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Relation to a property of the angular-momentum-zero space of states of four fermions
in an angular momentum j = 9/2 shell unexpectedly found to be stationary for

any rotationally invariant two-body interaction
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The existence of states with angular momenta I = 4 and 6 of four fermions in an angular momentum j = 9/2
shell that are stationary for any rotationally invariant two-body interaction despite the presence of other states
with the same angular momentum, the Escuderos-Zamick states, is shown to be equivalent to the invariance to
any such interaction of the span of states generated from I = 0 states by one-body operators. This invariance
is verified by exact calculation independently of previous verifications of the equivalent statement. It explains
the occurrence of the Escuderos-Zamick states for just I = 4 and 6. The action of an arbitrary interaction on the
invariant space and its orthogonal complement is analyzed, leading to a relation of the Escuderos-Zamick energy
levels to levels with I = 10 and 12. Aspects of the observed spectra of 94Ru, 96Pd, and 74Ni are discussed in the
light of this relation.
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I. INTRODUCTION

Escuderos and Zamick found in a numeric study of the
system of four nucleons in an angular momentum j = 9/2
shell of a semimagic nucleus that, for each angular momentum
I = 4 and 6, the states in one irreducible module of the angular
momentum algebra, briefly a multiplet, are stationary for any
rotationally invariant two-body interaction [1], that is, solv-
able in Talmi’s terminology [2], despite the presence of other
multiplets with the same I . It follows that they have definite
seniority v [2], which gives rise, in certain nuclei, to particular
patterns of transition rates in E2 decay and single-nucleon
transfer [3–5]. The solvability of the Escuderos-Zamick states
was subsequently confirmed in exact calculations by Van
Isacker and Heinze [3,4] and Qi, Xu, and Liotta [6]. These
calculation are case-by-case examinations of the individual
instances of two-body and total angular momentum, which
led the authors of [4] to conclude that “a simple, intuitive
reason for [the solvability] is still lacking.” I show below that
the existence of the Escuderos-Zamick states is equivalent to
a property of the space of I = 0 states of the system. The
verification of this property again leads to an examination of
several cases one by one. The equivalence explains, however,
that the solvable multiplets occur for exactly I = 4 and 6.

Throughout this paper, j = 9/2. Let �0 denote the space
of I = 0 states of the four-fermion system, and let am be the
annihilator of a fermion in the state | jm〉 in the conventional
notation [7]. One can then define a space

�4 = spanm,m′ a†
mam′�0. (1)

The property to be verified below and shown there to be
equivalent to the existence of the Escuderos-Zamick states is
the following. �4 is invariant to any rotationally invariant

two-body interaction. To see how this explains the appearance
of solvable multiplets for just I = 4 and 6, note that the tensor
operators TIMI = ∑

mm′ (−) j−m′ 〈 jm j − m′|IMI〉a†
mam′ , where

〈 j1m1 j2m2| jm〉 is the vector coupling coefficient [7], form
a basis for the span of operators a†

mam′ . The subspace of �4

carrying quantum numbers I, MI is TIMI �0. Now consider Ta-
ble I, obtained by a straightforward count of m-combinations.
Since �0 is two-dimensional, TIMI �0 has dimension 2, at
most. Angular momenta I = 4 and 6 are the only ones al-
lowing more than two linearly independent multiplets in the
four-fermion system, exactly three in both cases. It may be
verified by direct calculation, and also follows from a general
result in Sec. III, that in each case TIMI �0 is exactly two-
dimensional. If �4 is invariant to a Hermitian and rotationally
invariant operator V , then so is also TIMI �0, and so is then also
its one-dimensional orthogonal complement within the space
of states with quantum numbers I, MI . This means that the
states in the orthogonal complement are eigenstates of V .

The proof of equivalence is completed in Sec. II, and the
verification of the invariance of �4 in Sec. IV. Analyzing the
actions of an arbitrary V on �4 and its orthogonal complement
�⊥

4 reveals remarkable regularities, one of which leads to a
rule for relative level spacings that is accessible to experimen-
tal verification and so far lacks fundamental explanation. This
analysis is the topic of Secs. V and VI, followed by my con-
clusion in Sec. VII. A detail of my formalism is discussed and
one other observed regularity explained in two appendices.

