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Simulating excited states of the Lipkin model on a quantum computer
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We simulate the excited states of the Lipkin model using the recently proposed quantum equation of motion
(qEOM) method. The qEOM generalizes the EOM on classical computers and gives access to collective exci-
tations based on quasiboson operators Ô†

n(α) of increasing configuration complexity α. We show, in particular,
that the accuracy strongly depends on the fermion to qubit encoding. Standard encoding leads to large errors, but
the use of symmetries and the Gray code reduces the quantum resources and improves significantly the results
on current noisy quantum devices. With this encoding scheme, we use IBM quantum machines to compute the
energy spectrum for a system of N = 2, 3, and 4 particles, and compare the accuracy against the exact solution.
We found that the results of the approach with α = 2, an analog of the second random phase approximation
(SRPA), are, in principle, more accurate than with α = 1, which corresponds to the random phase approximation
(RPA), but the SRPA is more amenable to noise for large coupling strengths. Thus, the proposed scheme shows
potential for achieving higher spectroscopic accuracy by implementations with higher configuration complexity,
if a proper error mitigation method is applied.
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I. INTRODUCTION

The advent of the digital revolution has brought about
a diverse hierarchy of numerical methods for the quantum
many-body problem including the mean field theory (MFT)
and density functional theory (DFT) [1,2], quantum Monte
Carlo (QMC) algorithms [3,4], machine learning methods [5],
and others [6,7]. While these methods have significantly ad-
vanced our capabilities of finding approximate solutions to the
quantum many-body problem, they are all fundamentally lim-
ited by the use of classical computers that cannot efficiently
simulate quantum physics [8]. Simulating many-body dynam-
ics on quantum computers, which was proposed over forty
years ago to overcome the impediment faced by simulations
on classical computers [9], has gained recent attention due to
improvements in experimental quantum information process-
ing. Furthermore, simulating nuclear physics on a quantum
computer is an emerging area of research addressing both
static and dynamic nuclear properties [10]. Examples of the
former approach, which are based on the variational quantum
eigensolver (VQE), include computing the binding energy of
light nuclei [11,12] and simulation of lattice models [13]. Ex-
amples of the latter approach include a quantum algorithm for
the linear response theory [14], the time-evolution of a nuclear
many-body system [15–17], and simulation of non-Abelian
gauge theories with optical lattices [18]. Other efforts in the
field address efficient state preparation schemes [17,19] and
analysis of nuclear structure using entanglement [20].
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Modern nuclear experiments provide high-resolution data
in the keV range [21], while for theoretical calculations [22] it
is still challenging to reproduce excitation spectra of medium-
mass and heavy nuclei with the accuracy of ≈100 keV (which
is ≈10% of the atomic nuclear energy scale). Although many
approximation techniques that go beyond the MFT and ran-
dom phase approximation (RPA) have been developed in the
last few decades, we still do not have a unified method that
achieves spectroscopic accuracy for such nuclear systems.
Meanwhile, very accurate nuclear structure input is needed by
the applications at the frontiers of nuclear research, such as the
astrophysical simulations of kilonovae [23] and supernovae
[24] as well as the searches beyond the standard model in
the nuclear domain [25,26]. We note from quantum chemistry
calculations on classical computers that chemical accuracy
(i.e., errors less than 1 kcal/mol = 0.043 eV, which is ≈1% of
the probed energy scale) can be achieved using the canonical
coupled cluster (CC) expansion truncated at the second order
in the electronic excitation operator, including an approxi-
mate treatment of the triple excitations CCSD(T), where S
stands for single, D for double, and (T) for noniterative triple
[27,28]. This indicates that three-particle–three-hole (3p3h
:= α = 3) configuration complexity is sufficient for accurate
quantum chemistry calculations, which can be, alternatively
to CC, performed within the linear response theory or the
equation of motion technique. However, nuclear calculations
with the same (α = 3) configuration complexity do not always
lead to spectroscopically accurate results [22,29–35], because
the interaction between nucleons in nuclei is (i) much stronger
and (ii) only known with limited accuracy.
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The most general equation of motion (EOM) framework
for the quantum N-body problem requires N coupled EOMs
or, equivalently, the excitation operators of complexity α = N
for the exact solution, while the most advanced classical com-
putation of medium-mass and heavy nuclei (N ≈ 100) hardly
reaches the complexity of α = 3. Although the associated
accuracy is quite good compared to the accuracy of RPA and
many of the gross and even fine features of the nuclear spectra
can be captured quite reasonably, in many cases this accuracy
is insufficient. Furthermore, there is no firm criterion for the
complexity needed for various nuclear spectral calculations.
Therefore, one of the goals for this work is to investigate how
the configuration complexity of the many-body states within
the EOM framework correlates with the accuracy of the re-
sulting spectra when simulated on a quantum computer. Since
direct large-α calculations are still prohibitive for classical
computing, it is highly desirable to develop (as an alternative)
an efficient quantum algorithm which can be implemented
on available noisy intermediate-scale quantum (NISQ) [36]
computers to guide future nuclear structure calculations with
configuration complexity α > 3.

In this work, we eliminate the issue of unknown nuclear
forces by considering a model Hamiltonian with a tunable
two-body interaction. The exactly solvable Hamiltonians rep-
resent an ideal playground for such studies as they offer firm
benchmarks of the accuracy of the approximate methods. In-
spired by quantum chemistry simulations on NISQ computers,
we use the recently proposed classical-quantum algorithm, the
quantum equation of motion (qEOM) [37], which is an exten-
sion of VQE for computing excitation energies. We simulate
the excited states and energies of the Lipkin-Meshkov-Glick
(LMG) Hamiltonian [38] with configuration complexity α =
1 (analog of RPA) and α = 2 [second RPA (SRPA)]. We run
the qEOM algorithm on IBM quantum computers for LMG
systems with small number of particles N = 2, 3, and 4, and
then compare our results with the exact solution, classical
Hartree-Fock, and RPA solutions. Part of this work builds
upon the work done in Ref. [39], where the authors introduced
an encoding scheme for the Lipkin model and simulated its
ground state energy on a quantum computer for a system
of N = 2 particles. We propose a more efficient encoding
scheme and simulate both ground and excited state energies
for systems of up to N = 4 particles on a quantum computer.

The paper is organized as follows: Section II gives the
background of the quantum equation of motion, the LMG
model, and previously used encoding schemes [39] for the
LMG Hamiltonian. In Sec. III we present our new efficient
encoding scheme which exploits symmetries in the Hamil-
tonian and employs the Gray encoding to minimize the
required quantum resources. The simulation results are shown
in Sec. IV, and the summary and outlook are given in Sec. V.

II. BACKGROUND

A. Quantum equation of motion

First proposed by Rowe in 1968 [40], the equation of
motion (EOM) is a framework for computing excitation prop-
erties of quantum many-body systems. Given the many-body

ground state |gs〉, we construct an excitation operator Ô†
n that

generates all the excited states |n〉 from the ground state, such
that

Ô†
n |gs〉 = |n〉 and Ôn |gs〉 = 0. (1)

The EOM prescription for constructing Ô†
n involves four steps.

First, estimate the ground state |gs〉 using a suitable ap-
proximation like the uncorrelated Hartree-Fock (HF) or the
correlated RPA ground state. Second, express Ô†

n as a linear
combination of basis excitation operators with variable expan-
sion coefficients given by

Ô†
n =

∑
α

∑
μα

[
X α

μα
(n)K̂α

μα
− Y α

μα
(n)
(
K̂α

μα

)†]
, (2)

where α is the degree of configuration complexity and μα is
the collective index associated with the single-particle (sp)
states. A commonly used basis for the excitation operator is
the fermionic particle creation and annihilation operator, in
which we can write K̂1

μ1
= a†

i a j′ for α = 1 (RPA) and K̂2
μ2

=
a†

i a†
j a j′ai′ for α = 2 (second RPA). Note that the indices

without (with) the prime represent the particle (hole) states.
Third, use Eq. (1) and the Schrödinger’s equation to get the
excitation energy above the ground state (En0 = En − E0) [41]
given by

En0 = 〈[Ôn, [Ĥ , Ô†
n]]〉

〈[Ôn, Ô†
n]〉 , (3)

where 〈·〉 is a shorthand notation for 〈gs| · |gs〉. Fourth, take
the variation δ(En0) = 0 in the parameter space spanned by
the coefficients of Eq. (2), which leads [37] to the generalized
eigenvalue equation (GEE)(A B

B∗ A∗

)(
X n

Y n

)
= En0

( C D
−D∗ −C∗

)(
X n

Y n

)
, (4)

where the matrices A, B, C, and D are given by

Aμανβ
= 〈[(

K̂α
μα

)†
,
[
Ĥ , K̂β

νβ

]]〉
, (5)

Bμανβ
= −〈[(K̂α

μα

)†
,
[
Ĥ ,
(
K̂β

νβ

)†]]〉
, (6)

Cμανβ
= 〈[(

K̂α
μα

)†
, K̂β

νβ

]〉
, (7)

Dμανβ
= −〈[(K̂α

μα

)†
,
(
K̂β

νβ

)†]〉
. (8)

As an example, we evaluate the matrices C and D
for excitation configurations with α = 1. First, note that
in the particle-hole (ph) representation, the fermionic anti-
commutation relations are given by

