the surface one.

The resulting depletion factors Fi are shown in Table IV.
One can see that on average they are larger in the proton
subsystem as compared with the neutron one by only ap-
proximately 20%. This suggests that the Coulomb interaction
plays only a secondary role in the formation of the depletions
in the central density distribution. It is interesting that the
depletion factors are similar in the medium-mass 100Sn and
superheavy 240120 nuclei. This again supports the notion that
single-particle degrees of freedom are dominant in creation of
the bubbles and Coulomb interaction plays only a secondary
role.

IX. THE FACTORS AFFECTING THE AVAILABILITY OF
THE LOW-l STATES FOR OCCUPATION

The densities of the occupied single-particle states rep-
resent the basic building blocks of the total densities. To
build a flat density distribution one should have a balanced
combination of the occupied states which build the density
in the center of the nuclei and in their middle and surface
parts. However, the question of whether such a balanced com-

bination of single-particle states is available for occupation in
super- and hyperheavy nuclei has not even been raised so far
in the literature.

A specific feature of a realistic nuclear potential is the fact
that within a shell with a given principal quantum number N
the states with highest possible orbital angular momentum l
are the lowest in energy while those with lowest l (such as
the s states in even-N shells and the p states in odd-N shells)
are typically located at the highest or near-highest energies in
the shell (see, for example, Fig. 6.3 in Ref. [1]). Thus, with
the filling of a specific N shell the density is first built at the
surface, then in the middle part of the nucleus, and only then
in the central region and at r = 0.

The detailed analysis of the occupation of different groups
of the (N, l ) states in the 592186 nucleus reveals that only
high-l subshells are occupied in the high-N shells (see Ta-
ble V). Let us consider the proton subsystem. All N = 5
states are occupied in it (see Table V). However, only l = 6
and l = 4 states are occupied in the N = 6 shell and only
l = 7 states in the N = 7 shell4 (see Table V). This imbalance
between the occupation of the high-l and low-l subshells is
definitely responsible for a preferential buildup of the density
in the surface region and as a consequence of the formation
of pronounced bubble in this nucleus [see Fig. 18(b)]. This
feature becomes even more pronounced for the symmetric
N = Z 372186 nucleus which has the same nucleonic config-
urations in proton and neutron subsystems [see Fig. 18(b)].

Let us consider how the neutron system of the 592186
nucleus is built from the one in the 372186 nucleus. The former
nucleus has 220 extra neutrons which according to Table V
are placed into the s states (4 neutrons), p states (6 neutrons),
d states (20 neutrons), and the rest into higher l states. The

4A similar pattern of the occupation is seen in the neutron subsys-
tem in which the last fully occupied shell has N = 8. Only l = 9 and
l = 7 subshells are occupied in the N = 9 shell and only the l = 10
subshell in the N = 10 shell (see Table V).

TABLE V. The single-particle states of given principal quantum number N and orbital angular momentum l in the hyperheavy 592186
nucleus. This nucleus has 186 protons and 406 neutrons. The particle numbers are given in the format npos/pocc/nocc. npos (in bold) is the total
number of states with given values of N, l in spherical harmonic oscillator potential. pocc and nocc display the number of the occupied states
with given values of N, l in the proton and neutron subsystems of the 592186 nucleus, respectively.

l�N 0 1 2 3 4 5 6 7 8 9 10

0 2/2/2 2/2/2 2/2/2 2/0/2 2/0/2 2/0/0
1 6/6/6 6/6/6 6/6/6 6/0/6 6/0/0
2 10/10/10 10/10/10 10/0/10 10/0/10 10/0/0
3 14/14/14 14/14/14 14/0/14 14/0/0
4 18/18/18 18/18/18 18/0/18 18/0/0
5 22/22/22 22/0/22 22/0/0
6 26/26/26 26/0/26 26/0/0
7 30/30/30 30/0/16
8 34/0/34 34/0/0
9 38/0/38
10 42/0/22

Total 2/2/2 6/6/6 12/12/12 20/20/20 30/30/30/ 42/42/42 56/44/56 72/30/72 90/0/90 110/0/54 132/0/22
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FIG. 18. Proton (solid lines) and neutron (dashed lines) densities
of indicated nuclei.

presence of these low-l states allows to increase the density
in the central region and to build significantly flatter neutron
density distribution [compare dashed red curves for the 372186
and 592186 nuclei in [Fig. 18(b)]]. Detailed analysis reveals
that similar features are also active in the Z = 156 isotopes
[see Fig. 18(a)].