II. ANALYSIS

Below, IE = 4 or 6. Important for the following is also
the space �3 of states with I = j of three j = 9/2 fermions,
which is spanned by single multiplets �3v with v = 1 and 3.
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TABLE I. Multiplicities of multiplets of four angular momentum
j = 9/2 fermions per angular momentum I and seniority v.

v I 0 2 3 4 5 6 7 8 9 10 12

0 1 0 0 0 0 0 0 0 0 0 0
2 0 1 0 1 0 1 0 1 0 0 0
4 1 1 1 2 1 2 1 1 1 1 1

For each v, at most one multiplet with a given I can be formed
by adding a j = 9/2 fermion to the states in �3v . This multi-
plet can be written PI spanm a†

m�3v , where PI is the projection
onto angular momentum I . It may be verified by direct calcu-
lation, and also follows from the general result in Sec III, that
for each IE these two multiplets are independent. The space
�IEγ = PIE spanm a†

m�31 necessarily has v = 2. By Table I, its
orthogonal complement �IEβ within PIE spanm a†

m�3 then has
v = 4. The Escuderos-Zamick multiplet �IEα is, by definition,
the orthogonal complement of �IEβ within the space of states
with I = IE and v = 4 of the four fermions. It may be char-
acterized also among such states by vanishing parentage by
�33 [1]. Evidently, it is also the orthogonal complement of
PIE spanm a†

m�3 within the space of states with I = IE.
In the remainder of this paper, V denotes any rotationally

invariant two-body interaction. Because V acts as a scalar on
the irreducible module �IEα , the states in �IEα being eigen-
states of V is equivalent to �IEα being invariant to V . By
Hermiticity of V and conservation of angular momentum, this
is, in turn, equivalent to PIE spanm a†

m�3 being invariant to
V . The space spanm a†

m�3 cannot contain states with I > 2 j.
For every I � 2 j except I = 4 and 6, it may be verified by
direct calculation, and also follows from the general result
in Sec III, that PI spanm a†

m�3 exhausts the space of states
of the four fermions with angular momentum I and thus is
invariant to any rotationally invariant operator. Invariance of
both spaces PIE spanm a†

m�3 to V is then equivalent to �4 =
spanm a†

m�3 being invariant to V . In summary, the existence
of the Escuderos-Zamick states is equivalent to �4 being
invariant to any V .

To establish the equivalence stated in the Introduction, it
remains to show that �4 can be written in the form (1). To
this end, notice spanm am�0 ⊂ �3. It may be verified by direct
calculation, and also follows from the general result in Sec III,
that the left-hand side exhausts �3 so that spanm am�0 = �3.
This evidently leads to the expression (1). The remainder of
this paper is dedicated to a proof (independent of the proofs in
[3,4,6] of the equivalent statement) that �4 as given by (1) is
actually invariant to any V , and analyses of the actions of an
arbitrary V on �4 and its orthogonal complement.

III. SPACES �0 AND �4

The structure of multifermion states in the j = 9/2 shell is
conveniently described in terms of creation operators

α†
m =

√
( j + m)!

( j − m)!
a†

m, (2)

corresponding to unnormalized single-fermion states. In terms
of the usual complex coordinates (I0, I±) of the total angular
momentum I [7], these operators obey

[I0, α
†
m] = mα†

m,

[I+, α†
m] =

{
α

†
m+1, m < j,

0, m = j,

[I−, α†
m] =

{
( j + m)( j − m + 1)α†

m−1, m > − j,
0, m = − j.

(3)

A state of four j = 9/2 fermions can be expanded on the states

|m1m2m3m4〉 =
(

4∏
i=1

α†
mi

)
|〉 (4)

with j � m1 > m2 > m3 > m4 � − j, where |〉 is the vacuum.
The eigenspaces of I0 with eigenvalues MI are spanned by
the states with

∑
i mi = MI . The space �0 is the subspace

of the MI = 0 space characterized by J+�0 = 0. Since there
are 18 states |m1m2m3m4〉 with MI = 0 and 16 with MI = 1
(in accordance with the total multiplicities for I � 0 and 1 in
Table I), this constraint can be expressed by a homogeneous
system of 16 linear equations in 18 expansion coefficients.
The equations turn out independent in accordance with the
dimension 2 of �0. Two linearly independent solution are