{âμ, â†
ν} =

{
0 if μν = ph or hp,

δμν if μν = pp or hh,

{âμ, âν} = {â†
μ, â†

ν} = 0. (9)

The excitation operator in the RPA can be then explicitly
written as

Ô†
n =

∑
i j′

[
X (1)

i j′ (n)a†
i a j′ − Y (1)

i j′ (n)a†
j′ai
]
. (10)
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Using Eq. (9) we first evaluate the simpler matrix D to get

Dmi′k j′ = −〈[â†
i′ âm, â†

j′ âk]〉
= −〈(â†

i′ âmâ†
j′ âk − â†

j′ âk â†
i′ âm)〉

= −〈(â†
i′ â

†
j′ âk âm − â†

i′ â
†
j′ âk âm)〉

= 0. (11)

A similar calculation can be done for the matrix C, and its
commutator yields

[â†
i′ âm, â†

k â j′ ] = â†
i′ âmâ†

k â j′ − â†
k â j′ â

†
i′ âm

= â†
i′ (δmk − â†

k âm)â j′ − â†
k (δi′ j′ − â†

i′ â j′ )âm

= δmkâ†
i′ â j′ − δi′ j′ â

†
k âm,

hence it can be written as

Cmi′k j′ = 〈[â†
i′ âm, â†

k â j′ ]〉
= 〈(δmkâ†

i′ â j′ − δi′ j′ â
†
k âm)〉. (12)

The evaluation of matrices A and B is more elaborate and it
requires a definition of the Hamiltonian; hence we give the
details in Appendix B.

The EOM method is nowadays applied routinely in nu-
clear physics using excitation operators at the lowest level of
complexity. This leads to the so called RPA framework. The
RPA, neglecting the coupling to complex internal degrees of
freedom, cannot describe collective excitations at a sufficient
resolution. An accurate description of collective excitation
requires us to consider collective operators that include higher
order multibody effects. The simplest straightforward exten-
sion of the RPA is the second RPA (SRPA) [42–44]. However,
even at the second order, the application of the generalized
EOM is computationally demanding on a classical computer
due to the increase of the Hilbert space. Thus, the quantum
equation of motion (qEOM) seeks to reduce some of the
computational burden from a classic computer, which can
be performed efficiently on a quantum computer. This is
achieved by

(1) Computation of the ground state |gs〉 using the Vari-
ational Quantum Eigensolver (VQE) [45]. This is a
hybrid classical-quantum algorithm that (a) uses a
parametrized quantum circuit to represent the wave
function |ψ (θ )〉, (b) uses a quantum computer to
efficiently approximate the expectation value E =
〈ψ (θ )|Ĥ |ψ (θ )〉, and (c) uses a classical computer to
optimize the set of θ parameters to minimize the cost
function E . These steps are done recursively between
the quantum computer and classical computer until
convergence.

(2) Once the approximate ground state is obtained using
the VQE, we then use it to efficiently compute the
commutator expectation values of the matrices A, B,
C, and D on a quantum computer.

(3) Finally, we solve the GEE given by Eq. (4) on a clas-
sical computer. Note that for relatively large nuclear
systems (N � 1) and high configuration complexity
(α � 1), solving the GEE could become as difficult

as finding the direct diagonalization of the many-body
Hamiltonian. A possible way around this hurdle is
discussed in Sec. V.

More details on the qEOM are given in Refs [37,46]. The
traditional approach to solve Eq. (4) in the RPA framework
is to approximate the correlated many-body ground state |gs〉
by employing the quasiboson approximation (QBA), such
that the expectation value of an operator Q̂ is computed with
respect to the uncorrelated HF ground state as

〈Q̂〉 = 〈RPA|Q̂|RPA〉 ≈ 〈HF|Q̂|HF〉 . (13)

However, in the qEOM approach, the correlated RPA ground
state is approximated by a parametrized quantum circuit that
minimizes the Hamiltonian. VQE is the minimization proce-
dure of this circuit which produces a correlated ground state,
such that

〈Q̂〉 = 〈RPA|Q̂|RPA〉 ≈ 〈VQE|Q̂|VQE〉 . (14)

The same is valid for SRPA and higher-order extensions.
In principle, the ground state computed using VQE is more
accurate than that obtained from the QBA, because it includes
correlations beyond the HF approximation. Therefore, we ex-
pect the results for the ground state from VQE to be more
accurate than the classical HF and (S)RPA solutions, at least
for systems with a small number of particles.

B. Lipkin-Meshkov-Glick model

In 1964 Lipkin, Meshkov, and Glick (LMG) proposed a
toy model to serve as a test bed for approximation techniques
for solving the quantum many-body problem [38,47,48]. A
similar Hamiltonian was used by Fallieros in his Ph.D. disser-
tation in 1959 [49]. According to LMG, the goal is to have
a model that is simple enough to have an exact solution for
some cases but also includes nontrivial many-body interac-
tions. The model has since been used as one of the standard
benchmarks for many-body methods in nuclear, condensed
matter, and particle physics. Some of the many-body methods
tested on this model include the mean-field theory, the random
phase approximation [50], and the Bardeen-Cooper-Schrieffer
theory [51,52].

The LMG model describes a system of N interacting
fermions constrained on two levels with energies E = ±ε/2.
Each energy level is N-fold degenerate and the particles
interact via a monopole-monopole force. In the quasispin
formulation, the Hamiltonian is given by

Ĥ = εĴz − V

2
(Ĵ2

+ + Ĵ2
−) − W

2
(Ĵ+Ĵ− + Ĵ−Ĵ+), (15)

where the operators Ĵz and Ĵ± satisfy the angular momentum
commutation relations. The interaction term associated with
V scatters two particles from the same level up or down,
and similarly W simultaneously scatters one particle up and
another down or vice versa from different energy levels. The
symmetries of this model can be exploited to significantly
reduce the size of the relevant Hilbert space. To get a sense
of the extent this Hilbert space may be reduced, we compare
Eq. (15) with a general many-body Hamiltonian with up to
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two-body interaction terms given by

Ĥ =
∑

i j

ti j â
†
i â j + 1

4

∑
mni j

v̄mni j â
†
mâ†

nâ j âi. (16)

The full Fock space has dimension 2N × 2N . On a classical
computer, the reduced space with 	 particles has the dimen-
sion C	

N × C	
N . One can further reduce the complexity by

noting that the problem is invariant under the exchange of par-
ticles within the set of two levels. This is the essence of the I
encoding scheme described in Sec. II C 2. By setting W = 0 in
Eq. (15), we further realize another symmetry, namely that the
interaction term only couples states that differ by spin M ± 2,
hence we can block diagonalize the Hamiltonian. This leads
to the efficient J encoding scheme described in Sec. III. In the
following, we consider 	 = N , then the problem reduces to
the diagonalization of smaller matrices of dimensions (2J +
1) × (2J + 1), where J = 1

2 N . Therefore, the LMG model
has an O(N ) complexity which is manageable for classical
computers. This is what is needed for a test-bed to benchmark
the accuracy of quantum algorithms. However, we must bear
in mind that we seek quantum algorithms that are in principle
scalable to be able to solve the general many-body problem
with Hamiltonians like Eq. (16) having arbitrary forms of
interactions. It is still unclear whether the qEOM in its current
form satisfies this desideratum.

To get the exact analytical solution of the LMG model
for small N values, we consider the eigenstates |J, M〉 of the
operators Ĵz and Ĵ2 = 1

2 {Ĵ+, Ĵ−} + Ĵ2
z as a basis. The quantum

numbers are J = j1 + j2 + · · · + jN , which is the total spin,
and its projection M in the z direction. The Schrödinger equa-
tion

Ĥ |ψ〉 = E |ψ〉 (17)

can be solved with LMG Hamiltonian given in Eq. (15) using
the basis where

|ψ〉 =
J∑

M=−J

CM |J, M〉 . (18)

Multiplying Eq. (17) by 〈J, M ′| leads to∑
M

CM 〈J, M ′| Ĥ |J, M〉 = CM ′EJM ′ , (19)

and the nonzero matrix elements of 〈J, M ′| Ĥ |J, M〉 are
given by

〈J, M| Ĥ |J, M〉 = εM − W [J (J + 1) − M2], (20)

〈J, M| Ĥ |J, M ± 2〉 = 〈J, M ± 2| Ĥ |J, M〉
= − 1

2V × F±. (21)

The factors F± in Eq. (21) read

F± = {[J (J + 1) − M(M ± 1)]

× [J (J + 1) − (M ± 1)(M ± 2)]} 1
2 . (22)

For a system of N = 2 particles, the maximum J = 1
2 N = 1

and M = {−1, 0, 1}. The Hamiltonian has the dimension D =

3 and is given by [53]

Ĥ (2) =
⎛
⎝ε − W 0 −V

0 −2W 0
−V 0 −(ε + W )

⎞
⎠. (23)

This matrix can be diagonalized to get the energy eigenvalues
and associated eigenvectors to be

E (2), |J, M〉 =
⎧⎨
⎩

+√
ε2 + V 2 − W, |1, 1〉 ,

−2W, |1, 0〉 ,

−√
ε2 + V 2 − W, |1,−1〉 ,

(24)

which corresponds to both particles in the upper level, one
in upper and one in lower level, and both in lower level,
respectively. The exact analytical solution for systems with
N > 2 particles is given in Refs. [38,53]. Some extensions
of the LMG model have been proposed, such as the Agassi
model [54,55] and the generalized Lipkin model [56].