These two examples clearly indicate that although the ef-
fects of the Coulomb interaction are increased in hyperheavy
nuclei as compared with lighter ones they alone cannot ex-
plain the density profiles seen in Fig. 18. It turns out that
the unavailability of the low-l states for occupation plays
an extremely important role in the formation of the bubble
structures in such nuclei.

It is important to evaluate which factors affect the avail-
ability of the low-l single-particle states for occupation. Since
earlier studies it became clear that the bubble can have a
profound impact on relative energies of the low- and high-l
states. For example, it was shown in Ref. [7] (see discussion of
Figs. 30 and 31 in that paper) within a schematic shell model
approach that low-l (high-l) states rise in energy (go down in
energy) with increasing inner bubble radius R1. However, this
approach is unrealistic since it assumes zero density inside
the bubble for r < R1. Such a scenario is not realized in the
nuclei under study and thus the effect of the bubble is substan-
tially overestimated in Ref. [7]. A similar effect (see Fig. 8
in Ref. [8]) is seen also in the calculations of Ref. [8] in a
phenomenological shell approach which allows partial filling
of the hole. Nonrelativistic Hartree-Fock calculations of the
200Hg nucleus show that for realistic shapes of the bubble the
effect is significantly smaller: only the s states rise in energy
by a few MeV with increasing of the bubble size while the
energies of other states remain almost constant (see Fig. 4 in
Ref. [5]). The Hartree-Fock-Bogoliubov calculations with the
D1S force also show that the energies of low-l (high-l) states
rapidly rise (gradually decrease) in energy with the increase
of the size of the bubble (see Figs. 18 and 19 in Ref. [21]).

All these results suggest that in some situations the pres-
ence of the bubble in the density can lead to unavailability
of the low-l states for occupation at a given particle number
as compared with the case of flat density distribution in the
subsurface region of the nucleus. One should keep in mind

that the constraining bubble potential F (r) is usually added
to Hamiltonian H in order to evaluate the evolution of single-
particle levels with bubble size or shape by minimization of
H + λF (r) (see, for example, Refs. [5,21]). Here λ is the bub-
ble parameter. Unfortunately, the same shape of the bubble is
assumed for proton and neutron subsystems in the calculations
of Refs. [5,7,8,21] and this contradicts the calculated total
densities seen in Figs. 1, 2, and 18. Note that the bubbles are
different in proton and neutron subsystems even in the N = Z
nuclei (see Fig. 16). In addition, the results of the calculations
depend on the assumption about the form of F (r).

Thus, the results of the calculations discussed above should
be taken with a grain of salt and alternative methods of the
analysis of the impact of the bubble on the single-particle
structure should be considered. The comparison of the single-
particle spectra in the pair of the nuclei with and without
bubble structures provides such an alternative. The best ex-
ample of such a comparison is provided by the pair of the
292120 and 310126 nuclei (see Fig. 19) since these two nuclei
have very similar rms radii of proton and neutron matter
distributions (see Table I).

The sequence of the proton states from the vicinity of the
Fermi level up to the top of the Coulomb potential in the flat
density nucleus 310126 is 2 f5/2, 3p3/2, 3p1/2, 1i11/2, 1 j15/2,
2g9/2, 2g7/2, 3d5/2, 3d3/2, 4s1/2, 1 j13/2, 1k17/2, 2h11/2, 2h9/2,
and 3 f7/2 [see Fig. 19(b)]. Almost the same sequence with
a pair of exceptions discussed below is seen in the proton
subsystem of the bubble nucleus 292120 [see Fig. 19(a)]. The
energies of the l > 2 proton states are typically located within
1 MeV in both nuclei. So the bubble does not produce a
significant impact on their energies. On the contrary, it has a
more pronounced impact on the energies of the low-l s and p
states: it moves them from below their high-l neighbors (1i11/2

and 1 j13/2, respectively) in the flat density 310126 nucleus to
above them in bubble nucleus 292120 [compare Figs. 19(a)
and 19(b)]. It is interesting that the effect of the bubble is
less pronounced in the neutron subsystem: the sequence of
the states is the same in both nuclei [compare Figs. 19(c)
and 19(d)]. This is due to the fact that the wine bottle po-
tential is less pronounced in the neutron subsystem of the
292120 nucleus than in the proton one [compare Figs. 5(a)
and 5(c)]. In contrast, the bubble is more pronounced in
neutron densities (see Fig. 2). Thus, one can conclude that
these are the modifications in the potentials (and not in
densities) which govern the behavior of the single-particle
states.

