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Accuracy versus predictive power in nuclear mass tabulations
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The nuclear mass evaluations have been brought into quite an accurate level with the advent of machine
learning, while their extrapolations are in great debate as manifested by the large discrepancies between
themselves. Here, we present a possible way to heal these existing differences and raise the predictive ability
of mass formulas through performing the multi-objective optimization aimed at both the binding energy and the
α decay energy. As exemplified by the microscopically inspired Dulfo-Zuker model, the Pareto optimal solutions
are found to guarantee the robust mass predictions especially towards the extreme neutron-rich nuclei plus the
coherent statistical analysis. Besides effectively avoiding the overfitting problem, our results shed new light
on narrowing the window of symmetry energy in nuclear mass formulas serving not only the reliable nuclear
dripline but also the stringent equation of state in asymmetric nuclear matter.
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I. INTRODUCTION

Nuclear mass or binding energy has always been one of
the most central issues in nuclear physics, due to its direct
connection with the fundamental nucleon-nucleon interaction
[1]. The first successful mass formula, namely the liquid drop
(LD) model, had not only verified the understanding of nu-
clear force at that time but also intrigued the nuclear fission
research and the application of nuclear energy [2]. Nowadays,
the tiny nucleus is correlated with the infinite nuclear matter
via the symmetry energy, further simulating the broad phys-
ical interest on the nuclear binding energy [3]. On the other
hand, the mass of neutron-rich nuclei is a key factor determin-
ing the r-process path of the nucleosynthesis, which serves
the full knowledge of the formation and evolution of elements
heavier than iron in the universe [4–6]. Nonetheless, although
the recent decades were a fertile breeding ground for precisely
measuring nuclear mass with the advent of high-performance
facilities of radioactive ion beams, for the foreseeable future,
it is still impossible to experimentally explore the very short-
lived nuclei towards the neutron dripline [7,8]. The nuclear
mass formulas are therefore in great demand especially con-
cerning the reliable extrapolation besides the high accuracy.

Among the current market of mass models, the popular
macroscopic-microscopic (mac-mic) approach [9–11] con-
sists of the (modified) LD part and the microscopic shell plus
pairing corrections, while the (non)relativistic energy density
functionals (EDFs) [12,13] describe the nuclear binding en-
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ergy in a more microscopic way. Different from these global
mass formulas, the local mass relationship or the binding
energy (BE) systematics has also been employed to perform
mass evaluations in some specific regions [14,15]. With the
introduction and development of machine learning strategies
like the Bayesian neural network, the accuracies of various
BE evaluations, in the measured mass region, have reached
a quite high level towards the so-called chaos limit [16–20].
Considering these, it seems that there are few studies one can
do about the theoretical nuclear mass framework. However,
one question naturally arises: To what extent can we trust
these nuclear mass extrapolations? Let us pay attention to two
serious issues before answering this. First, there are actually
quite large deviations between different BE evaluations based
on the aforementioned mass formulas in terms of the model
itself [9]. Even in the same Hartree-Fock-Bogoliubov mass
formulas, their extrapolations would vary drastically with the
update [21,22]. Second, after including machine learning, the
binding energy prediction may produce odd values at large
extrapolating distance, not to mention the instabilities caused
by the large number of parameters in the black box of machine
learning. Meanwhile, the extrapolation abilities of these AI
approaches are found to be dependent on the employed mass
formulas [23]. With these in mind, one may conclude that the
extrapolation of nuclear mass formulas should be given more
attention rather than the single pursuit of high accuracy in the
known region.