For comparison, we compute the Hartree-Fock solution of
the LMG ground state energy given by [53,57]

EHF = −N

2

{
ε for ṽ < 1
ε2+(N−1)2V 2

2(N−1)V for ṽ > 1

}
, (25)

where ṽ = V (N − 1)/ε is the effective interaction strength.
Similarly, the RPA solution for the LMG ground state energy
is given by [53,57]

ERPA = EHF + ω − A

2
, (26)

where ω =
√

A2 − |B|2, and A and B read

A =
{
ε for ṽ < 1,

3(N−1)2V 2

2(N−1)V −ε2 for ṽ > 1,
(27)

B =
{−(N − 1)V for ṽ < 1,

− (N−1)2V 2

2(N−1)V +ε2 for ṽ > 1.
(28)

We note that the HF and RPA solutions have a discontinuity
at ṽ = 1, hence this value sets the boundary between the weak
and strong coupling regions.

C. Encoding schemes

There are multiple ways we can encode the LMG model on
a circuit-based digital quantum computer. In this section we
will describe two methods associated with different bases and
symmetries used to reduce the relevant Hilbert space.

1. Occupation number basis

Since the LMG model describes a two energy level system
with N-fold degeneracy, we express the states of the system
in terms of occupations numbers in Fock space. Thus, the
Hamiltonian given by Eq. (15) can be written in terms of the
creation and annihilation operators by applying the following
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mappings:

Ĵz = 1

2

N∑
p=1

(â†
p,+âp,+ − â†

p,−âp,−), (29)

Ĵ+ =
N∑

p=1

â†
p,+âp,− and Ĵ− = (Ĵ+)†, (30)

where the summation label p represents the set of quantum
numbers defining a single-particle state in each energy level.
Using Eq. (29) we can explicitly write the one-body term as

Ĥ0 = εĴz = ε

2

∑
φ=±1

N∑
p=1

φâ†
p,φ âp,φ, (31)

where φ = ±1 labels the upper and lower energy levels. We
then seek to combine indices p and φ into one index. The bi-
nary values {−1,+1} for φ can be replaced by {0, 1}, and the
range of values for p can be shifted to [0, N − 1]. Substituting
these changes of the indices into Eq. (31), we obtain

Ĥ0 = ε

2

1∑
φ=0

N−1∑
p=0

(−1)φ â†
p,φ âp,φ. (32)

It is easy to see that p and φ can now be combined into
one index with values [0, 2N − 1]. For clarity, we separate
the summation over the hole (s′) states with values [0, N − 1]
and particle (s) states with values [N, 2N − 1]. Therefore, we
can rewrite Eq. (32) as

Ĥ0 = ε

2

(
N−1∑
s′=0

â†
s′ âs′ −

2N−1∑
s=N

â†
s âs

)
. (33)

To map the two-body terms of the Hamiltonian in Eq. (15)
we use Eq. (30) to evaluate the products of quasispin operators
as follows:

Ĵ2
+ =

∑
p1,p2

â†
p1,+â†

p2,+âp2,−âp1,−,

Ĵ+Ĵ− =
∑
p1,p2

â†
p1,+â†

p2,−âp2,+âp1,−. (34)

Hence, we can write the V -scattering term as

Ĥv = −V

2
(Ĵ2

+ + Ĵ2
−)

= −V

2

∑
q,r

∑
q′,r′

(â†
qâ†

r âr′ âq′ + â†
q′ â

†
r′ âr âq)�q,q′

r,r′ , (35)

and the W -scattering one as

Ĥw = −W

2
(Ĵ+Ĵ− + Ĵ−Ĵ+)

= −W

2

∑
q,r

∑
q′,r′

(â†
qâ†

r′ âr âq′ + â†
q′ â†

r âr′ âq )�q,q′
r,r′ , (36)

where the constraint �
q,q′
r,r′ = δq+N,q′δr+N,r′ is added to keep

the symmetry of the LMG model. The new final Hamiltonian
is the sum of all the terms given above,

ĤF = Ĥ0 + Ĥv + Ĥw, (37)

where the subscript F emphasizes that it is defined in the Fock
space. To encode this Hamiltonian on a quantum computer, we
can use the Jordan-Wigner transformation [58,59] to convert
the fermionic operators into qubit operators such that

ĤF (â†, â) → ĤQ(σ±, σ i ), (38)

where σ i defines the Pauli matrices for i = {0, 1, 2, 3} →
{I, X,Y, Z} and σ± = X ± iY . The corresponding basis states
for the two-level LMG model after this mapping are given by

|ηN− · · · η1−, ηN+ · · · η1+〉 −→ |q2N−1 · · · q0〉 , (39)

with η ∈ [0, 1], which represents an empty or occupied
fermionic state, and q ∈ [0, 1] represents a spin up or down
qubit state. One of the states of a system with N = 2 particles
can be explicitly written as

|1−1−, 0+0+〉 −→ |1100〉 , (40)

which corresponds to the uncorrelated ground state. In this
scheme, the Hamiltonian is encoded in the full Fock-space
that has a size of 22N . Thus, many states are not used leading
to a large dark sector (unused space). In the ensuing subsec-
tions we discuss more efficient encoding schemes that exploit
symmetries of the LMG model.

2. Individual spin basis

Since the LMG Hamiltonian is invariant under the ex-
change of particles within the set of two levels, we can exploit
this symmetry to reduce the number of states by a factor
of two. This can be naturally seen by considering the basis
of the individual spin |j1, j2, . . . , jN 〉 of the particles, where
j = ± 1

2 . This can be straightforwardly mapped to qubit ba-
sis. For N = 2, the spin eigenstates are mapped to qubits as
follows

|↑↑〉 , |↑↓〉 , |↓↑〉 |↓↓〉 −→ |11〉 , |10〉 , |01〉 , |00〉 . (41)

To transform the Hamiltonian given by Eq. (15) into linear
products of Pauli matrices, we simply express it in the indi-
vidual spin basis by applying the following conversion [39]

Ĵz = 1

2

∑
p

ĵ (p)
z ,

ĵ (p)
z = â†

p,+âp,+ − â†
p,−âp,−, (42)

for the noninteracting term and, similarly,

Ĵ+ =
∑

p

ĵ (p)
+ and Ĵ− = (Ĵ+)†,

ĵ (p)
+ = â†

p,+âp,− and ĵ (p)
− = â†

p,−âp,+, (43)

for the interacting terms. We substitute the operators from
Eqs. (42) and (43) into the Hamiltonian given by Eq. (15) to
get

ĤI = ε

2

∑
p

ĵ (p)
z − V

2

∑
p
=q

( ĵ (p)
+ ĵ (q)

+ + ĵ (q)
− ĵ (p)

− )

− W

2

∑
p
=q

( ĵ (p)
+ ĵ (q)

− + ĵ (p)
− ĵ (q)

+ ). (44)
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Note that in this representation the Hamiltonian ĤI has a
Hilbert space size of 2N . From this point onward we use
the dimensionless Hamiltonian H̄ = Ĥ/ε with W = 0 and the
interaction strength given by

v = V/ε. (45)

As an example, we consider a system of N = 2 particles
where the Hamiltonian can be explicitly written as

H̄ (2)
I = 1

2
( ĵ (1)

z + ĵ (2)
z ) − v

2
( ĵ (1)

+ ĵ (2)
+ + ĵ (2)

− ĵ (1)
− )

= 1

2
(Z1 + Z2) − v

2
(X1 ⊗ X2 − Y1 ⊗ Y2), (46)

where jz = Z and j± = (X ± iY )/
√

2. The encoding and
Hamiltonian form of Eq. (46) corresponds to Eq. (7) of
Ref. [39]. For N = 3 the Hamiltonian is given by [39]

H̄ (3)
I = 1

2
(Z1 + Z2 + Z3) − v

2
(X1X2 + X1X3 + X2X3)

+ v

2
(Y1Y2 + Y1Y3 + Y2Y3). (47)

Therefore, a LMG system of N particles can be encoded using
N qubits in the individual spin basis which is much better
than the occupation number basis requiring 2N qubits. It is
worth mentioning that this reduction of the number of required
qubits by a factor of 2 follows from the symmetry of the
two-level LMG model and may be different for a multi-level
LMG model. We can further improve the encoding of the
LMG model on a quantum computer by exploiting another
symmetry of the LMG Hamiltonian when W = 0. This leads
to a more efficient encoding scheme, described in the ensuing
section.