Although the presence of the bubble somewhat increases
the energies of the s and p states in the proton subsystem
and affects the availability of these states for occupation as
a function of proton number, this effect in superheavy nuclei
is not that drastic. It will only shift in proton number the
position in the (Z, N ) plane at which bubble structures are
either enhanced or suppressed.

Such kind of comparison as the one discussed above for
the 292120/310126 pair of superheavy nuclei is not feasible for
hyperheavy nuclei. This is because it is impossible to find a
pair of hyperheavy nuclei with and without bubble structures
located close enough in the nuclear chart so that their sizes
are comparable. However, it is still interesting to see how the
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FIG. 19. The same as in Fig. 5 but for the single-proton states located between the Fermi level and the top of the Coulomb barrier and for
the neutron single-particle states located below the continuum threshold. The energy range on the vertical axis is the same in all panels.

formation or suppression of the bubble structures affects the
single-particle structure. For that we compare single-particle
structures of the N = Z 372186 and 592186 nuclei. Both nu-
clei have the same proton configuration. However, the latter

nucleus is created from the former one by the addition of
220 neutrons including 4 s neutrons, 6 p neutrons and 20
d neutrons [compare Figs. 14(i) and 14(l) and see Fig. 20],
which leads to a substantial (some) suppression of the bubble
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structure in neutron (proton) subsystems [see Fig. 18(b) and
compare Tables IV and III].

Neutron single-particle energies of these two nuclei are
compared in Fig. 20. The sequence of the states is basically
the same in both nuclei with the exception of the fact that the
order of the states is inverted in the spin-orbit doublets built on
the low-l orbitals. The neutron spectra are more compressed
in the 592186 nucleus as compared with the 372186 one: this
is due to larger radii of the neutron density and potential in
the former nucleus. In the proton subsystem, there are some
changes in the sequence of the single-particle states in two
nuclei under study. It is caused by a substantial reduction of
the spin-orbit splitting of the high- j orbitals (such as 1i13/2

and 1i11/2 or 1 j15/2 and 1 j13/2; see Fig. 21) on transition from
the N = 186 to N = 406, Z = 186 isotope. A similar effect is
also seen in the neutron subsystem but it does not affect the
sequence of the states in two nuclei under study (see Fig. 20).
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FIG. 21. The same as in Fig. 20 but for the proton single-particle
states. Note that in order to make a comparison easier the states of the
372186 nucleus are shifted down by 19 MeV. Only the states below
the top of the Coulomb barrier are shown in both nuclei.

These figures also illustrate the relative rarity of the s
states in hyperheavy nuclei. For example, the neutron 3s1/2,
4s1/2, and 5s1/2 states in the 592186 nucleus are located at the
energies ≈ −28.5, ≈ −14, and ≈ 2.5 MeV, respectively (see
the right column of Fig. 20). Thus, starting from the system
with the occupied 3s1/2 state one should add 108 neutrons to
occupy the 4s1/2 state and starting from the system with the
occupied 4s1/2 state one should add 142 neutrons to occupy
the 5s1/2 state. This rough estimate is obtained under the
assumption that the occupation of the states does not change
the sequence of the states shown in the right column of Fig. 20.
Similar estimates could be obtained from the analysis of the
proton single-particle states shown in the right column of
Fig. 21. This analysis suggests that, similar to superheavy
nuclei, the availability (as a function of particle number) of the
low-l states (in particular, the s states) for occupation is not
that drastically affected by the transition from flat to bubble
density distributions in hyperheavy 592186 and 372186 nuclei.
It will only somewhat shift in proton and neutron numbers
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FIG. 22. Proton and neutron (V − S) potentials for the nuclei
under study.

the position in the (Z, N ) plane at which bubble structures are
either enhanced or suppressed.

