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Least-square approach for singular value decompositions of scattering problems
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It was recently observed that chiral two-body interactions can be efficiently represented using matrix fac-
torization techniques such as the singular value decomposition. However, the exploitation of these low-rank
structures in a few- or many-body framework is nontrivial and requires reformulations that explicitly utilize the
decomposition format. In this work, we present a general least-square approach that is applicable to different
few- and many-body frameworks and allows for an efficient reduction to a low number of singular values in the
least-square iteration. We verify the feasibility of the least-square approach by solving the Lippmann-Schwinger
equation in a factorized form. The resulting low-rank approximations of the T matrix are found to fully capture
scattering observables. Potential applications of the least-square approach to other frameworks with the goal of
employing tensor factorization techniques are discussed.
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I. INTRODUCTION

Ab initio calculations of nuclear many-body systems have
seen significant progress over the past decade due to compu-
tational advances, interactions based on chiral effective field
theory, and developments in the field of quantum many-body
theory [1,2]. In particular, chiral two- and three-nucleon inter-
actions [3–9] not only provide a systematic expansion rooted
in QCD but also enable estimates of theoretical uncertain-
ties [10–12]. The combination with systematically improvable
many-body methods has led to unprecedented studies target-
ing heavier and exotic nuclei [13–17].

In this context second-quantized representations of two-
and many-body operators provide the fundamental input for
all basis-expansion methods, e.g., many-body perturbation
theory (MBPT) [18–22], coupled cluster (CC) theory [23–25],
self-consistent Green’s function theory [26–28], and the in-
medium similarity renormalization group (IMSRG) [29–31].
While the use of a single-particle basis is very convenient in
practice, the operator representation in this basis requires an
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extensive number of basis functions to enable robust extrac-
tions of nuclear observables. As such, finding and employing
alternative operator bases provides a promising alternative to
more efficiently represent the underlying objects. Recently,
the use of low-rank operator expansions obtained from a
truncated singular value decomposition was shown to provide
excellent approximations to chiral two-nucleon interactions
[32,33]. Based on such low-rank approximations it was shown
that two-nucleon scattering as well as ground-state properties
of medium-mass nuclei and the nuclear-matter energy can be
very well reproduced from low-rank approximations of chiral
interactions.

One of the major advantages of such low-rank approxima-
tions is their potential to reduce the required computational
resources with respect to storage and the operation cost asso-
ciated with tensor contractions such as matrix multiplications.
However, fully exploiting the structure of factorized many-
body operators requires a reformulation of the underlying
many-body approach in terms of the decomposition compo-
nents themselves. While this strategy has been extensively
studied in quantum chemistry (see, e.g., Refs. [34–40]), in
nuclear physics we are just starting to explore such ideas in
many-body calculations. Finally, the use of factorized tensor
representations is at the heart of the density matrix renor-
malization group (DMRG), which has been used with great
success in condensed-matter physics and quantum chemistry
[41–43]. Recently, the DMRG ansatz has also been employed
in nuclear physics applications [44–47]. In addition, there
have been various applications employing factorization tech-
niques in fitting procedures or as diagnostic tools [48–51].

Ultimately, factorization techniques may provide a way
of extending the reach of ab initio nuclear structure calcula-
tions to heavier and more exotic systems. The computational
demands of such calculations are due to (i) the increase in
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model-space dimension necessary to obtain converged cal-
culations of heavy nuclei [16,17], (ii) the need for refined
truncation schemes in the many-body expansion [31,52,53],
and (iii) the use of symmetry-unrestricted bases to account
for nuclear deformation effects in open-shell nuclei [53–56].
Exploiting the low-rank properties of nuclear interactions can
help to push the present frontiers to access significantly larger
many-body spaces and thus better capture correlations. This
strategy is complementary to ongoing efforts to compress cal-
culations using importance truncation methods [57–60] and
to construct improved bases with superior convergence prop-
erties [53,61–63].

In this work, we present a novel strategy that builds upon
a least-square minimization of the decomposition error of
the unknown tensor in a given framework. The equations we
obtain operate exclusively on the decomposed factors without
reconstructing the full operators at any point. Additionally,
they are independent of the details of the few- or many-body
method. For this reason, the least-square approach is a general
strategy that can be used to reformulate few- and many-
body methods to exploit tensor factorization techniques. As
a proof of concept we apply the least-square approach to the
Lippmann-Schwinger equation and the full T matrix. This
paper is organized as follows. In Sec. II, the least-square
approach is introduced. Section III provides the application
to the Lippmann-Schwinger equation including numerical re-
sults for low-rank T matrices. Finally, we conclude with an
outlook on future perspectives in Sec. IV.