In fact, the present mass formulas are still derived from
inaccurate models, in which the missing physics would be
involved in the parameter-fitting process. The adjusted param-
eters could, in turn, damage the predictive ability of mass
models. In this study, we report the rigid multi-objective
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optimization (MOO) in the nuclear mass model to tackle
this issue. As is well known, the binding energy difference
corresponds to other observables, like the decay energy and
the nucleon separation energy. Recently, α decay spectra have
been paid special attention due to their unique role played
in the identification of new superheavy elements [24], the
understanding of the shell structure [25,26], and the probe into
the α clustering in heavy nuclei [27,28]. Plenty of α decay
energy (Qα) data have therefore accumulated, which can be
settled as another independent target for the mass formulas.
Moreover, the neutron skin thickness of 208Pb is reported as
�Rnp = 0.283 ± 0.071 fm in the PREX II measurement [29],
implying a large slope parameter L = 106 ± 37 MeV in the
nuclear equation of state and the symmetry energy coefficient
(SEC) S0 = 38.1 ± 4.7 MeV [30]. These values, larger than
most of the theoretical predictions, are in a subtle relationship
with the SEC in the mass formulas [31]. It is of physical
importance to see what will happen to the symmetry energy
term after the mass formulas are further constrained via the
MOO procedure.

II. THEORETICAL FRAMEWORK

Multi-objective optimization is a very common situation
faced by people in real life, such as engineering and eco-
nomics [32–34], which aims at the balance between (more
than one) objectives. A multi-objective problem can be sim-
plified as follows:

min F (x) = ( f1(x), . . . , fm(x)),

s.t. x ⊂ �,

lb � xi � ub,

(1)

where fi(x) is the objective function associated with an
identical kernel (i.e., the mass formula here), and x =
(x1, x2, . . . , xm) is the decision variables constructing the de-
cision space �. Each xi is restricted between the lower and
upper boundaries. The main method of MOO is the evolution
algorithm, in which the variable set x is considered as an indi-
vidual in one generation during the population-evolution-like
process. The essence is that one individual t will be replaced
by another s if fi(s) � fi(t ) for all i = 1, 2, . . . , m and fi(s) <

fi(t ) for at least one objective. To present more details, a two-
objective problem plus two variables is illustrated in Fig. 1,
where the decision space � at the left panel corresponds to
the objective space at the right panel. As shown in the latter
space, the individual (or the variable set) A is actually the
optimal point for the target f1(x), while the individual D
corresponds to the function f2(x). The boundary line from A
to D, as denoted by the dashed line, represents all the possible
variable sets, namely the so-called Pareto front (PF) solution.
The multi-objective evolution algorithm (MOEA) is exactly
implemented to find as many as possible PF solutions. As
one of the most frequently used MOEAs, the non-dominated
sorting genetic algorithm-II (NSGA-II), is adopted here due
to its relatively-low computing and storage complexities in
second generation algorithms [35]. The main procedure of the
NSGA-II is listed below:

FIG. 1. A sketch for the two-objective optimization problem in
the case of two variables. The variables x1, x2 construct the decision
space in the left panel, corresponding to the objective space of f1(x)
and f2(x). These points A, B, C, . . . present the individuals generated
in each population of the evolution algorithm, and the symbol “PF”
is abbreviated from the Pareto front solution.

(1) Population initialization: Set generation of population
t = 0 at initial time. Create a parent population Pt with
N individuals randomly, corresponding to parameter
sets of the mass formula here.

(2) Population evolution: Perform selection, crossover,
mutation on population Pt , and obtain offspring pop-
ulation Qt with equal members. Combine Pt and Qt

together to yield a 2N population Rt .
(3) Based on the computed objective values plus a non-

dominated sorting process, each individual in Rt is
assigned with a Pareto rank. All the individuals are
then classified into different groups, namely {Oi} as
shown in panel (a) of Fig. 2, via their rank values.