It is well known that the spin-orbit interaction is modified
in bubble nuclei (see Refs. [6,8,9,11,21]). The spin-orbit po-
tential in the CDFT is given by [32]

Vls = m

meff
(V − S), (13)

where m is the mass of the nucleon and meff is its effective
mass. This potential in the case of spherical symmetry pro-
duces a spin-orbit term of the following form [32]:

Vso = 1

2m2

(
1

r

∂

∂r
Vls(r)

)
�l · �s. (14)

As a consequence, the spin-orbit splitting of the (l ± 1/2)
states in the spin-orbit doublet with orbital angular momentum
l depends on the derivative of the difference of vector and
scalar potentials (V − S). These differences for the nuclei
under study are shown in Fig. 22. They range from ≈ 1000
MeV in the center of the 36S nucleus to ≈ 450 MeV in the
center of the 592186 nucleus. However, for most of the nuclei
the (V − S) values are in the vicinity of 600–700 MeV in the
subsurface. In the nuclei with flat density distributions such
as 208Pb and 310126, the (V − S) potential is almost flat in the
subsurface region. Thus, this part of the nucleus contributes
only marginally to the spin-orbit splittings which are almost
entirely defined by the decrease of the (V − S) potential in the
surface region. In contrast, in the bubble nuclei the (V − S)
potential increases with increasing r in the subsurface region.
Thus, this region contributes to the spin-orbit splittings but
with the sign opposite to the one produced in the surface
region where the (V − S) potential decreases with increasing
r. This mechanism is responsible for the modifications of the
spin-orbit splittings such as the reduction and/or inversion
of spin-orbit splittings of the low-l spin-orbit doublets in the
bubble nuclei discussed above.

X. POTENTIAL IMPACT OF DEFORMATION ON THE
BALANCE OF THE SINGLE-PARTICLE AND COULOMB

INTERACTION CONTRIBUTIONS TO THE BUBBLE
STRUCTURES

It is an interesting question on how the balance of the
contributions of the single-particle degrees of freedom and
Coulomb interaction to the formation of bubble structures
changes on the transition from spherical to deformed nuclei.

The emergence of the deformation has two important
consequences for the single-particle structure. First, the de-
formation leads to a more even distribution of the deformed
single-particle states emerging from the high- j and low- j
spherical subshells as compared with the one of the single-
particle states at spherical shape (see, for example, the Nilsson
diagrams in Figs. 3 and 4 of Ref. [49] and in Figs. 1–
3 of Ref. [50]). Second, the wave functions of deformed
single-particle states contain the contributions from different
spherical j subshells and the mixture of such contributions
increases with increasing deformation. Both these factors ef-
fectively reduce the contribution of the single-particle states
into the formation of the bubble structures. Thus, in a given
nucleus the density profile of a deformed solution is flatter
than that of a spherical one (see Fig. 5 in Ref. [22] and Fig. 10
in Ref. [30]).

In contrast, the transition from spherical to deformed
shapes has a relatively small impact on the Coulomb potential.
This is illustrated here by the examples of the 254No and
276Cn nuclei, the bubble structures in the proton and neutron
densities of which have been studied earlier (see discussion
of Fig. 5 in Ref. [22]). The Coulomb potential in axially de-
formed nuclei depends on z and r⊥. Here z is the distance from
the center of the nucleus along the symmetry axis and r⊥ is the
distance in the radial direction. For simplicity, the Coulomb
potential V def

Coul in these deformed nuclei is considered as a
function of the distances along (r⊥ = 0) and perpendicular to
(z = 0) the symmetry axis (see Fig. 23). For comparison, the
Coulomb potential V spher

Coul (x) of the spherical solution is also
presented in this figure. One can see that V def

Coul(z = x, r⊥ =
0) > V def

Coul(z = 0, r⊥ = x) and the splitting between these two
branches increases with deformation but it is rather modest.
Note that the average of these two branches is very close to
V spher

Coul (x).
As discussed in Sec. III, the impact of the Coulomb po-

tential on the formation of the wine bottle potential and
bubble structures is defined by the difference VCoul(x = 0) −
VCoul(xsurf ), where xsurf is the coordinate in a given direction
at which the density is maximal in the near-surface region
(the point at which the surface region starts). Red and blue
arrows in Fig. 23 indicate the distances xsurf from the center
of the nucleus in the direction along and perpendicular to the
symmetry axis, respectively. xsurf of the spherical solution is
located approximately at the middle point between these two
arrows. There are some differences in the values of VCoul and
xsurf of deformed and spherical solutions. Despite that, the im-
pact of the Coulomb interaction on the formation of the bubble
structure in deformed nuclei integrated over the volume of
the nucleus is expected to be close to that of the spherical
solution. This is because of two factors, namely, (i) V def