II. LEAST-SQUARE FACTORIZATION

A. General rationale

In the following, we aim at deriving a factorized form of
algebraic equations of the form

T = f (T,V, . . .), (1)

where T denotes the unknown tensor object, V denotes
the (nuclear) interaction, and the function f (·) encodes the
specifics of the underlying few- or many-body framework.
The ellipsis indicates the possible presence of additional
(method-specific) tensors in a given framework.

We start from a factorized representation of the many-body
tensor

T =
m∏

i=1

X (i), (2)

where the objects X (i) define the factors of the decomposition
(see, e.g., Ref. [64] for a review on tensor decompositions).
Obtaining computational benefits from such a factorization re-
quires the reformulation of the few- or many-body formalism,
fully operating on the factors themselves instead of the initial
(undecomposed) tensors. Practically, this yields a new set of
equations:

X (1) = g1
(
X (1), . . . , X (m),V, . . .

)
,

... (3)

X (m) = gm
(
X (1), . . . , X (m),V, . . .

)
,

where the update functions gi depend on the chosen decompo-
sition. In addition, we can also employ a factorized form for
the interaction V using a potentially different tensor format.

B. Tensor format

The general strategy laid out here can be applied to dif-
ferent tensor formats. In this work, we focus on the singular
value decomposition (SVD) of an N × N matrix M, which we
take to be real for simplicity,

M = L�R†, (4)

where (·)† denotes the Hermitian adjoint. The diagonal matrix
� = diag(s1, . . . , sN ) contains the ordered set of nonnegative
singular values si, and the left and right matrices of singular
vectors, L and R, are unitary. By keeping only the lead-
ing RSVD singular values s1, . . . , sRSVD and the corresponding
columns of the L and R matrices we obtain the truncated SVD
of the matrix M (indicated by the tilde):

M̃ = L̃�̃R̃†, (5)

which provides a rank-RSVD approximation to the initial ma-
trix. In the following, we assume a factorized form for the
two-body interaction

Ṽ = L̃V �̃V R̃†
V (6)

and similarly for the unknown many-body tensor1

T̃ = L̃T �̃T R̃†
T . (7)

While many other matrix decompositions exist, e.g., eigen-
value and Cholesky decompositions, the SVD format is
particularly versatile since it requires neither normality nor
positive definiteness of the matrix.

In quantum chemistry, factorizations into even more ten-
sors have been applied in the context of MBPT and CC
calculations [35,36,40]. The employed tensor hypercontrac-
tion (THC) formats are governed by a larger amount of
decomposition factors, i.e., m = 5 in Eq. (2) as opposed to
m = 3 for the case of the SVD. For a discussion of the THC
format in the context of nuclear theory, see Refs. [58,65].

C. Minimization procedure

We follow a least-square approach that minimizes the dis-
tance of the decomposed tensor to its original counterpart
[36]. By introducing the error tensor �T ≡ T − T̃ we define
the cost function

costT ≡ ‖�T ‖2
Fro., (8)

where ‖ · ‖Fro. denotes the Frobenius norm,

costT = Tr[(T † − RT �
†
T L†

T )(T − LT �T R†
T )]. (9)

This can be diagrammatically represented as shown in Fig. 1,
where orange symbols indicate Hermitian adjoints of the blue

1In the following, we suppress the tilde originally introduced to
distinguish the low-rank components L̃X , �̃X , and R̃X from their full-
rank counterparts LX , �X , and RX .
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FIG. 1. Diagrammatic representation of the cost function, Eq. (9).

symbols and connecting lines correspond to tensor contrac-
tions. The factorized working equations are obtained by
optimizing costT , i.e., setting partial derivatives with respect
to the decomposition factors to zero,

∂costT
∂X

= 0, (10)

where X ∈ {LT , �T , R†
T }. Because the function costT is real-

valued and analytic,

∂costT
∂X

=
(

∂costT
∂X †

)†

, (11)

derivatives with respect to X and X † are linearly dependent
and only one set must be taken into account. Diagrammati-
cally, performing a derivative ∂costT /∂X corresponds to the
removal of the corresponding tensor vertex X in the tensor
network (see Fig. 2 for the derivative with respect to X = L†

T ).
For the various decomposition factors we obtain from Eq. (10)
the following set of derivatives for SVD-based decomposi-
tions:

∂costT
∂L†

T

= − f (T )RT �
†
T + LT �T R†

T RT �
†
T , (12a)

∂costT
∂�

†
T

= −L†
T f (T )RT + L†

T LT �T R†
T RT , (12b)

∂costT
∂RT

= −�
†
T L†

T f (T ) + �
†
T L†

T LT �T R†
T , (12c)

where f (T ) encodes the (nonfactorized) working equation,
Eq. (13). The specific example of the Lippmann-Schwinger
equation is discussed in Sec. III.