(4) The population Pt+1 is set as ∅. The individuals from
O1 to Oj ( j � 1) are added into Pt+1 in order until

FIG. 2. On the left panel, the Pareto rank of each individual is
obtained by using non-dominated sorting procedure [35–37], i.e.,
the individuals are divided into finite sets with the different priority,
namely, O1, O2, O3, . . .. The crowding distance is graphically illus-
trated at the right panel, where the f max

1,2 and f min
1,2 are the maximum

and minimum values for the objective function f1,2, respectively. The
dn represents the crowding distance for individual n.
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∑k
i=1 Oi � N ,

∑k+1
i=1 Oi > N . At this moment, the in-

dividuals of Ok+1 will be partially taken into Pt+1.
(5) The prior members in Ok+1 are chosen to fulfill the

Pt+1 with the size of N via a crowding distance sort-
ing method. During this, as shown in panel (b) of
Fig. 2, the crowding distance is calculated by dn =
f1[n−1]− f1[n+1]

f max
1 − f min

1
+ f2[n−1]− f2[n+1]

f max
2 − f min

2
.

(6) If the fixed number of iterations is reached or the evo-
lutive results are convergent, the program returns the
Pareto front and ends. If not, the algorithm continues
and jumps to step 2.

During the above procedure, each individual is attached with
two signs, namely the Pareto rank and the crowding distance
d . In practice, the crowded-comparison operator (≺n) is de-
fined in the NSGA-II algorithm to determine which solution is
better. The individual A is better than B (A ≺n B) if rank(A) �
rank(B) and dA > dB, which is the specific implementation of
the PF solution in the MOO scheme. In addition, there are two
prominent attributes for the NSGA-II method. One is the fast
non-dominated sorting approach to speed up the convergence,
and the other is the crowding-distance computation to ensure a
uniform distribution of solutions and a diversity of individuals
(see more details in Refs. [35–42] and references therein).

When it comes to the present study, the two objectives
are, respectively, the root-mean-square deviation (RMSD) be-
tween theory and experiment for the nuclear binding energy
and the α decay energy based on the mass formulas, namely
f1 = σBE and f2 = σQα

. The latter quantity is derived from
the mass difference, i.e., Qα = BE(Z − 2, N − 2) + BEα −
BE(Z, N ). The focus point then comes to the kernel mass
formulas for the nuclear BE computation. Given the massive
samplings and computation costs, the classical DZ10 mass
formula is employed to proceed the MOEA analysis due to
its microscopic foundation. Another benefit is that one can
readily check out the symmetry energy coefficient in this mass
formula, which is written as

BEDZ10 = a1VC + a2(M + S) − a3
M

ρ
+ a4VP − a5VT

+ a6VT S + a7s3 − a8
s3

ρ
+ a9s4 + a10d4, (2)

where the coefficient {ai} means the variable set x to be
determined via the NSGA-II strategy. These capital terms, in
the above formula, are actually mapped from the macroscopic
liquid drop model, whereas the residual terms present the
microscopic corrections within the shell-model context (see
Refs. [43,44]).

III. RESULTS AND DISCUSSIONS

By fitting the available experimental data of BE and Qα

from [45] AME20 (with the error bar below 100 keV), the PF
solution line is shown for the DZ10 mass formula in Fig. 3.
One may note that the varying range of σQα

is only about 0.05
MeV, whereas the α decay half-life is very sensitive to the Qα

value. The change of 0.05 MeV in decay energy can produce a
50 percent adaption in decay half-life. On the other hand, the
range of σBE, from the left boundary to the converging point,

FIG. 3. The objective space governed by the σBE (horizontal) and
σQα

(vertical) values for the DZ10 mass formula. Note that each
marker point presents a PF solution guided by the blue line. The BE
data with N, Z � 8, and Qα values with A � 105 are taken from the
AME20 [45].

is not large either. Interestingly, there are a large number of
possible parameter choices even in such a small range of σQα

and σBE, which naturally supplies the statistical analysis on
the model uncertainty. Based on these PF results, our attention
is then paid to two consequent influences, namely the new
dripline of the nuclear chart plus the extrapolation to the
neutron rich side and the interesting symmetry energy coef-
ficients. Before that, let us concern ourselves with a simple
question: Why do we not combine the two objectives into a
single one? Indeed, this is a simple way to solve the multi-
objective optimization, while the combination method is a
serious problem. For example, one cannot decide if addition or
multiplication is better for combining two objectives. Yet, the
fitting result, by minimizing the total value of σBE and σQα

, is
also listed in the last column of Table I for comparison. In this
table, the first column presents the present solutions via the
MOO procedure. Meanwhile, the single objective optimiza-
tion of binding energy, namely the top point in Fig. 3, is listed

TABLE I. The resultant parameters from the Pareto front solu-
tions for the DZ10 formula. Case I indicates the single optimization
of binding energy, while Case II comes from minimizing the value
of σBE + σQα

.