III. EFFICIENT ENCODING SCHEME

We consider the coupled |J, M〉 basis used in Sec. II B,
where J = N

2 and M ∈ [−J,−J + 1, . . . , 0, . . . , J − 1, J],
thus, the full basis is of size D = 2J + 1. We note that by
setting W = 0 in Eq. (15), another symmetry arises from the
interaction term which only couples states that differ by spin
M ± 2. Hence, the Hamiltonian can be block diagonalized,
which reduces the number of the “relevant states” to at most
d = J + 1. These states can be mapped to qubits as follows:

|J,−J〉 ≡ |0〉 → |bin(0)〉 ,

|J,−J + 2〉 ≡ |1〉 → |bin(1)〉 ,

...

|J, J − 2〉 ≡ |d − 2〉 → |bin(d − 2)〉 ,

|J, J〉 ≡ |d − 1〉 → |bin(d − 1)〉 ,

(48)

where |bin(k)〉 ≡ |q1, q2, . . . , qn〉, k = ∑n
i=1 qi2n−i with qi ∈

{0, 1}. This mapping method is sometimes called the stan-
dard binary (SB) encoding. For Hamiltonian simulations on
a quantum computer, a more efficient encoding than the SB is
the Gray code (GC) [60,61], which effectively uses less gates
and a lower circuit depth. The Gray code is defined to be an
ordering of binary values where any two adjacent entries differ

by only a single bit [62]. For example, consider the eight states
of three binary bits, which can be ordered sequentially as

0 → |000〉 , 1 → |001〉 , 2 → |011〉 , 3 → |010〉 ,

4 → |110〉 , 5 → |111〉 , 6 → |101〉 , 7 → |100〉 ,
(49)

where the single bit that changes between adjacent states is
shown in bold. A set of Gray code with ν bits is expressed as

Gν = {g0, g1, . . . , g2ν−1}, (50)

where each gi is a sequence of ν bits. Thus, with this encoding
we can write the Hamiltonian as

ĤJ =
d−1∑
k=0

ak |k〉 〈k| +
d−2∑
k=0

bk[|k〉 〈k + 1| + |k + 1〉 〈k|], (51)

with the coefficients

ak = ε[2k − J] = εM, (52)

bk = −V

2
× F+(M = 2k − J ), (53)

where the function F+ is defined in Eq. (22). We illustrate
below how our encoding scheme works for N = 4 and then
generalize to arbitrary N .

A. N = 4

As an illustration, we first consider a system of N = 4
particles where J = 2, and for even values of M we get three
states, which can be encoded as

|2,−2〉 ≡ |0〉 → |00〉 ,

|2, 0〉 ≡ |1〉 → |01〉 ,

|2,+2〉 ≡ |2〉 → |11〉 . (54)

The associated Hamiltonian is given by

H̄ (4)
Je = a0 |00〉 〈00| + a1 |01〉 〈01| + a2 |11〉 〈11|

+ b0[|00〉 〈01| + |01〉 〈00|]
+ b1[|01〉 〈11| + |11〉 〈01|], (55)

where the subscript “Je” represents the J-scheme with “e” for
even M values. We can a priori directly write the matrix form
of this Hamiltonian as

H̄ (4)
Je =

⎛
⎜⎝

a0 b0 0 0
b0 a1 0 b1

0 0 0 0
0 b1 0 a2

⎞
⎟⎠

GC

. (56)

For comparison the Hamiltonian in the SB basis is given by

H̄ (4)
Je =

⎛
⎜⎝

a0 b0 0 0
b0 a1 b1 0
0 b1 a2 0
0 0 0 0

⎞
⎟⎠

SB

. (57)

Note that the unused state |10〉GC or |11〉SB is not coupled
to the others, thus giving a row and column of zeros on
Hamiltonian. This problem arises from the fact that the set
of available states on a quantum computer come in powers
of two while the number of states we wish to encode can be

024319-6



SIMULATING EXCITED STATES OF THE LIPKIN MODEL … PHYSICAL REVIEW C 106, 024319 (2022)

any positive integer. For larger systems, this may introduce
spurious solutions.

We can transform the Hamiltonian of Eq. (55) in terms of
Pauli matrices by noting that the operators associated with ak

are given by

|00〉 〈00| = P(0)
1 P(0)

0 = 1
4 (I + Z0 + Z1 + Z1Z0),

|01〉 〈01| = P(0)
1 P(1)

0 = 1
4 (I − Z0 + Z1 − Z1Z0),

|11〉 〈11| = P(1)
1 P(1)

0 = 1
4 (I − Z0 − Z1 + Z1Z0),

(58)

where P(0)
i = 1

2 (Ii + Zi ) and P(1)
i = 1

2 (Ii − Zi ) are the projec-
tion operators acting on the ith qubit. The operators associated
with bk can be converted to

|00〉 〈01| + |01〉 〈00| = P(0)
1 X0 = 1

2 (X0 + Z1X0),

|01〉 〈11| + |11〉 〈01| = X1P(1)
0 = 1

2 (X1 − X1Z0).
(59)

Note that the order of operations is important. For instance,
the gate Z0 should be interpreted as I1Z0 while Z1 is Z1I0,
otherwise we do not get the proper matrix form when per-
forming the tensor product. Substituting Eqs. (58) and (59)
into Eq. (55), we get

H̄ (4)
Je = 1

4 (a0 + a1 + a2)I + 1
4 (a0 − a1 − a2)Z0

+ 1
4 (a0 + a1 − a2)Z1 + 1

4 (a0 − a1 + a2)Z1Z0

+ 1
2 b0(X0 + Z1X0) + 1

2 b1(X1 − X1Z0). (60)

Using Eqs. (52) and (53), we find the Hamiltonian coefficients
to be

a0 = −2, a1 = 0, a2 = 2, b0 = b1 = −v
√

6. (61)

Therefore, Eq. (60) can be written as

H̄ (4)
Je = −(Z0 + Z1) −

√
6

2
v(X0 + X1 + Z1X0 − X1Z0)

=

⎛
⎜⎜⎝

−2 −√
6v 0 0

−√
6v 0 0 −√

6v
0 0 0 0
0 −√

6v 0 −2

⎞
⎟⎟⎠.

(62)

By diagonalizing Eq. (62), we obtain the energy solutions
Ē (4) = {0, ±2

√
3v2 + 1}. Comparing with the exact analyti-

cal solution of Ref. [53], where the energy spectrum for N = 4
is given by

Ē (4) = {0, ±
√

9v2 + 1, ±2
√

3v2 + 1}, (63)

we note that we are missing two solutions. These remaining
solutions are found by considering the two states with odd
values of M, which can be mapped onto one qubit as follows:

|2,−1〉 ≡ |0〉 , |2,+1〉 ≡ |1〉. (64)

The associated Hamiltonian for the odd values of M can be
constructed similarly to the even M, where a1 = −a0 = 1 and
b0 = −3v, to get

H̄ (4)
Jo = −Z − 3vX =

( −1 −3v
−3v 1

)
, (65)

|0 Ry(2φ1)

|0 Ry(2φ2)

FIG. 1. N = 4, J-scheme Ansatz for even M values.

where the “Jo” in the subscript stands for odd values of M in
the J-scheme. It is straightforward to see that diagonalizing
Eq. (65) gives us the two remaining energy solutions Ē (4) =
±√

9v2 + 1.
To construct the associated quantum circuit for the system

with N = 4, we look at its wave function which can be split
into two sets,

|ψJ〉 =
{|ψe〉 = c0e |2, 2〉 + c1e |2, 0〉 + c2e |2,−2〉 ,

|ψo〉 = c0o |2,−1〉 + c1o |2,+1〉 .
(66)

Using the Gray encoding, the wave function for even M values
is given by

|ψe(φ1, φ2)〉 = cos φ1 |00〉 + cos φ2 sin φ1 |01〉
+ sin φ2 sin φ1 |11〉 , (67)

which is represented by the quantum circuit shown in Fig. 1
where the gate Ry(φ) = exp (−i φ

2 Y ) and φ ∈ [0, π
2 ).

Similarly, the wave function for odd M values is given by

|ψo(φ)〉 = cos φ |0〉 + sin φ |1〉 , (68)

which is represented by the quantum circuit shown in Fig. 2.
For comparison, we consider the ground state wave function
for the I-scheme [39], which is a superposition of eight states
given by

|ψI (θ )〉 = cos2 θ | ↓↓↓↓〉 + sin2 θ | ↑↑↑↑〉
− 1√

12
sin 2θ (| ↑↑↓↓〉 + | ↓↓↑↑〉 + | ↓↑↓↑〉

+ | ↓↑↑↓〉 + | ↑↓↓↑〉 + | ↑↓↑↓〉), (69)

where θ ∈ [0, π
2 ). The associated quantum circuit would re-

quire four qubits and at least seven gates. Therefore, our
encoding scheme uses much less quantum resources than the
I-scheme, which becomes much more critical for systems with
large number of particles.

B. Arbitrary N

We note that for the case of N = 4 we essentially split the
Hamiltonian into two decoupled parts, which we diagonalize
independently to obtain the complete spectrum. This proce-
dure can be generalized for the case of an arbitrary N , where
the Hamiltonian is split into a block form as

H̄ (N )
J =

(
H̄A 0
0 H̄B

)
, (70)

|0 Ry(2φ)

FIG. 2. N = 4, J-scheme Ansatz for odd M values.
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with the block sizes dA = J + 1 and dB = J for the even
values of N , and dA = dB = 1

2 (N + 1) for the odd values of N .
We can now compare the size of Hilbert space and the number
of qubits required for each of the three different encoding
schemes:

F-scheme: dF = 22N → 2N qubits,

I-scheme: dI = 2N → N qubits,

J-scheme: dJ =
(N

2
+ 1

)
→ qN qubits,

(71)

where qN in the last case is the first integer that satisfies

qN � log 2

(N

2
+ 1

)
. (72)

This implies, for instance, that the Lipkin model with N =
100 particles can be solved with at most qN = 7 qubits
using our efficient J-scheme, while it would require 100
and 200 qubits for the I-scheme and F-scheme, respectively.