D. Master equations

Since the derivative ∂costT /∂X † is linear in X , all factors
other than X can be contracted in a so-called environment ma-

-
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FIG. 2. Derivative of the cost function with respect to L†
T .
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T
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T

=
RT

FIG. 3. Diagrammatic representation of the derivative
∂costT /∂L†

T = 0. The colored area corresponds to the environment
matrix (see text for details).

trix, AX . Figure 3 shows the example of setting the derivative
with respect to L†

T to zero, where the contraction of the colored
area gives the environment matrix AL associated with LT . We
are left with the solution of a linear problem X · AX = BX ,
where BX corresponds to the first terms in Eqs. (12) and we
note that the environment matrix can be a left factor and/or a
right factor. Thus, the update step can be written as

X = BX · A−1
X . (13)

The explicit expressions for the environment matrices are

AL = �T R†
T RT �

†
T , (14a)

A�1
= L†

T LT , (14b)

A�2
= R†

T RT , (14c)

AR = �
†
T L†

T LT �T . (14d)

In contrast to the left and right matrices the derivative
∂costT /∂�

†
T produces two environment matrices, A�1 and

A�2 . Note that the environment matrices are tensor-format
specific and do not depend on the many-body approach itself
(which is encoded in the tensors BX ). Thus, the system of
Eqs. (12) constitutes a set of master equations governing any
SVD-structured framework using algebraic equations. Finally,
the update steps for the different factor matrices are given by

LT = f (T )RT �
†
T A−1

L , (15a)

�T = A−1
�1

L†
T f (T )RT A−1

�2
, (15b)

R†
T = A−1

R �
†
T L†

T f (T ), (15c)

where all evaluations in the tensor-structured framework can
be performed using efficient linear algebra operations. In the
following, we refer to the update equations, Eqs. (15), as the
SVD-factorized least square (SVD-LS) equations.

E. Explicit orthogonalization

The solution of Eqs. (15) is not constrained to conserve
unitarity of the left and right matrices, i.e., L†

T LT �= 1 �=
R†

T RT . Unitarity can be explicitly enforced through an addi-
tional orthogonalization from a QR factorization,

LT = QLRL, (16a)

RT = QRRR, (16b)
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where QR and QL are unitary matrices and RL and RR are upper
triangular matrices. Modified factor matrices are obtained via

L̆T = QL, (17a)

�̆T = RL�T R†
R, (17b)

R̆T = QR, (17c)

such that the left and right matrices are manifestly unitary.
To restore the diagonality of �T we perform an additional
(untruncated) SVD,

�̆T = L̄T �̄T R̄†
T , (18)

where the unitary matrices L̄T and R̄T are absorbed into the
left and right matrices, respectively, and we obtain the final
decomposition:

ĽT = QLL̄T , (19a)

�̌T = �̄T , (19b)

Ř†
T = R̄†

T Q†
R. (19c)

Practically, the orthogonalization is performed in each itera-
tion step. Due to the small size of the corresponding matrices
the computational overhead is negligible.

The restoration of a proper SVD format has the formal
advantage of simplifying the master equations of the least-
square approach. Due to the diagonality of the �T matrix the
environment matrices [Eqs. (14)] can be analytically inverted,
giving rise to the update step:

LT = f (T )ŘT �̌−1
T , (20a)

�T = Ľ†
T f (T )ŘT , (20b)

R†
T = �̌−1

T Ľ†
T f (T ). (20c)

The simplified update step in Eqs. (20) reduces the numeri-
cal sensitivity to ill-conditioned environment matrices in the
formation of their inverses. In the following, we refer to the
SVD-LS approach as the one with explicit orthogonalization,
Eqs. (20).

F. Computational advantages

The computational benefit of factorization techniques
comes from the decreased memory requirements and the
lower number of floating point operations in the tensor con-
tractions, both of which depend on the dimension of the matrix
objects.