φ0 = ∣∣ 9
2

7
2

−7
2

−9
2

〉 − ∣∣ 9
2

5
2

−5
2

−9
2

〉 + ∣∣ 9
2

3
2

−3
2

−9
2

〉 − ∣∣ 9
2

1
2

−1
2

−9
2

〉
+ ∣∣ 7

2
5
2

−5
2

−7
2

〉 − ∣∣ 7
2

3
2

−3
2

−7
2

〉 + ∣∣ 7
2

1
2

−1
2

−7
2

〉 + ∣∣ 5
2

3
2

−3
2

−5
2

〉
− ∣∣ 5

2
1
2

−1
2

−5
2

〉 + ∣∣ 3
2

1
2

−1
2

−3
2

〉
,

φ1 = −5
∣∣ 9

2
7
2

−7
2

−9
2

〉 + 5
∣∣ 9

2
5
2

−5
2

−9
2

〉 + ∣∣ 9
2
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2

−3
2

−9
2

〉 − 7
∣∣ 9
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2

−9
2

〉
+ 9

∣∣ 7
2

5
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−5
2

−7
2

〉 − 3
∣∣ 7
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〉 − 9
∣∣ 7
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2
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2

〉
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∣∣ 9
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〉 − 6
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5
2
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−5
2

〉
− 6
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2
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〉 + 9
∣∣ 7

2
1
2

−3
2

−5
2

〉 + 6
∣∣ 5

2
3
2

−1
2

−7
2

〉
. (5)

Here, φ0 evidently has v = 0. The state φ0 + 2φ1 is orthog-
onal to φ0 and thus has v = 4. In the expansion of φ1, the
coefficients of | 7

2
5
2

−3
2

−9
2 〉 and | 7

2
3
2

−1
2

−9
2 〉 are equal except for

opposite signs. This is because in the expansion of I+φ1, the
coefficient of | 7

2
5
2

−1
2

−9
2 〉 gets contributions only from these

two coefficients. Similar comparisons explain that all the
four states | 7

2
5
2

−3
2

−9
2 〉, | 7

2
3
2

−1
2

−9
2 〉, | 5

2
3
2

1
2

−9
2 〉, and | 5

2
3
2

−1
2

−7
2 〉

have equal coefficients except for a sign. The ratios of co-
efficients of |m1m2m3m4〉 and | − m4,−m3,−m2,−m1〉 are∏4

i=1( j − mi )!/( j + mi )! so that the corresponding ratios in
the basis of states (

∏4
i=1 a†

mi
)|〉 equal 1, as required by the

symmetry under half-turn rotations about axes perpendicular
to the quantization axis.

Since �4 is rotationally invariant, its invariance to V is
equivalent to invariance of its MI = 0 subspace

�40 = spanm nm�0, (6)

where nm = a†
mam. This space is spanned by the 20 states

nmφi with m = j, j − 1, . . . ,− j and i ∈ {0, 1}. Each of these
states is obtained by selecting in the expansion (5) of φi the
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terms where the orbit | jm〉 is occupied. Not all of them are
linearly independent. Thus evidently nmφ0 = n−mφ0. Further,
I0φ1 = 0 is a linear relation among the 10 states nmφ1. There
remain 14 states, which turn out linearly independent. This
number coincides with the total multiplicity for I � 2 j, ex-
cepting the Escuderos-Zamick multiplets. The MI = 0 state in
every remaining multiplet thus belongs to �40. Consequently,
every such multiplet is contained in �4. This requires, in turn,
that the multiplets PIE spanm a†

m�3v with v = 1 and 3 be inde-
pendent, that for I � 2 j and I �= 4, 6 the space PI spanm a†

m�3

exhausts the space of states with angular momentum I , and
that equality hold in the inclusion spanm am�0 ⊂ �3, all of
which was used in Secs. I and II.