Coul(z =
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FIG. 23. Coulomb potentials in deformed ground state and ex-
cited spherical solution of the 254No and 276Cn nuclei obtained in the
RHB calculations. They are shown as a function of radial coordinate
for spherical shape (solid black line) and as a function of distance
along (red dot-dashed line) and perpendicular to (blue dashed line)
the symmetry axis for deformed shape. Equilibrium deformations of
deformed states are indicated. The density profiles of these nuclei
(not shown) are very similar to those displayed in Fig. 5 of Ref. [22].
Note that the results of the calculations without pairing are very close
to those shown in the figure.

x, r⊥ = 0) ≈ V def
Coul(z = 0, r⊥ = x) ≈ V spher

Coul (x) for x < 3 fm
and (ii) V def

Coul(z = x, r⊥ = 0) > V spher
Coul (x) > V def

Coul(z = 0, r⊥ =
x) for x < xsurf .

These observations have two consequences. First, with
increasing deformation the relative impact of the Coulomb
interaction on the formation of the bubble structures in de-
formed nuclei increases since the one due to single-particle
degrees of freedom decreases. Second, the bubble structures
in superheavy deformed nuclei are relatively small (see Fig. 5
in Ref. [22], Figs. 6, 7, and 10 in Ref. [30], and Fig. 2 in
Ref. [23]): this is especially true for the nuclei located far
away from double shell closures. In many cases, they are
smaller than those in deformed light nuclei (see Ref. [16]). Let
us ignore the impact of the single-particle degrees of freedom
and attribute the effect of the bubble creation entirely to the
Coulomb interaction. Then the fact that the bubble structures
are either absent or relatively small in deformed superheavy
nuclei allows to conclude that the effect of the Coulomb
interaction on the formation of the bubble structures in such
nuclei is rather modest. This conclusion is expected to be valid
also for spherical superheavy nuclei since the impact of the
Coulomb interaction on the formation of the bubble structures
only weakly depends on the deformation.

XI. CONCLUSIONS

A detailed investigation of microscopic mechanisms lead-
ing to the formation of bubble structures in the nuclei with
main emphasis on the role of the single-particle degrees

of freedom and Coulomb interaction was performed in the
framework of covariant density functional theory. Many of
the existing publications such as Refs. [21,23] emphasize the
dominant role of the Coulomb interaction in the creation of the
bubble structures in super- and hyperheavy nuclei. However,
our detailed analysis paints a much more complicated picture
in which single-particle degrees of freedom play a significant
role which overshadows the role of the Coulomb interaction
in superheavy nuclei. The main results can be summarized as
follows:

(i) There is a central classically forbidden region at the
bottom of the wine bottle potentials the size of which
depends on the nucleus. The presence of this region
leads to a substantial reduction of the densities of
the 1s1/2 states and somewhat smaller reduction in
the densities of the 2s1/2 states for radial coordinate
r = 0 and near it as compared with the case of a
flat bottom potential. The densities of the l = 1 and
l = 2 states located at the bottom of the wine bottle
potential can also be pushed away from r = 0. This
represents a new never-discussed-before microscopic
mechanism of the creation of bubble structures in
nuclei. It is responsible for a significant reduction of
the nucleonic densities at r = 0 in hyperheavy nuclei.

(ii) Microscopic mechanisms of the formation of the
wine bottle nucleonic potentials have been investi-
gated in detail. It was shown that the formation of
the bubble structure in the densities of a subsystem
A (proton or neutron) of the nucleus leads to a sig-
nificant enhancement of wine bottle features of the
potential in another subsystem B (neutron or pro-
ton). The microscopic origin of this feature lies in
the isovector character of nuclear interaction which
tries to keep proton and neutron densities alike. The
formation of the bubble structure in the densities of
subsystem A with increasing particle number pro-
ceeds by the occupation of the states in the vicinity
of the Fermi level and it has only a minor impact on
radial profile of the bottom of the nucleonic potential
in this subsystem. For a fixed number of the particles
in subsystem B, the formation of the bubble structure
in its densities, driven by the formation of the bubble
structures in subsystem A, can be achieved only by a
significant enhancement of wine bottle features of its
potential.