The evaluation cost of a matrix-matrix product scales as
C = O(N3) for dense N × N matrices each with an associated
memory cost of M = O(N2). In the presence of an SVD-
factorized matrix the SVD-LS update equations induce an
operation count of C̃ = O(N2RSVD) with a memory cost of
M̃ = O(NRSVD) for the factorization components. The full
scaling is recovered in the limit of an exact decomposition,
which in the case of an SVD corresponds to keeping all N
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FIG. 4. Singular values (in fm) for the VNN and T matrices in
different partial-wave channels for the N3LO EMN 500 potential.
For the coupled 3P2-3F2 channel the rank is divided by 2.

singular values,

lim
RSVD→N

C̃ = C, (21a)

lim
RSVD→N

M̃ = M. (21b)

We note that this statement is only true asymptotically,
since the SVD induces a storage overhead in the absence
of a truncation. However, this will only affect the prefactor
and not the scaling exponent. In practice, obtaining benefits
through factorizations relies on the low-rank properties of
the tensors such as the input interaction, i.e., how accurate
low-rank approximations are at RSVD � N .

III. TWO-BODY SCATTERING

A. Lippmann-Schwinger equation

In the following, we systematically apply the least-square
approach to the Lippmann-Schwinger equation

T = V + V G0T, (22)

where G0 denotes the (diagonal) free Green’s function and
T denotes the T matrix, which we take to be right-side half-
on-shell. Equation (22) is of the general form of an algebraic
update equation, Eq. (13), with

f (T,V, G0) = V + V G0T . (23)

For the initialization of the T -matrix factors the first-order
Born approximation T (0) = V is employed leading to X (0)

T =
XV for X ∈ {L, �, R†}, thus requiring the same target rank for
the T matrix and the potential.

The two-nucleon (NN) potential (and the T matrix) are
represented in a partial-wave basis

〈k (lS)JT MT |VNN|k′ (l ′S)JT MT 〉, (24)

with the final and initial orbital angular momenta l and l ′,
the two-body spin S, the two-body total angular momentum
J , the two-body isospin T with the projection MT , and the
absolute values of the outgoing and incoming relative mo-
menta k and k′. In each partial-wave channel, the NN potential
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is represented using N = 100 momentum mesh points up to
kmax = k′

max = 6.0 fm−1. Similarly, the Lippmann-Schwinger
equation is solved in a partial-wave-decomposed form (with
h̄2/m = 1),

〈kα|T (E = k′2)|k′α′〉 = 〈kα|V |k′α′〉

+ 2

π

∑
α′′

P
∫ ∞

0
dq q2

× 〈kα|V |qα′′〉〈qα′′|T (E = k′2)|k′α′〉
k′2 − q2

, (25)

where α, α′, and α′′ are collective labels for the partial-wave
quantum numbers.

B. A priori decomposition analysis

Before turning to the study of the SVD-LS approach, we
begin with a study of the low-rank properties of the T matrix
obtained from direct-inversion techniques of the Lippmann-
Schwinger equation. In the following, we employ the N3LO
NN potential from Entem, Machleidt, and Nosyk (EMN)
with a cutoff � = 500 MeV [7]. Note that the singular value
spectrum is qualitatively similar for different orders, different
cutoffs, and with similarity renormalization group evolution
[32,33].

Figure 4 shows a comparison of the singular spectrum of
the initial NN potential and the final right-side half-on-shell
T matrix for different partial-wave channels. Similarly to
Ref. [32], we divide the rank in the coupled channel by a factor
of 2 to be able to compare channels with different matrix
dimensions. It is evident that the initial low-rank properties
directly propagate to the T matrix and the T matrix itself is
dominated by very few components in the SVD expansion.

For the T matrix in the 1S0 channel there is a strong enhance-
ment of the leading singular value s1 by a factor of 10 going
from V to the T matrix due to the large scattering length.