I choose in �40 a basis (ψi|i = 1, . . . , 14), where (ψi|i =
1, . . . , 5) are the states nmφ0 with m = j, j − 1, . . . , 1/2 in
this order, and (ψi|i = 6, . . . , 14) are the states nmφ1 with
m = j, j − 1, . . . ,− j + 1 in this order. By Hermiticity and
angular momentum conservation, �40 is invariant to V if and
only if its orthogonal complement �⊥

40 within the MI = 0
space is so. This space is spanned by the states
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,

χ2 = 16
∣∣ 9
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,

χ3 = 25
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χ4 = 9
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. (7)

It is straightforward to check ψ
†
i χk = 0 for every i, k using

‖|m1m2m3m4〉‖2 = ∏4
i=1( j + mi )!/( j − mi )!. For example,

ψ
†
6 χ1 = φ

†
1n9/2χ1 = (−14) × 3

7 × 14

+ 2
153 ((−5) × (−786) + 5 × 231

+ 1 × 927 + (−7) × (−72)) = 0. (8)

IV. INTERACTION V AND INVARIANCE OF �4

Every V is a linear combination of five basic interactions
VJ , where J = 0, 2, . . . , 2 j − 1. They can be chosen in the
form

VJ = 1

2

J∑
M=−J

P†
JMPJM (9)

with

PJM = cJ

∑
m1+m2=M

〈 jm1 jm2|JM〉am2 am1 , (10)

where cJ is a positive constant. I set

cJ〈 jm1 jm2|JM〉

=
(

2J

J + M

)−1/2
√

( j + m1)!( j + m2)!

( j − m1)!( j − m2)!
cJ

m1m2
, (11)

so that by (2),

P†
JM =

(
2J

J + M

)−1/2 ∑
m1+m2=M

cJ
m1m2

α†
m1

α†
m2

. (12)

The definition (11) implies cJ
m1m2

= 0 for |m1 + m2| > J . It
follows from [I+, P†

JJ ] = 0, (12), (3), and (11) that cJ can be
chosen such that cJ

m1m2
= (−1) j−m1 for m1 + m2 = J . From

[I−, P†
JM] = √

(J + M )(J − M + 1)P†
J,M−1 for M > −J , (12),

and (3), one gets the recursion relation

(J − m1 − m2)cJ
m1m2

= ( j − m1)( j + m1 + 1)cJ
m1+1,m2

+ ( j − m2)( j + m2 + 1)cJ
m1,m2+1,

(13)

which then determines cJ
m1m2

for −J � m1 + m2 < J . [Con-
tinuation of the recursion in fact results in cJ

m1m2
= 0 for

m1 + m2 < −J . Terms in (13) with m1 or m2 equal to j, which
involve undefined values of cJ

m′
1m′

2
, are just omitted.] All cJ

m1m2

turn out integral, which is explained in Appendix A. From
the definition (11) and symmetries of the vector coupling
coefficients [7], one gets

cJ
m1m2

= −cJ
m2m1

,

cJ
m1m2

= ( j − m1)!( j − m2)!

( j + m1)!( j + m2)!
cJ
−m2,−m1

, (14)

whence by (12) and (2) follows

PJM =
(

2J

J + M

)−1/2 ∑
m1+m2=M

cJ
m1m2

( j+m1)!( j+m2)!

( j−m1)!( j−m2)!
αm2αm1

=
(

2J

J + M

)−1/2 ∑
m1+m2=M

cJ
−m2,−m1

αm2αm1 (15)

024308-3



K. NEERGÅRD PHYSICAL REVIEW C 106, 024308 (2022)

in terms of annihilation operators

αm =
√

( j − m)!

( j + m)!
am (16)

obeying
{αm, α

†
m′ } = δm,m′ . (17)

It follows that the action of VJ on a basic state |m1m2m3m4〉
can be described by the following operation upq

Jm. If mp +
mq − m is outside the range of m’s, then upq

Jm|m1m2m3m4〉 =
0. Otherwise replace mp and mq by m and mp + mq − m.
If this results in two m’s being equal, upq

Jm|m1m2m3m4〉 = 0.
Otherwise reorder, if necessary, the m’s to decreasing order
and multiply the state by the sign of the permutation. Finally

multiply the state by
( 2J

J+mp+mq

)−1
cJ

m,mp+mq−mcJ
−mq,−mp

. Then

VJ |m1m2m3m4〉 =
∑

1�p<q�4,m

upq
Jm|m1m2m3m4〉. (18)

The state VJχi is obtained by applying this formula to each
term in the expansion (7) of χi. I did this calculation for every
J, i and found that, in every case, VJχi is a linear combination
of {χi|i = 1, . . . , 4}. This proves that �⊥

40, and in turn �40, �4,
and the orthogonal complement �⊥

4 of the latter, are invariant
to every V . For completeness, I also verified directly that every
VJψi is a linear combination of {ψi|i = 1, . . . , 14}.