(iii) The bubbles in nucleonic total densities also depend
on the availability of low-l single-particle states for
occupation since their densities represent the basic
building blocks of total densities. However, such
states (in particular, the s states) appear less fre-
quently as compared with medium- and high-l states
with increasing principal quantum number N . This
is a typical feature of a realistic nucleonic potential:
within a shell with a given principal quantum number
N the states with highest possible orbital angular
momentum l are the lowest in energy while those
with lowest l (such as the s states in even-N shells
and the p states in odd-N shells) are typically located
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at the highest or near-highest energies in the shell.
Thus, with filling of a specific N shell the density is
first built at the surface, then in the middle part of
the nucleus, and only then in the central region and
at r = 0. The balanced distribution of the occupation
of low-, medium-, and high-l states is required for
building flat density distribution. However, this bal-
ance is substantially broken in hyperheavy nuclei and
the density is built predominantly in the near-surface
region by the high-l states.

(iv) Existing bubble indicators [see Eqs. (11) and (12)]
are strongly affected by single-particle properties.
In particular, the central density ρc is defined al-
most entirely by occupied s states. Thus, they cannot
be reliable measures of bulk properties (such as a
Coulomb interaction). This is especially true for the
nuclei characterized by wine bottle nucleonic poten-
tials since the densities of the lowest s states at r = 0
are strongly affected by classically forbidden regions
of the potentials.

(v) An additivity rule for the densities has been proposed
for the first time. It was verified on the pairs of the
34Si/36S and 292120/310126 nuclei: the first nucleus
in the pair has bubble structure while second one is
characterized by flat density distributions. The addi-
tivity rule works with comparable accuracy in both
pairs of the nuclei. This strongly suggests the same
mechanism of the formation of the central depression
in the lighter nucleus of the pair which is related to
emptying of specific low-l singe-particle orbitals.

(vi) The global evolution of the densities is governed also
by saturation mechanisms. The analysis of the densi-
ties shown in the present paper and in Refs. [22,24]
clearly reveals that average neutron densities ρave

ν in
the subsurface region of the nuclei try to stabilize
near saturation density ρsat ≈ 0.08 fm−3. In contrast,
average proton densities ρave

π in the subsurface re-
gion can be significantly below this value especially
in neutron-rich nuclei. This strongly suggests that
Coulomb interaction effects are secondary to nuclear
interaction ones in an absolute majority of the nuclei.

(vii) Self-consistency effects are characterized by the very
complex nature of the impact of the nuclear densities
on the nucleonic potentials. For example, the removal
of two protons from 36S leads to a creation of bubble
structure in proton densities of 34Si. However, it has

a substantially larger impact on the neutron potential
of 34Si (which becomes a wine bottle one) than on
the proton one (which becomes a flat bottom one).
Similar effects have been seen before in Ref. [22]:
particle-hole excitations in neutron subsystems led to
substantial changes in neutron densities but this pro-
cess results in larger changes in the proton potential
as compared with the neutron one.

One can see in some publications the statements that
the Coulomb interaction is at the origin of the systematic
deviations from a uniform charge distribution since the sys-
tem can lower its (positive) electrostatic energy by forming
bubble structures (see, for example, Refs. [21,23]). In the
extreme, the lowest Coulomb energy would be reached if
all the protons were located in a thin layer at the nuclear
surface. However, in nuclei this trend is counteracted by
the quantum nature of the single-particle states: only spe-
cific single-particle states with specific density profiles can
be occupied with increasing proton and neutron numbers. In
addition, there is a nuclear interaction between protons and
neutrons which further complicates the situation. The pattern
of the saturation of neutron density at ρsat ≈ 0.08 fm−3 coun-
teracts the frequent argument that the neutron density follows
to a certain extent the trend produced by the protons as a
result of the strongly attractive neutron-proton interaction. As
a consequence, the formation of bubble structures depends
on the competition of several factors and there is no simple
indicator which would clearly allow to separate nuclear and
Coulomb interaction effects on the central depression in den-
sity distributions. However, our detailed analysis of different
aspects of bubble physics strongly suggests that the formation
of bubble structures in superheavy nuclei is dominated by
single-particle effects. This is in contrast to the conclusions
of Ref. [23] that the central depression in superheavy nuclei
is firmly driven by the electrostatic repulsion. The role of the
Coulomb interaction increases in hyperheavy nuclei but even
for such systems we do not find strong arguments that the
formation of bubble structures is dominated by the Coulomb
interaction.
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Sorlin, N. Van Giai, and D. Vretenar, Phys. Rev. C 79, 034318
(2009).

[11] K. Karakatsanis, G. A. Lalazissis, P. Ring, and E. Litvinova,
Phys. Rev. C 95, 034318 (2017).

[12] J. Yao, H. Mei, and Z. Li, Phys. Lett. B 723, 459 (2013).