C. Numerical convergence of the least-square approach

The self-consistent solution of the SVD-LS equations is
obtained by consecutive updates of LT , �T , and R†

T while
keeping all other factors fixed. Convergence is gauged by the
relative norm of the difference between consecutive factor
matrices,

‖�X‖rel ≡ ‖X (n+1) − X (n)‖
‖X (n)‖ , (26)

where the superscript indicates the iteration number.
Figure 5 shows the rate of convergence for the decompo-

sition factors as a function of the iteration number for the
1S0 and the coupled 3P2-3F2 partial waves. Clearly the large-
scattering-length 1S0 channel requires a significantly larger
number of iterations compared to the weaker 3P2-3F2 chan-
nel. Moreover, the convergence for the 1S0 channel strongly
depends on the initial rank of the potential, with a signifi-
cant increase of iterations needed until convergence beyond
RSVD ≈ 10. We attribute this to numerical instabilities in the
inversion of the environment matrices due to small singu-
lar values at higher rank (e.g., s20 � 10−5). However, these
high-rank components are not important for an accurate re-
production of the NN T matrix. For the 1S0 channel the rate
of convergence of the decomposition factors �T and R†

T is
slower than that for LT , in particular at low rank RSVD � 3.
This behavior is likely related to the use of the right-side
half-on-shell T matrix 〈k|T (E = k′2)|k′〉, so that the iteration
is sensitive to the energy dependence of the free Green’s
function G0(E = k′2) around E = k′2.
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FIG. 6. Absolute difference of low-rank T matrices obtained from the least-square approach compared to the exact solution of the
Lippmann-Schwinger equation via direct inversion. Results are shown for the N3LO EMN 500 potential in the 1S0 channel.

The partial-wave dependence of the rate of convergence
can be understood from an analysis of the integral kernel
K (E ) = V G0(E ) that enters the Lippmann-Schwinger equa-
tion. In an iterative approach, the final T matrix is obtained as
the infinite Born series,

T (E ) = V +
∞∑

k=1

[V G0(E )]kV, (27)

so that K (E ) drives the numerical stability of the least-square
approach. This can be quantified in terms of the spectral radius
of the integral kernel,

ρspec[K (E )] = max
i

|λi|, (28)

where λi are the eigenvalues of K (E ). As the Born series con-
stitutes a geometric series, eigenvalues |λi| � 1 will prevent
an iterative approach from converging. While eigenvalues |λi|
close to unity will not necessarily prevent convergence, they
induce a much lower rate of convergence in practice. For the
deuteron 3S1-3D1 channel, the presence of the bound state
leads to an eigenvalue of |λi| = 1 at the deuteron binding
energy E = −2.2245 MeV, so that we do not present results
for the deuteron channel.

This problem of nonconvergence in an iterative approach
can be circumvented using direct-inversion techniques, which
is easily possible for two-body scattering because of the small
matrix dimension. However, already in the three-body sector
one relies on iterative schemes and thus naturally encounters
the diverging Born series (see, e.g., Ref. [66]). This can be
resolved by employing Padé resummation techniques on the
individual terms of the Born series, which enables a robust
extraction of scattering observables [67].

D. Diagnostic of the low-rank T -matrix solution

We continue our analysis with the characterization of the
solution of the SVD-LS approach. The exact Texact matrix
is obtained from the full-rank, RSVD = N , interaction and
by solving the Lippmann-Schwinger equation via direct in-
version [67]. We compare the low-rank T matrix from the
least-square approach, T RSVD

SVD-LS = LT �T R†
T , to the exact T

matrix. As error measure we study in the following absolute
and relative differences of the matrix object,

‖�T ‖abs = ‖T − Texact‖, (29a)

‖�T ‖rel = ‖T − Texact‖
‖Texact‖ . (29b)

A matrix plot of the low-rank T matrix compared to the
exact solution is provided in Fig. 6. At rank RSVD = 1 and 2
we observe a sizable difference from the full-rank T matrix,
in particular, in the low-momentum regime k, k′ � 2 fm−1.
Once the rank is increased, deviations decrease systematically,
yielding only minor differences for RSVD = 3 and excellent
agreement at RSVD = 5.

Using an initial NN interaction, there are two ways to
obtain the low-rank T matrix:

(i) Decompose and reconstruct: Perform a low-rank ap-
proximation for the initial potential and use the
truncated potential to obtain the low-rank T matrix
from direct inversion. In this case, the T -matrix factors
are obtained from an explicit SVD of the resulting T
matrix.

(ii) Least-square approach: Perform a low-rank approxi-
mation for the initial potential and use its decompo-
sition factors as input for the least-square approach

TABLE I. Comparison of low-rank T matrices and singular val-
ues obtained from the least-square approach to the exact T matrix
from direct inversion and to the exact singular values at full rank,
RSVD = 100. All dimensionful quantities are in fm. As in Fig. 6,
results are given for the N3LO EMN 500 potential in the 1S0 channel.