V. ACTION OF V ON �⊥
40

The expansion of VJχi on states χk may be expressed by a
matrix V ⊥J = (v⊥J

ik |i, k = 1, . . . , 4) defined by

VJχi =
4∑

k=1

v⊥J
ki χk . (19)

These matrices are given by

V ⊥0 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠,

V̄ ⊥2 = −1071

16
V ⊥2

=

⎛
⎜⎝

−318150 170280 249300 −18468
90027 −161100 94950 59778

0 51408 −420903 28917
−207088 422480 −1012475 −50895

⎞
⎟⎠,

V̄ ⊥4 = −51

64
V ⊥4

=

⎛
⎜⎝

−800100 170280 249300 −18468
90027 −643050 94950 59778

0 51408 −902853 28917
−207088 422480 −1012475 −532845

⎞
⎟⎠,

V̄ ⊥6 = 187

102400
V ⊥6

=

⎛
⎜⎝

578277 170280 249300 −18468
90027 735327 94950 59778

0 51408 475524 28917
−207088 422480 −1012475 845532

⎞
⎟⎠,

V̄ ⊥8 = 2431

278691840
V ⊥8

=

⎛
⎜⎝

647892 170280 249300 −18468
90027 804942 94950 59778

0 51408 545139 28917
−207088 422480 −1012475 915147

⎞
⎟⎠,

(20)

where the fractions are determined by the condition that the
entries in each V̄ J be coprime integers. That the pairing force
V0 kills the v = 4 space �⊥

40 is no surprise. The matrices V̄ ⊥J

exhibit the remarkable similarity

V̄ ⊥2 = V̄ ⊥4 + 481950 = V̄ ⊥6 − 896427 = V̄ ⊥8 − 966042
(21)

with multiplication of the scalars by the unit matrix under-
stood. Like the invariance of the entire �⊥

40, this regularity
lacks fundamental explanation. It follows that the interactions
V̄J represented on �⊥

40 by these matrices also act identically
on �⊥

40 except for these scalar terms. Any linear combina-
tion of these interactions, that is, an arbitrary V , then acts
on �⊥

40 as a linear combination of any one of them and a
scalar. This applies, in particular, to the two-body interaction
I2 − j( j + 1)N , where N = ∑

m nm. Because N acts on the
four-body space as the scalar 4, conversely then every VJ

acts on �⊥
40 as a linear combination of I2 and a scalar. This

explains, in particular, the zeros in the third row and first
column of every V ⊥J . For no |m1m2m3m4〉 in the expansion (7)
of χ1, the expansion of I2|m1m2m3m4〉 on states |m1m2m3m4〉
indeed contains | 9

2
−1
2

−3
2

−5
2 〉. Therefore χ3 cannot appear in

the expansion of I2χ1 on states χi.
One arrives at a prediction that might be tested experimen-

tally. To the extend of validity of the j = 9/2 shell model,
the spacings of the energy levels with angular momenta I
and I ′ must have the ratio of I (I + 1) − I ′(I ′ + 1). The nu-
cleus 94Ru has a closed neutron major shell and four protons
in the 1g9/2 subshell. The yrast I = 4, 6, 10, and 12 levels
(with tentative assignments I = 10 and 12) have excitation
energies 2186.6, 2498.0, 3991.2, and 4716.6 MeV [8]. The
states with I = 10 and 12 are expected to have fairly pure
1g9/2 configurations while, according to Das et al. [9], both
multiplets with I = 4 and 6 could be mixtures of those labeled
γ and α in Sec. II due to perturbation by configurations
outside the proton 1g9/2 shell. The pure Escuderos-Zamick
energy levels should then be close to the observed yrast levels.
Extrapolation by the spacing rule from I = 10 and 12 gives
excitation energies 2571.9 and 2918.9 MeV, somewhat above
the yrast levels. A similar analysis for 96Pd, with four holes
in the 1g9/2 shell (and tentative assignments of the angular
momenta concerned), predicts Escuderos-Zamick levels at
2237.9 and 2616.8 MeV, closer to the yrast levels at 2099.01
and 2424.19 MeV. Interpreting the second observed I = 4 and
6 levels in 74Ni [10], with a closed proton major shell and
four holes in the neutron 1g9/2 subshell, as Escuderos-Zamick
levels leads to the prediction of the I = 10 and 12 levels at
4287 and 5577 MeV.