IV. RESULTS

Using the qEOM, we simulate the LMG model for a system
with N = 2, 3, and 4 particles. We compare the results of our
efficient encoding (J-scheme) with the individual spin basis
(I-scheme) given in Ref. [39]. The results for each scheme are
marked with the postfactor labels J and I in the legends of the
plots of the energy as a function of the interaction strength.
The Hamiltonians and circuit Ansätze used for N = 2 and
3 are given in Appendix A. Depending on availability, we
used the IBM quantum devices santiago, manila, and bogota
which all have five qubits and a quantum volume (defined in
Ref. [63]) of 32.

First, we use the VQE algorithm [45] to compute the
ground state and its energy for the LMG Hamiltonian. The
goal of VQE is to find the optimal set of angles {θ0} that
minimizes the energy given by

Ē (θ ) = 〈ψ (θ )| Ĥ |ψ (θ )〉 , (73)

where Ē = E/ε. Usually the optimization of {θ} requires a
computation of derivatives of Ē (θ ) which can be difficult for
a large set of parameters. Here, since only a few angles need to
be optimized, a more direct approach is used. For circuits with
one angle, we do a line search by computing Ē (θ ) for various
angles within the domain of θ ∈ [0, π

2 ) and then take the
minimum energy. We can visualize this method by computing
the energy landscape of Ē (θ ) at various interaction strengths
using both a simulator and a quantum computer. As shown in
Fig. 3, the results from the quantum computer are fairly close
to the simulator ones with errors of �θ � 0.2 rad and �Ē �
0.05 for the optimal angle and minimum energy, respectively.
These errors illustrate the degree of imperfection of current
quantum devices. We follow a similar method for circuits with
two angles. Second, we use the qEOM algorithm [37] to
compute the excited states and energy of the LMG Hamilto-
nian. We slightly modified some parts of the algorithm to suit
our problem as shown in Algorithm 1. We set vlist = [0, 2]
which covers the weak and strong coupling regimes. We use
the limited memory and bounded Broyden-Fletcher-Goldfarb-

-0.3 0.0 0.3

-1.0

-0.9

E
0
 /

 
�

0.6 0.8 1.0 1.2

-1.6

-1.5

-1.5

1.0 1.2 1.5
�  [rad]

-3.2

-3.1

-3.0

-2.9

E
0
 /

 
�

1.0 1.2 1.5 1.8
�  [rad]

-5.4

-5.2

-5.0

v = 0.0 v = 0.4

v = 1.0 v = 1.8

FIG. 3. Example of line search plot of the ground state energy
(Ē0 = E0/ε) as a function of the wave-function parameter (θ ). The
scatter (red) “×” points are computed from the quantum device and
the dashed (black) line are from a state vector simulator for the N = 4
J -scheme circuit shown in Fig. 2.

Shanno (L-BFGS-B) [64] optimizer for running VQE on the
simulator. The L-BFGS-B is a quasi-Newton method that
approximates the Hessian matrix (second-order differentials)
based on successive iterations and does not need to store the
entire Hessian, which reduces the computer memory required
and allows bounds to be set for the variable parameter values.
The results are given in the ensuing subsections.

A. Ground state energy

We compute the ground state energy of the LMG Hamil-
tonian as a function of the interaction strength in both weak
(v < 1) and strong (v � 1) coupling regimes. Note that we
redefine the borderline between weak and strong coupling. A
comparison of the VQE solution using IBM quantum com-
puter is made with the exact analytical solution, the classical
Hartree-Fock, and RPA solution as shown in Figs. 4–6. We
observe that the results deviate from each other in both weak
and strong coupling regimes. For all cases, the simulator re-
sults are almost identical to the exact solutions, which means
that all computational errors can be attributed to noise in the

Algorithm 1: qEOM for Lipkin model

Data: N = 2, 3, 4
Result: En, |ψn〉

1 For v in vlist do
2 Ĥv ← construct LMG Hamiltonian at v;
3 Ē ′

0, {θ ′
0} ← VQE(Ĥv , simulator, optimizer);

4 search ← search intervals [θ ′
0 − δ, θ ′

0 + δ];
5 Ē0, {θ0} ← VQE(Ĥv , device, search);
6 |ψ0〉 ← construct g.s. circuit U ({θ0});
7 A,B, C,D ← expectation(|ψ0〉 , K̂ (α), Ĥ );
8 En, |ψn〉 ← solve GEE(A,B, C,D);
9 end
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Device-J
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N = 2

FIG. 4. Ground state energy (Ē0 = E0/ε) as a function of the
interaction strength (v = V/ε) for a LMG system of N = 2 particles.

quantum device. No error mitigation method was performed
for this work as we were interested in comparing the raw
results to be able to investigate the effects of increasing the
model parameters {N, v, α} for both the I - and J -schemes.

For N = 2, the ground state energy as a function of the
interaction strength is shown in Fig. 4. In the weak coupling
regime, the VQE results for both the I - and J -schemes
are relatively close to the exact solution and RPA solutions
with average errors of about 2% and 1% respectively (see
Appendix C). In the strong coupling regime, the results of
the J -scheme are slightly more accurate than those of the I
-scheme, but both are relatively close to the exact solution.
In both regions, the VQE solution from both schemes was
significantly more accurate than both HF and RPA. This was
expected as the classical HF and RPA perform better for
systems with large number of particles.

0 0.5 1 1.5 2
V / ���

-4

-3

-2

-1

E
0
 /

 ��
�

Device-I
Simulator-I
Exact
Hartree-Fock
RPA
Device-J
Simulator-J

N = 3

FIG. 5. Ground state energy (Ē0 = E0/ε) as a function of the
interaction strength (v = V/ε) for a LMG system of N = 3 particles.
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-2

E
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Exact
Hartree-Fock
RPA
Device-J
Simulator-J

N = 4

FIG. 6. Ground state energy (Ē0 = E0/ε) as a function of the
interaction strength (v = V/ε) for a LMG system of N = 4 particles.

For N = 3, the ground state energy as a function of the
interaction strength is shown in Fig. 5. In the weak coupling
regime, the VQE solution for the J -scheme is relatively close
to the exact solution, while the I -scheme solution slightly
deviates from it. For some values of v, namely v � 0.6 for
the RPA and v < 0.6 for HF, the VQE solution for the I
-scheme is less accurate than the HF and RPA, but much better
for v > 0.6. In the strong coupling regime, in most cases the
VQE solution for the J -scheme is relatively close to the exact
solution with minor deviations on a few points. However, the
I -scheme results significantly deviate from the exact solution
with average errors of about 19% but still remains slightly
more accurate than both the HF and RPA solutions. For all
regions, the J -scheme is more accurate than the I -scheme,
HF, and RPA solutions. These results can be understood by
noting that, for this simulation, the J -scheme only used one
qubit and one single-qubit gate (see Appendix A), that accu-
mulates less errors on a quantum computer than the I -scheme
which required three qubits and seven gates including three
CNOT -gates.

For N = 4, the ground state energy as a function of the
interaction strength is shown in Fig. 6. The circuit for the I
-scheme is relatively complex, thus its simulation was omitted
in this work. For both the weak and strong coupling regimes,
the VQE solution for the J -scheme is relatively close to the
exact solution with small deviation in the strong coupling
region. Also the J -scheme is more accurate than both the HF
and RPA solutions at all values of the interaction strength.

We also observe that, for all particle numbers investigated
in this work, as shown in Figs. 4–6, the VQE solution for the
ground state energy for both encoding schemes is generally
more accurate than the classical HF and RPA solutions. The
VQE results generally have larger errors in the strong coupling
regime, which is consistent with the findings of Ref [37].
Such errors can be combated by employing error mitigation
methods and using better quantum computers with high qubit
quality.
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FIG. 7. Energy spectrum (Ēn = En/ε) as a function of the inter-
action strength (v = V/ε) for N = 2 particles.

B. Excited state energies

As described in Sec. II A, the next step after VQE in
the qEOM method is to compute the excited states and
their energies by solving Eq. (4). We computed the energy
spectrum of the LMG Hamiltonian as a function of the inter-
action strength for N = 2, 3, and 4 particles. The results of
the qEOM runs on the IBM quantum computer were com-
pared with the exact analytical solutions for both the I - and
J -schemes.