RSVD ‖�T ‖rel ‖�T ‖abs s1 s2 s3 s4 s5

1 0.11 38.36 314.02 — — — —
2 0.16 54.31 295.45 6.18 — — —
3 0.011 3.86 345.19 6.06 2.95 — —
4 9.8 × 10−4 0.34 348.60 6.05 2.97 0.64 —
5 2.2 × 10−4 7.7 × 10−2 348.63 6.04 2.96 0.64 0.12
10 2.5 × 10−6 8.8 × 10−4 348.67 6.04 2.97 0.64 0.12
20 1.5 × 10−7 5.1 × 10−5 348.67 6.04 2.97 0.64 0.12

100 — — 348.67 6.04 2.97 0.64 0.12
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FIG. 7. Two-nucleon phase shifts as a function of laboratory energy in the 1S0 and 3P2-3F2 partial waves based on the low-rank T matrices
obtained from the least-square approach and in comparison to the exact T matrix. Results are shown for the N3LO EMN 500 potential.

described in Sec. II. The final low-rank T matrix is
then given by the converged factors after the least-
square iteration.

At fixed rank RSVD, both strategies yield an equivalent final
solution, up to unitary transformations among the left and
right matrices due to the reorthogonalization.

Table I shows the quality of low-rank T matrices compared
to the exact results. From rank RSVD = 1 to 2 there is a slight
increase in relative error, but for larger ranks the relative error
systematically decreases as the rank is increased. The leading
singular values of the T matrix do not remain constant as the
rank is increased due to the nonlinear dependence between the
singular values of V and T . At rank RSVD = 10 the singular
values stabilize and agree with the exact singular values at
full rank, RSVD = 100.

E. Two-nucleon phase shifts

We finally turn to the description of two-nucleon phase
shifts based on low-rank T matrices. The phase shifts are
obtained from the least-square T matrix using the converged
factor matrices T = LT �T R†

T . Figure 7 shows the phase shifts
for the 1S0 and the coupled 3P2-3F2 partial waves using low-
rank T matrices with RSVD = 1, . . . , 5. At very low rank, the
phase shifts significantly deviate from the exact results. This
is most pronounced in the 3F2 partial wave and for the mixing
angle ε2, while the 3P2 channel shows very little sensitivity
to the rank. The enhanced sensitivity in the mixing angle
has also been observed for the deuteron channel in Ref. [32].
The quality of the approximation is systematically improved
in all channels and at rank RSVD = 5 the phase shifts are
excellently reproduced up to laboratory energies of Elab � 300
MeV. Since the low-rank T matrices were already shown to
reproduce the exact T matrix very well (see Fig. 6), it is clear
that derived quantities yield a similarly good approximation
error.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have presented a new strategy to solve
algebraic equations from a factorization ansatz. Following a
least-square approach, the master equations are derived from

a stationarity condition of the cost function based on the
error tensor. We have derived a set of update equations for
the individual factor matrices. This strategy is general and
can be used to exploit tensor factorization techniques in few-
and many-body calculations. Moreover, the SVD-LS equa-
tions can be adapted to other tensor formats as previously
shown in quantum chemistry applications [36]. The feasibility
of the least-square approach is practically demonstrated for
the Lippmann-Schwinger equation. By employing an SVD
form for the potential, a factorized form for the T matrix
was obtained. Using an additional explicit orthogonalization
during the self-consistent iterations enables the recovery of
a proper SVD format for the T matrix itself. The right-side
half-on-shell T matrix and two-nucleon phase shifts are in
excellent agreement with full-rank calculations, reflecting the
low-rank structures of chiral interactions [32,33] and their
propagation to the associated T matrices. We note, however,
that the transformation to single-particle bases may lower the
efficacy of the SVD approximation of nuclear potentials in
the many-body calculations due to the coupling with center-
of-mass degrees of freedom as discussed in Ref. [33].

While we have discussed computational benefits in terms
of abstract scaling laws, their demonstration in our two-body
application is difficult due to the very short run times of
the order of hundreds of milliseconds. Future applications to
larger-scale simulations will allow for more systematic studies
of the underlying computational benefits.

Our work also suggests extensions to nuclear few- and
many-body calculations. An interesting application will be to
explore the least-square approach in nonperturbative many-
body methods, such as CC or IMSRG calculations of
medium-mass nuclei. These have the necessary algebraic
equations for the coupled-cluster amplitudes or the evolution
operator, respectively, which could benefit from factorization
methods through the least-square approach.
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