Quantity Present Case I Case II

a1 0.705 ± 0.001 0.705 0.704
a2 17.735 ± 0.03 17.747 17.734
a3 16.207 ± 0.093 16.251 16.206
a4 5.906 ± 0.58 6.102 6.09
a5 37.303 ± 0.097 37.356 37.253
a6 52.757 ± 0.568 52.661 52.282
a7 0.438 ± 0.009 0.463 0.427
a8 2.006 ± 0.041 2.104 1.932
a9 0.022 ± 0.0005 0.021 0.022
a10 39.602 ± 0.591 41.48 40.731
σQα

0.397 ± 0.011 0.439 0.401
σBE 0.66 ± 0.083 0.562 0.577
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FIG. 4. The nuclear chart of even-even nuclei generated by the MOO-constrained DZ10 formulas with possible PF solutions, including the
β-stability line to guide the eye. The available nuclides, according to the AME20 compilation [45], are denoted by the green squares, and the
S2n values of unknown neutron-rich nuclei are listed in colorful circles as well. Note that the S2n value of one nucleus is obtained by averaging
all the results from the DZ10 evaluation with PF solutions. For each isotopic chain, the first nuclei above the proton and neutron dripline nuclei
are both denoted with colorful squares. The “P” symbol corresponds to the percentage of PF solutions resulting in the negative two-nucleon
separation energies. The window in the lower right corner presents a typical example of mass differences (see details in text).

in the second column. It is found that the balance between
the present objectives can be achieved with the MOO strategy
in contrast to the single-objective Case I, while the simple
treatment of two-objective problem, i.e., Case II, is already
included in the present approach.

Based on the microscopic DZ10 model, the first MOO-
constrained chart of even-even nuclides is demonstrated in
Fig. 4. The chart boundary is regulated by the two-neutron
and two-proton drip lines, which are determined by the two
nucleon separation energies (S2p and S2n) from the BE extrap-
olation of DZ10 formula within the present MOO strategy.
Similar dripline nuclei are engendered by the dozens of PF
parameter sets, while the first nuclei with S2n(2p) < 0 of one
isotopic chain are presented with the percentage of all the
PF solutions yielding the negative separation energies. There
are some uncertainties for these nonexistent nuclei between
the major shell closures. The experimentally known nuclei
are found to be all located in the present nuclear chart.
Meanwhile, the two-proton dripline is nearly touched by the
experiment, in particular around the N = 100 region, which
deserves further attention according to the present results. As
compared, there are plenty of blanks below the β-stability
line towards the extreme neutron-rich side, supplying the full
knowledge of the astrophysical r process. Of course, the di-
rect input, for the simulation of the element evolution in the
universe, is not only the nucleon separation energy but also
the mass value. Despite the small discrepancies of the S2p

or S2n values, there are actually nontrivial deviations for the
BE extrapolations in the neutron-rich region from different
PF solutions of the DZ10 mass formula. There is a repre-

sentative example in the lower right corner of Fig. 4. The
mass difference �BE is derived from the two best DZ10 mass
evaluations for the target of σBE, corresponding to the two top
points in Fig. 3. Clearly, the �BE value becomes increasingly
large when it comes to the unknown region. Considering the
tiny distance between these two points in the figure, one can
conjecture that the mass evaluation must be very careful and
it is a normal event for the large differences between results
from various mass formulas. Fortunately, if one arbitrarily
chooses two parameter sets in the middle of the PF solution
line, the eventual binding energies are closer with each other
even in the very neutron-rich region, as displayed in Fig. 5.