For N = 2, the energy spectrum as a function of the in-
teraction strength is shown in Fig. 7. In the weak coupling
regime, the qEOM solution for the excited state energies, for
both encoding schemes, are relatively close to the exact solu-
tion. In the strong coupling regime, the J -scheme is slightly
more accurate than the I -scheme, but they both deviate from
the exact solution for a few points. To compare the effect
of the configuration complexity (α) on the accuracy of the
results, we consider the energy (Ē1) of the first excited state
as a function of the interaction strength. In the I -scheme,
we compute Ē1 using α = 1 (RPA-I) and α = 2 (SRPA-I),
whereas in the J -scheme we only use α = 1 (RPA-J) since
one cannot encode 2p2h configurations on one qubit. In the
weak coupling regime, the J -scheme RPA result is relatively
close to the exact solution. The I -scheme SRPA result is
slightly more accurate than its RPA solution, but they are both
less accurate than RPA in J -scheme. In the strong coupling
regime, as shown in Fig. 8 and Table III, the I -scheme SRPA
is as accurate as the J -scheme RPA, and are both more
accurate than the I -scheme RPA. The simulation results for
Ē1 can be summarized as follows:

Ē1 →
{

RPA-J > SRPA-I > RPA-I for v < 1,

SRPA-I ≈ RPA-J > RPA-I for v > 1.
(74)

This shows that increasing the configuration complexity does
improve the accuracy, as seen by the results for SRPA-I be-
ing slightly better than RPA-I for all values of the coupling
strength. Although these results are not conclusive at this size
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SRPA-device-I
Exact
RPA-device-J
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FIG. 8. First excited state energy (Ē1 = E1/ε) as a function of the
interaction strength(v = V/ε) for N = 2 particles. We compare the
computational accuracy with configuration complexity α = 1 (RPA)
for I and J encoding schemes, and α = 2 (SRPA) for the I -scheme.

of the system, they are sufficient to indicate that larger α leads
to better accuracy. We also note, from the results of RPA-J
being better than SRPA-I at small coupling strength, that a
more efficient encoding scheme can reduce the degree of α

required to achieve a certain accuracy.
For N = 3, the energy spectrum as a function of the inter-

action strength is shown in Fig. 9. The results for the I - and
J -schemes are displayed in the left and in the right panels,
respectively. For the J -scheme plot, the legend postfactor
labels of “A” and “B” denote block A and block B of the
Hamiltonian, which are defined in Appendix A. Using the
symmetry of the LMG solutions when W = 0, we construct
the plot for the I -scheme as follows: Ē0 (using VQE), Ē1 =
−Ē2, Ē2 (using qEOM-SRPA), and Ē3 = −Ē0. Essentially,
only Ē0 and Ē2 were computed, and Ē1 and Ē3 were found by
reflecting Ē0 and Ē2 about the line y = 0, respectively. For the
J -scheme plot, recall that the Hamiltonian is split into two
blocks, and each block uses one qubit (see Appendix A) to
compute Ē0, Ē1 (using VQE) and Ē2, Ē3 (using qEOM-RPA).
In the weak coupling regime, results of the J -scheme are
relatively close to the exact solution and significantly more
accurate than the ones of the I -scheme. In the strong coupling
regime, the J -scheme results are fairly close to the exact
solution except for a few points with slightly larger errors.
The I -scheme has noticeably larger errors with some points
crossing the nearest energy level.

In general, the results for the I -scheme are prone to
more errors on current NISQ computers than those of our
more efficient J -scheme because of the larger quantum re-
sources (qubits and gates) required by the I -scheme. Another
drawback of the I -scheme is that its Hamiltonian encod-
ing introduces spurious energy solutions, that effectively
increases the configuration complexity required to obtain the
whole spectrum. This can be explicitly seen by rewriting the
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FIG. 9. Energy spectrum (Ēn = En/ε) as a function of the interaction strength (v = V/ε) for N = 3 particles.

Hamiltonian of Eq. (47) in the matrix form as

H̄ (3)
I = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 −2v 0 −2v −2v 0
0 1 0 0 0 0 0 −2v
0 0 1 0 0 0 0 −2v

−2v 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 −2v

−2v 0 0 0 0 1 0 0
−2v 0 0 0 0 0 −1 0

0 −2v −2v 0 0 −2v 0 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(75)
Diagonalizing Eq. (75), we get the energy solutions

Ē (3) = {± 1
2 , ±

√
3v2 + 1 − 1

2 , 1
2 ±

√
3v2 + 1

}
, (76)

where both of the extra energy solutions {− 1
2 , 1

2 } have a
two-fold degeneracy. This problem arises from encoding
four active components of the ground state wave function
onto three qubits which have eight possible states (see Ap-
pendix A). Hence, the extra four nonactive states give the
additional nonphysical energy solutions. This causes a hurdle
for the qEOM as it will treat the extra nonactive states as
legitimate excited states, thus, the excitation operator will
require a higher configuration complexity α > 3 to get the
complete energy spectrum. Note that for N = 3, a comparison
between configuration complexity similarly to one shown in
Fig. 8 for the I -scheme is not meaningful since the result
of qEOM with α = 1 gives the unphysical solution Ē1 = 1

2 .
Although the J -scheme does not have this problem of spu-
rious solutions for N = 3, we cannot make the comparison
between configuration complexities at this scale because only
α = 1 (RPA) configuration is possible on one qubit. It is worth
mentioning again that nonactive states also appear in the J
-encoding scheme, but they are much fewer than for the I
-scheme and do not always add unphysical solutions.

For N = 4, the energy spectrum as a function of the inter-
action strength is shown in Fig. 10 where the legend postfactor
labels of “A” and “B” denote block A with even M values and
block B with odd M values of the Hamiltonian, as shown in
Sec. III A. Diagonalizing the Hamiltonian in block A gives
the energies Ē0, Ē2, and Ē4 computed using VQE, qEOM-
RPA/SRPA, and qEOM-SRPA, respectively. Similarly, for the
block B we get the energies Ē1 and Ē2 computed using VQE

and qEOM-RPA, respectively. First, we run the computation
on a state_vector simulator and find that, for Ē2 from the block
A Hamilitonian, the RPA solution significantly deviates from
the exact solution as the interaction strength increases with
average errors of about 10% in the strong coupling region. In
contrast, the SRPA solution stays relatively close to the exact
solution with average errors of about 10−6% for all values
of the coupling strength. This demonstrates explicitly that, in
the absence of noise, an increase in configuration complexity
α translates to increased accuracy of quantum many-body
simulations within the EOM framework. This solidifies the
interpretation of simulation results for N = 2 when computing
Ē1 with RPA and SRPA, which is summarized in Eq. (74). On
a quantum device, the solutions for both Ē0 and Ē1 (computed
using VQE) are fairly close to the exact ones in all coupling
regimes. The qEOM results for the excited states Ē2, Ē3, and
Ē4 are fairly close to the exact ones in the weak coupling
regime, but significantly deviate at the strong coupling. The
average errors of the excited state energies found by qEOM
in the strong coupling regime are larger than we expected
considering the VQE errors of the ground states they are
computed from. This highlights the issue of a nontrivial error
propagation in the qEOM algorithm, that is discussed in more
detail in the Appendix of Ref. [37].

V. SUMMARY AND OUTLOOK

We simulated the excited states of the Lipkin model on
a quantum computer using the quantum equation of motion,
which is an extension of the variational quantum eigensolver.
The goal was to find, within the equation of motion frame-
work, how the configuration complexity (α) of the many-body
states correlates with the accuracy of the resulting spectra
when simulated on a quantum computer. To achieve this ob-
jective, we first proposed a new efficient encoding scheme (the
J -scheme) of the Lipkin model that exploits symmetries of
the Hamiltonian and employs the Gray code to minimize the
quantum resources needed for the simulation. Improving upon
previously used encoding scheme [39] (the I -scheme), our
encoding scheme reduces the size of the Hilbert space from
scaling as O(2N ) to O( N

2 + 1) for a system of N particles.
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FIG. 10. Energy spectrum (Ēn = En/ε) as a function of the interaction strength (v = V/ε) for N = 4 particles from a state_vector

simulator (left) and ibmq_quantum computer (right).

This translates into reducing the number of qubits (qN ) from
qN = N to the first integer that satisfies qN � log2( N

2 + 1),
and also makes the circuit depth shallower. We considered
systems with N = 2, 3, and 4 particles, and run the simu-
lations on IBM quantum computers and a state_vector
simulator. We compared simulations using our J -scheme and
the I -scheme with configuration complexities α = 1 (RPA)
and α = 2 (SRPA), for both weak (v < 1) and strong (v > 1)
coupling regimes.

On the simulator, for systems with N = 2 and 3 particles,
we found no significant difference between the results of
both encoding schemes and the exact solution in all coupling
regimes with RPA and SRPA configuration complexities. By
computing the average errors of the sampled points in each
coupling regime, as shown in Table II, we found the av-
erage errors less than 10−5% for the aforementioned cases.
However, as we increased the particle number to N = 4, we
observed an emerging difference between the RPA and SRPA
solutions. Using the J-scheme, we saw that the RPA solution
significantly deviates from the exact solution with errors that
are more than five orders of magnitude larger than those of
the SRPA solution. In the absence of noise, this clear differ-
ence between the RPA and SRPA solutions demonstrates that
the configuration complexity directly impacts the accuracy of
quantum many-body simulations, and by working with model
Hamiltonians we can quantify how this scales with an increase
in the interaction strength. On a quantum computer, we found
that our J -scheme had significantly more accurate results than
the I -scheme, and the difference becomes accentuated with
an increase of any of the model parameters {N, v, α}. For both
encoding schemes, the simulations accumulated more errors
in the strong coupling regime than in the weak coupling one,
which is consistent with our intuition that quantum states that
strongly interact should be more difficult to simulate than ones
that weakly interact. For some cases, the excited state energy
solution in the strong coupling regime appeared somewhat
chaotic, which reveals one of the drawbacks of the qEOM.
As discussed in the Appendix of Ref. [37], it is nontrivial to
predict how the errors from the ground state will propagate to
the excited states in the presence of noise.