024321-23

https://doi.org/10.1103/PhysRev.69.538
https://doi.org/10.1103/PhysRevLett.18.704
https://doi.org/10.1016/0370-2693(72)90673-9
https://doi.org/10.1016/0370-2693(73)90121-4
https://doi.org/10.1016/0375-9474(73)90467-3
https://doi.org/10.1016/0003-4916(73)90420-X
https://doi.org/10.1016/S0375-9474(97)00481-8
https://doi.org/10.1103/PhysRevLett.80.37
https://doi.org/10.1103/PhysRevC.79.034318
https://doi.org/10.1103/PhysRevC.95.034318
https://doi.org/10.1016/j.physletb.2013.05.049


U. C. PERERA AND A. V. AFANASJEV PHYSICAL REVIEW C 106, 024321 (2022)

[13] T. Duguet, V. Somà, S. Lecluse, C. Barbieri, and P. Navrátil,
Phys. Rev. C 95, 034319 (2017).

[14] J.-M. Yao, S. Baroni, M. Bender, and P.-H. Heenen, Phys. Rev.
C 86, 014310 (2012).

[15] X. Y. Wu, J. M. Yao, and Z. P. Li, Phys. Rev. C 89, 017304
(2014).

[16] A. Shukla and S. Åberg, Phys. Rev. C 89, 014329 (2014).
[17] E. Khan, M. Grasso, J. Margueron, and N. V. Giai, Nucl. Phys.

A 800, 37 (2008).
[18] L. R. Gasques, A. V. Afanasjev, M. Beard, J. Lubian, T. Neff,

M. Wiescher, and D. G. Yakovlev, Phys. Rev. C 76, 045802
(2007).

[19] H. Nakada, K. Sugiura, and J. Margueron, Phys. Rev. C 87,
067305 (2013).

[20] M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, and W.
Greiner, Phys. Rev. C 60, 034304 (1999).

[21] J. Dechargé, J.-F. Berger, M. Girod, and K. Dietrich, Nucl.
Phys. A 716, 55 (2003).

[22] A. V. Afanasjev and S. Frauendorf, Phys. Rev. C 71, 024308
(2005).

[23] B. Schuetrumpf, W. Nazarewicz, and P.-G. Reinhard, Phys. Rev.
C 96, 024306 (2017).

[24] G. Saxena, M. Kumawat, M. Kaushik, S. Jain, and M.
Aggarwal, Phys. Lett. B 788, 1 (2019).

[25] J. Dechargé, J.-F. Berger, K. Dietrich, and M. Weiss, Phys. Lett.
B 451, 275 (1999).

[26] S. E. Agbemava, A. V. Afanasjev, A. Taninah, and A. Gyawali,
Phys. Rev. C 99, 034316 (2019).

[27] S. E. Agbemava and A. V. Afanasjev, Phys. Rev. C 103, 034323
(2021).

[28] A. V. Afanasjev, S. E. Agbemava, and A. Gyawali, Phys. Lett.
B 782, 533 (2018).

[29] X. Y. Wu and J. Xiang, Phys. Rev. C 98, 054319 (2018).
[30] J. C. Pei, F. R. Xu, and P. D. Stevenson, Phys. Rev. C 71, 034302

(2005).
[31] A. Mutschler, A. Lemasson, O. Sorlin, D. Bazin, C. Borcea,

R. Borcea, Z. Dombrádi, J.-P. Ebran, A. Gade, H. Iwasaki, E.
Khan, A. Lepailleur, F. Recchia, T. Roger, F. Rotaru, D. Sohler,
M. Stanoiu, S. Stroberg, J. A. Tostevin, M. Vandebrouck et al.,
Nat. Phys. 13, 152 (2017).

[32] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring,
Phys. Rep. 409, 101 (2005).

[33] S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring, Phys.
Rev. C 89, 054320 (2014).

[34] S. Teeti and A. V. Afanasjev, Phys. Rev. C 103, 034310 (2021).
[35] G. A. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Arteaga,

A. V. Afanasjev, and P. Ring, Phys. Lett. B 671, 36 (2009).
[36] U. C. Perera, A. V. Afanasjev, and P. Ring, Phys. Rev. C 104,

064313 (2021).
[37] Mass Explorer: DFT mass tables, http://massexplorer.frib.msu.

edu/content/DFTMassTables.html.
[38] S. E. Agbemava, A. V. Afanasjev, T. Nakatsukasa, and P. Ring,

Phys. Rev. C 92, 054310 (2015).
[39] W. Satuła, J. Dobaczewski, J. Dudek, and W. Nazarewicz, Phys.