FIG. 5. The differences between two DZ10 mass evaluations
from the solutions in the middle of the PF line shown in Fig. 3.
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Here, the �BE value is reduced by about 50–60 percent as
compared to the case of two optimal solutions for the single
BE fitting. Through these comparisons, one may conclude that
the MOO-constrained mass tabulation, correcting the possible
overfitting problem, is more reasonable in terms of the model
uncertainty.

Last but not least, let us pay special attention to the sym-
metry energy term in mass formulas of finite nuclei, which
is supposed to be related with the symmetry energy in the
asymmetric nuclear matter. The symmetry energy in mass
formulas is commonly written by asym(A)(N − Z )2/A, where
the coefficient is here adopted as asym(A) = a5 − a6A−1/3

[46]. The energy per nucleon of the asymmetric nuclear
matter, defining the equation of state (EOS), is e(ρ, δ) =
e(ρ, 0) + S(ρ)δ2 + O(δ4) with isospin asymmetry δ = (ρn −
ρp)/ρ plus the nucleon density ρ = ρn + ρp. If neglecting the
higher order terms in the EOS, the most significant challenge
comes from the large uncertainty of the symmetry energy
coefficient (SEC) S(ρ). Extensive efforts have been devoted
to unravelling the symmetry energy coefficient of EOS or
its slope and curvature parameters [31,47,48]. Among several
proposals on Sρ [49,50], one specific formula delivered from
the transport method [51],

S(ρ) = S(ρ0)

(
ρ

ρ0

)γ

, (3)

is used here to proceed the following analysis. There exists
a generic equation between the SEC of nuclear EOS and
that in the mass formula, namely S(ρA) = asym(A). One can
then easily put forward the asymptotic situation asym(A →
∞) = S(ρ0). Another condition can be from asym(A = 208) =
S(ρ208) of 208Pb, whose density ρ208 is fixed at 0.1 fm−3

[52]. In this way, the specific S(ρ) is obtained, resulting in
the slope parameter via L = 3ρ

∂S(ρ)
∂ρ

|ρ0 . Given the high linear
relationship between the slope parameter and the neutron skin
thickness of nuclei [53], one can also evaluate the �208

np value.
Figure 6 presents the distribution of the slope parameter and
the neutron skin thickness of 208Pb deduced from the present
PF solutions via the above procedure. In general, these two
quantities are consistent with the popular theoretical predic-
tions, while a thinner neutron skin is obtained for 208Pb in
contrast with the PREX-II experiment [29].

IV. SUMMARY

In summary, the urgently requested mass extrapolation is
still unsatisfied especially towards the neutron dripline of the
nuclear chart. We report a first multi-objective optimization
(MOO) on the nuclear mass formula to further constrain the

FIG. 6. Histograms of the slope parameter L and the neutron skin
thickness of 208Pb by using the symmetry energy coefficient of the
DZ0 mass formula after the multi-objective optimization.

model itself rather than the single pursuit of high accuracy in
the known region. By matching the experimental data of both
the binding energy and the α decay energy, the parametriza-
tion of the DZ10 mass formula is refreshed as the PF solutions
plus the statistical analysis. With the parameter sets in the
middle of the PF line, the differences of mass evaluations
indeed tend to decrease to a great extent, guaranteeing the
reliability at the level of the mass formula itself. Encouraged
by this, new limits are proposed for the microscopic DZ10
mass tables, serving more reasonable suggestions for the ex-
perimental design. The slope parameter in the nuclear EOS is
then determined in the range of 63.8–66.2 MeV through the
MOO-constrained SEC of mass formulas, while the neutron
skin thickness of 208Pb is extracted to be thinner than the
recent extraction from the electron scattering experiment. It
is expected to check the extension of the MOO strategy to
not only other global mass tables but also nuclear structural
studies such as the single particle resonance.
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