Another drawback of the qEOM is that the matrix dimen-
sions of the generalized eigenvalue equation (GEE), given in
Eq. (4), scales badly with the parameters (N, α). For α = 2,
we found that the matrix dimensions of the GEE scales as
O(N2), thus we expect a general scaling (assuming no ap-
proximations made) of O(Nα ), which is hardly manageable
by classical computers for large N . A possible way to avoid
the expensive diagonalization of a large GEE can be, for
instance, to perform calculations on a spatial grid, introduce
particle-vibration coupling, or to use some form of the finite
amplitude method (FAM) [65–67]. The latter leads to a series
of differential equations that can be efficiently solved by nu-
merical integration. Work in this area is currently in progress
[68].

In this work we have demonstrated, using an exactly
solvable quantum many-body model, that increasing the con-
figuration complexity within the EOM framework increases
the accuracy of our simulation. However, increasing α also
increases the dimension of the matrices of the GEE to be
solved on a classical computer. We also observed that an
increase of the interaction strength produces a decrease in
the accuracy of the simulation. As a way to combat these
issues, we have proposed an efficient encoding scheme which
(i) minimizes the number of quantum resources required, thus
reducing the errors in the strong coupling regime, an (ii)
minimizes the configuration complexity α required to obtain
accurate spectra for a given system, thus reducing the size
of the GEE matrices. An example for the latter point is the
case of N = 3, where our scheme only required α = 1 to
obtain the whole spectra instead of the theoretically exact
α = N = 3. We also found that, as we increased the number
of particles N , the accuracy of our simulations on a quantum
computer declined due to an increase in the noise because
an increase in N essentially increases the effective coupling
strength ṽ = (N − 1)v/ε. Further work needs to be done to
combat noise errors by employing error mitigation strategies,
using better quality qubits and eventually employing quantum
error correction in the near future. Our scheme and obser-
vations form a stepping stone towards developing quantum
algorithms to achieve nuclear spectroscopic accuracy.
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APPENDIX A: MORE ON ENCODING SCHEMES

In this section, we give more examples of our efficient
encoding scheme and associated Ansatz circuit to simulate on
a quantum computer.

1. N = 2

Starting with Eq. (51), we consider a system with N = 2
particles and two possible states |J, M〉 → |1,−1〉 , |1,+1〉,
so that the Hamiltonian is given by

H̄ (2)
J = a0 |0〉 〈0| + a1 |1〉 〈1| + b0[|0〉 〈1| + |1〉 〈0|]. (A1)

We note that for this case the standard binary (SB) code
and Gray code (GC) are identical. Applying the projection
operators as described in Ref. [61], we can rewrite Eq. (A1)
as

H̄ (2)
J = a0P(0) + a1P(1) + b0X

= 1
2 (a0 + a1) + 1

2 (a0 − a1)Z + b0X, (A2)

where P(0) = 1
2 (I + Z ) and P(1) = 1

2 (I − Z ) denote the pro-
jectors on the state |0〉 and |1〉, respectively. Using Eqs. (52)
and (53), we find

a0 = −a1 = −1 and b0 = −v, (A3)

so that the final Hamiltonian reads

H̄ (2)
J = −Z − vX =

(−1 −v
−v +1

)
, (A4)

with the energy eigenvalues Ē (2) = ±√
v2 + 1. The third so-

lution with energy Ē (2) = 0 is found from the second part of
the full Hamiltonian containing the state |1, 0〉.

Using the encoding notation of Ref. [39], the ground
state wave function, in terms of the individual spin basis
(I-scheme), is a superposition of two states

|ψI (θ )〉 = sin θ |↑↑〉 − cos θ |↓↓〉
= cos θ̃ |00〉 + sin θ̃ |11〉 , (A5)

where θ̃ = θ − π
2 and θ ∈ [0, π

2 ). The associated parameter-
ized quantum circuit is shown in Fig. 11, where the optimal θ̃0

that minimizes 〈ψI (θ̃ )| H̄ (2)
I |ψI (θ̃ )〉 is found using VQE.

In our efficient J-scheme, the ground state wave function
is given by

|ψJ (φ)〉 = cos φ |1,−1〉 + sin φ |1,+1〉
= cos φ |0〉 + sin φ |1〉 ,

(A6)

FIG. 11. I-scheme Ansatz for N = 2.

and the associated parameterized quantum circuit is shown in
Fig. 12, where φ ∈ [0, π

2 ). Note that, although both Ansätze
for I- and J-schemes have one parameter to optimize, the J-
scheme is more efficient, because it uses less qubits and has a
lower circuit depth than the I-scheme.

2. N = 3

For N = 3, we have J = 3
2 , that corresponds to a total

multiplet of 4 states, which decomposes into 2 disconnected
sub blocks denoted by A and B:∣∣∣∣32 ,−3

2

〉
≡ |0〉A ,

∣∣∣∣32 ,+1

2

〉
≡ |1〉A ,

∣∣∣∣32 ,−1

2

〉
≡ |0〉B ,

∣∣∣∣32 ,+3

2

〉
≡ |1〉B . (A7)

The Hamiltonian for both sets can be computed similarly to
Eq. (A1):

H̄ (3)
J = a0

2
(I + Z ) + a1

2
(I − Z ) + b0X

=
(

a0 b0

b0 a1

)
,

(A8)

where the coefficients are given by

A : a0 = − 3
2 , a1 = + 1

2 , b0 = −v
√

3,

B : a0 = − 1
2 , a1 = + 3

2 , b0 = −v
√

3. (A9)

It is straightforward to verify that the combination of the two
Hamiltonians generates the full energy spectrum

Ē (3) =
{

ĒA = − 1
2 ± √

3v2 + 1,

ĒB = + 1
2 ± √

3v2 + 1.
(A10)

In the J-scheme, the ground state wave function is a super-
position of four states [39] given by

|ψI (θ )〉 = cos θ |↓↓↓〉 − 1√
3

sin θ (|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉),

(A11)

where θ ∈ [0, π
2 ). The associated parameterized quantum cir-

cuit is shown in Fig. 13, where the auxiliary angles α and β

are defined to be

α ≡ 2 arccos
(
−
√

2
3 sin θ

)
,

β ≡ −π
4 − arctan

(
tan θ√

3

)
. (A12)

FIG. 12. J-scheme Ansatz for N = 2.
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FIG. 13. I-scheme Ansatz for N = 3.

Following the encoding notation of Ref. [39], we can write
Eq. (A11) as

|ψI (θ )〉 = cos θ |111〉 − 1√
3

sin θ (|001〉 + |010〉 + |100〉).

(A13)

In the J-scheme, the wave function can be split into two
blocks:

|ψJ (φ)〉 =
{

cos φA

∣∣ 3
2 ,− 3

2

〉+ sin φA

∣∣ 3
2 ,+ 1

2

〉
,

cos φB

∣∣ 3
2 ,− 1

2

〉+ sin φB

∣∣ 3
2 ,+ 3

2

〉
,

(A14)

which can be solved independently for φA and φB using the
quantum circuit shown in Fig. 14, where φA = φB + 2πr for
r ∈ Z. Comparing the resources to solve the LMG model for
N = 3, we note that the I-scheme uses three qubits and seven
gates, whereas the J-scheme requires only one qubit and one
gate.

APPENDIX B: qEOM MATRICES FOR α = 1

In this section we give the analytical expressions for the
GEE matrices which enter Eq. (4). In Sec. II A, we evaluated
the matrices D and C for α = 1 to be

Dmi′k j′ = −〈[â†
i′ âm, â†

j′ âk]〉 = 0, (B1)

Cmi′k j′ = 〈[â†
i′ âm, â†

k â j′ ]〉
= 〈(δmkâ†

i′ â j′ − δi′ j′ â
†
k âm)〉. (B2)

The evaluation of the remaining A and B matrices is more
elaborate. First, we define the Hamiltonian to be used by
setting w = 0 into Eq. (37) to get

ĤF = ε

2

(
N−1∑
s′=0

â†
s′ âs′ −

2N−1∑
s=N

â†
s âs

)

− V

2

∑
q,r

∑
q′,r′

(â†
qâ†

r âr′ âq′ + â†
q′ â

†
r′ âr âq)�q,q′

r,r′ . (B3)

Starting with the evaluation of matrix A given by

Ami′k j′ = 〈[â†
i′ âm, [ĤF , â†

k â j′ ]]〉, (B4)

FIG. 14. J-scheme Ansatz for N = 3.

we first compute the commutator

[Ĥ0, â†
k â j′ ] = ε

2

(∑
s

[â†
s âs, â†

k â j′ ] −
∑

s′
[â†

s′ âs′ , â†
k â j′ ]

)
.

(B5)
The two commutators inside the sum can be evaluated as

[â†
s âs, â†

k â j′ ] = â†
s âsâ

†
k â j′ − â†

k â j′ â
†
s âs

= â†
s (δsk − â†

k âs)â j′ + â†
k â†

s â j′ âs

= δsk â†
s â j′ , (B6)

[â†
s′ âs′ , â†

k â j′ ] = â†
s′ âs′ â†

k â j′ − â†
k â j′ â

†
s′ âs′

= â†
s′ â

†
k â j′ âs′ − â†

k (δs′ j′ − â†
s′ â j′ )âs′

= −δs′ j′ â
†
k âs′ . (B7)

Thus, the commutator of Eq. (B5) reads

[Ĥ0, â†
k â j′ ] = ε

2

(∑
s

δsk â†
s â j′ −

∑
s′

(−δs′ j′ â
†
k âs′ )

)

= εâ†
k â j′ . (B8)

To evaluate the commutator associated with Ĥv given by

[Ĥv, â†
k â j′ ] = −v

2

∑
q,r

∑
q′,r′

[â†
qâ†

r âr′ âq′ + â†
q′ â

†
r′ âr âq, â†

k â j′ ],

(B9)
where the constraint �

q,q′
r,r′ will be inserted at the end of the

calculation, we can simplify the commutators in the sum as
follows:

[â†
qâ†

r âr′ âq′ , â†
k â j′ ] = â†

qâ†
r âr′ âq′ â†

k â j′ − â†
k â j′ â

†
qâ†

r âr′ âq′

= â†
k â†

qâ†
r âr′ âq′ â j′ − â†

k â†
qâ†

r âr′ âq′ â j′ = 0.