Rev. Lett. 77, 5182 (1996).
[40] A. V. Afanasjev, Model for independent particle motion, in

Handbook of Nuclear Physics, edited by I. Tanihata, H. Toki,
and T. Kajino (Springer, Singapore, 2022).

[41] I. Ragnarsson, Nucl. Phys. A 557, 167 (1993).
[42] A. V. Afanasjev, G. Lalazissis, and P. Ring, Nucl. Phys. A 634,

395 (1998).
[43] M. Matev, A. V. Afanasjev, J. Dobaczewski, G. A. Lalazissis,

and W. Nazarewicz, Phys. Rev. C 76, 034304 (2007).
[44] P.-G. Reinhard and H. Flocard, Nucl. Phys. A 584, 467

(1995).
[45] T. Day Goodacre, A. V. Afanasjev, A. E. Barzakh, B. A. Marsh,

S. Sels, P. Ring, H. Nakada, A. N. Andreyev, P. Van Duppen,
N. A. Althubiti, B. Andel, D. Atanasov, J. Billowes, K. Blaum,
T. E. Cocolios, J. G. Cubiss, G. J. Farooq-Smith, D. V. Fedorov,
V. N. Fedosseev, K. T. Flanagan et al., Phys. Rev. Lett. 126,
032502 (2021).

[46] A. V. Afanasjev, U. C. Perera, and P. Ring, Bulg. J. Phys. 48,
375 (2021).

[47] Y. Chu, Z. Ren, Z. Wang, and T. Dong, Phys. Rev. C 82, 024320
(2010).

[48] J. Friedrich and N. Voegler, Nucl. Phys. A 373, 192 (1982).
[49] R. R. Chasman, I. Ahmad, A. M. Friedman, and J. R. Erskine,

Rev. Mod. Phys. 49, 833 (1977).
[50] J. Dobaczewski, A. V. Afanasjev, M. Bender, L. M. Robledo,

and Y. Shi, Nucl. Phys. A 944, 388 (2015).

024321-24

https://doi.org/10.1103/PhysRevC.95.034319
https://doi.org/10.1103/PhysRevC.86.014310
https://doi.org/10.1103/PhysRevC.89.017304
https://doi.org/10.1103/PhysRevC.89.014329
https://doi.org/10.1016/j.nuclphysa.2007.11.012
https://doi.org/10.1103/PhysRevC.76.045802
https://doi.org/10.1103/PhysRevC.87.067305
https://doi.org/10.1103/PhysRevC.60.034304
https://doi.org/10.1016/S0375-9474(02)01398-2
https://doi.org/10.1103/PhysRevC.71.024308
https://doi.org/10.1103/PhysRevC.96.024306
https://doi.org/10.1016/j.physletb.2018.08.076
https://doi.org/10.1016/S0370-2693(99)00225-7
https://doi.org/10.1103/PhysRevC.99.034316
https://doi.org/10.1103/PhysRevC.103.034323
https://doi.org/10.1016/j.physletb.2018.05.070
https://doi.org/10.1103/PhysRevC.98.054319
https://doi.org/10.1103/PhysRevC.71.034302
https://doi.org/10.1038/nphys3916
https://doi.org/10.1016/j.physrep.2004.10.001
https://doi.org/10.1103/PhysRevC.89.054320
https://doi.org/10.1103/PhysRevC.103.034310
https://doi.org/10.1016/j.physletb.2008.11.070
https://doi.org/10.1103/PhysRevC.104.064313
http://massexplorer.frib.msu.edu/content/DFTMassTables.html
https://doi.org/10.1103/PhysRevC.92.054310
https://doi.org/10.1103/PhysRevLett.77.5182
https://doi.org/10.1016/0375-9474(93)90539-A
https://doi.org/10.1016/S0375-9474(98)00156-0
https://doi.org/10.1103/PhysRevC.76.034304
https://doi.org/10.1016/0375-9474(94)00770-N
https://doi.org/10.1103/PhysRevLett.126.032502
https://doi.org/10.55318/bgjp.2021.48.5-6.375
https://doi.org/10.1103/PhysRevC.82.024320
https://doi.org/10.1016/0375-9474(82)90147-6
https://doi.org/10.1103/RevModPhys.49.833
https://doi.org/10.1016/j.nuclphysa.2015.07.015