(B10)

[â†
q′ â

†
r′ âr âq, â†

k â j′ ] = â†
q′ â

†
r′ âr âqâ†

k â j′ − â†
k â j′ â

†
q′ â

†
r′ âr âq

= â†
q′ â

†
r′ (δkqâr − δkr âq)â j′

+ â†
k (δ j′r′ â†

q′ − δ j′q′ â†
r′ )âr âq. (B11)

For simplicity, we define

f̂1 = â†
q′ â

†
r′ (δkqâr − δkr âq)â j′ , (B12)

f̂2 = â†
k (δ j′r′ â†

q′ − δ j′q′ â†
r′ )âr âq. (B13)

The double commutator of Eq. (B4) consists of the two
terms

[â†
i′ âm, [H̃ , â†

k â j′ ]] = [â†
i′ âm, [Ĥ0, â†

k â j′ ]]

+ [â†
i′ âm, [Ĥv, â†

k â j′ ]]. (B14)

The first commutator reads

[â†
i′ âm, [Ĥ0, â†

k â j′ ]] = [â†
i′ âm, εâ†

k â j′ ]

= ε(δmkâ†
i′ â j′ − δi′ j′ â

†
k âm), (B15)
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while the second one gives

[â†
i′ âm, [Ĥv, â†

k â j′ ]] = −v

2

∑
q,r

∑
q′,r′

[â†
i′ âm, f̂1 + f̂2]. (B16)

Furthermore, we have

[â†
i′ âm, f̂1] = −δi′ j′ â

†
q′ â

†
r′ (δkqâr − δkr âq)âm (B17)

and

[â†
i′ âm, f̂2] = δmkâ†

i′ (δ j′r′ â†
q′ − δ j′q′ â†

r′ )âr âq. (B18)

Therefore, inserting all the pertinent terms into Eq. (B4) we
get

Ami′k j′ = 〈[â†
i′ âm, [H̃ , â†

k â j′ ]]〉
= 〈ε(δmkâ†

i′ â j′ − δi′ j′ â
†
k âm)〉

+ v

2

∑
q,r

∑
q′,r′

〈[δi′ j′ â
†
q′ â

†
r′ (δkqâr − δkr âq)âm]〉

− v

2

∑
q,r

∑
q′,r′

〈[δmkâ†
i′ (δ j′r′ â†

q′ − δ j′q′ â†
r′ )âr âq]〉,

(B19)

where the sums are constrained by the condition δq+N,q′δr+N,r′ .
Similarly, we can evaluate the B matrix, defined as

Bmi′k j′ = −〈[â†
i′ âm, [H̃ , â†

j′ âk]]〉, (B20)

by fist evaluating the commutator associated with Ĥ0 as

[Ĥ0, â†
j′ âk] = ε

2

(∑
s

[â†
s âs, â†

j′ âk] −
∑

s′
[â†

s′ âs′ , â†
j′ âk]

)

= ε

2

(∑
s

−δsk â†
j′ âs −

∑
s′

δs′ j′ â
†
s′ âk

)
= −εâ†

j′ âk,

and the associated double commutator:

[â†
i′ âm, [Ĥ0, â†

j′ âk]] = [â†
i′ âm,−εâ†

j′ âk] = 0. (B21)

Thus, the matrix B only contains information about the inter-
action term. The respective commutator reads:

[Ĥv, â†
j′ âk] = −v

2

∑
q,r

∑
q′,r′

[â†
qâ†

r âr′ âq′ + â†
q′ â

†
r′ âr âq, â†

j′ âk].

(B22)
Evaluating the first commutator in the sum leads to

[â†
qâ†

r âr′ âq′ , â†
j′ âk] = â†

qâ†
r âr′ âq′ â†

j′ âk − â†
j′ âk â†

qâ†
r âr′ âq′

= â†
qâ†

r (δ j′q′ âr′ − δ j′r′ âq′ )âk

+ â†
j′ (δkr â†

q − δkqâ†
r )âr′ âq′ . (B23)

Again, for simplicity we define

ĝ1 = â†
qâ†

r (δ j′q′ âr′ − δ j′r′ âq′ )âk, (B24)

ĝ2 = â†
j′ (δkr â†

q − δkqâ†
r )âr′ âq′ , (B25)

so that the second commutator gives

[â†
q′ â

†
r′ âr âq, â†

j′ âk] = â†
q′ â

†
r′ âr âqâ†

j′ âk − â†
j′ âk â†

q′ â
†
r′ âr âq

= â†
j′ â

†
q′ â

†
r′ âr âqâk − â†

j′ âk â†
q′ â

†
r′ âr âq = 0,

(B26)

and the double commutator thus reads:

[â†
i′ âm, [Ĥv, â†

j′ âk]] = −v

2

∑
q,r

∑
q′,r′

[â†
i′ âm, ĝ1 + ĝ2]. (B27)

The first and the second terms of Eq. (B27) become, respec-
tively,

[â†
i′ âm, ĝ1] = â†

i′ âmâ†
qâ†

r (âr′ − âq′ )âk

− â†
qâ†

r (âr′ − âq′ )âk â†
i′ âm

= â†
i′ (δmqâ†

r − δmrâ†
q )(âr′ − âq′ )âk

+ (δi′q′ − δi′r′ )â†
qâ†

r âmâk, (B28)

and the second term

[â†
i′ âm, ĝ2] = â†

i′ âmâ†
j′ (â

†
q − â†

r )âr′ âq′

− â†
j′ (â

†
q − â†

r )âr′ âq′ â†
i′ âm

= (δmr − δmq )â†
i′ â

†
j′ âr′ âq′

+ â†
j′ (â

†
q − â†

r )(δi′r′ âq′ − δi′q′ âr′ )âm. (B29)

Therefore, inserting all the pertinent terms into Eq. (B20), we
get

Bmi′k j′ = −〈[â†
i′ âm,

[
H̃ , â†

j′ âk
]
]〉

= v

2

∑
q,r

∑
q′,r′

{〈(δmr − δmq)â†
i′ â

†
j′ âr′ âq′ 〉

+ 〈(δi′q′ − δi′r′ )â†
qâ†

r âmâk〉
+ 〈â†

j′ (δkr â†
q − δkqâ†

r )(δi′r′ âq′ − δi′q′ âr′ )âm〉
+ 〈â†

i′
(
δmqâ†

r − δmrâ†
q

)
(δ j′q′ âr′ − δ j′r′ âq′ )âk〉},

(B30)

where the summation constraint �
q,q′
r,r′ is not explicitly written

for readability, but must be included in the terms associated
with the v scattering for both A and B matrices.

APPENDIX C: ERROR ANALYSIS

In this section we give a pertinent analysis of the errors
of the quantum equation of motion algorithm for the Lipkin
model when implemented on current noisy quantum comput-
ers with calibration data given by Table I.

TABLE I. Range of average calibration data for the IBM quan-
tum machines used for the simulations in this work.

Parameter Lower Upper

Average T1(s) 93.3 × 10−6 133 × 10−6

Average T2(s) 56.4 × 10−6 138 × 10−6

Average CNOT error 7.92 × 10−3 3.29 × 10−1

Average readout error 2.86 × 10−6 3.21 × 10−2
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TABLE III. Summary of average percentage errors from ibmq_quantum computers.

Quantum device
J-scheme I-scheme

Weak (v < 1) Strong (v > 1) Weak (v < 1) Strong (v > 1)
VQE qEOM VQE qEOM VQE qEOM VQE qEOM

RPA SRPA RPA SRPA RPA SRPA RPA SRPA

E0 1.17 2.52 2.38 6.16
N = 2 E1 0.810 5.01 4.64 2.69 6.75 5.16

E2 0.582 4.23 1.50 5.16

E0 0.623 2.86 16.4 18.7
N = 3 E1 0.956 2.59 29.8 39.7

E2 5.86 9.00 29.8 39.7
E3 2.91 4.63 16.4 18.7

E0 3.79 4.91
N = 4 E1 4.05 1.70

E2 5.44 3.39 14.4 36.4
E3 3.14 10.9
E4 1.32 4.21

For analyzing the accuracy of our methods, we com-
pute the average percentage error of each coupling regime
given by

�n ≡
⎧⎨
⎩
∑p

i
m(i)

n −ε
(i)
0

ε
(i)
n −ε

(i)
0

for n > 0,∑p
i

m(i)
0

ε
(i)
0

for n = 0.
(C1)

Here (p − i) is half the number of data points, and m(i)
n and

ε (i)
n are the ith measured and exact energy points for the nth

energy level, respectively. For each coupling regime, Tables II
and III show a comparison of the errors of VQE and qEOM
implementations on the simulator and quantum device, re-
spectively.
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