Since the operator I2 acts on the MI = 0 space as I−I+, the
matrix C representing its action on �⊥

40 is easily calculated by
(7), (4), and (3). By comparison with (20), one finds in the
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notation of (21) that

1
3213V̄ ⊥2 + 156 = 1

3213V̄ ⊥4 + 306 = 1
3213V̄ ⊥6 − 123 = 1

3213V̄ ⊥8 − 434
3 = C. (22)

No simple expression in terms of J seems to reproduce these displacements. For I = 4 and 6, Van Isacker and Heinze calculated
the ratios rJ

I = μJ
I /νJ , where μJ

I and νJ are the eigenvalues of VJ in the four-fermion system and a two-fermion state with I = J
[3,4]. From (9)–(11), one gets

νJ = c2
J =

(
2J

J

)−1 j∑
m=− j

(
cJ

m,−m

)2
. (23)

My calculations confirm the values rJ
4 = 68

33 , 1, 13
15 , 114

55 and rJ
6 = 19

11 , 12
13 , 1, 336

143 for J = 2–8 reported in [3,4], and further provide
rJ

10 = 23
33 , 98

143 , 233
165 , 2292

715 and rJ
12 = 0, 75

143 , 93
55 , 246

65 .

VI. ACTION OF V ON �40

Like in (19), the action of VJ on the states ψi may be expressed by matrices V J . They are

V 0 = 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 1 1 1 1 −2 −5 −5 1 7 7 1 −5 −5
1 4 1 1 1 −5 −2 9 3 −9 −9 3 9 −2
1 1 4 1 1 −5 9 −2 −6 0 0 −6 −2 9
1 1 1 4 1 1 3 −6 −2 0 0 −2 −6 3
1 1 1 1 4 7 −9 0 0 −2 −2 0 0 −9
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V 2 = 16

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

630 108 −54 −162 −216 594 189 189 351 513 513 351 189 189
108 342 −18 −54 −72 189 594 567 405 81 81 405 567 594
−54 −18 315 27 36 189 567 594 162 324 324 162 594 567

−162 −54 27 387 108 351 405 162 594 324 324 594 162 405
−216 −72 36 108 450 513 81 324 324 594 594 324 324 81

18 0 0 0 0 522 45 −117 −171 −171 −171 −171 −117 45
7 9 0 0 0 79 412 −110 −152 −152 −152 −26 64 −143
5 0 9 0 0 32 −13 293 −133 −133 56 −7 −151 83
3 0 0 9 0 −15 −42 −96 282 111 −78 −60 12 12
1 0 0 0 9 −62 −71 −89 130 301 22 −59 94 −95

−1 0 0 0 9 −109 −100 107 −40 41 320 149 −76 −76
−3 0 0 9 0 −156 −3 51 −3 −21 168 339 −57 −57
−5 0 9 0 0 −149 58 −86 88 151 −38 −38 358 −38
−7 9 0 0 0 −34 −178 155 107 −19 −19 −19 −19 377

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V 4 = 1344

5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4518 −1188 −918 162 972 −20574 −6075 −6075 −12393 −18711 −18711 −12393 −6075 −6075

−1188 4998 1122 −198 −1188 −6075 −20574 −20817 −14499 −1863 −1863 −14499 −20817 −20574

−918 1122 4413 −153 −918 −6075 −20817 −20574 −5022 −11340 −11340 −5022 −20574 −20817

162 −198 −153 3573 162 −12393 −14499 −5022 −20574 −11340 −11340 −20574 −5022 −14499

972 −1188 −918 162 4518 −18711 −1863 −11340 −11340 −20574 −20574 −11340 −11340 −1863

−630 0 0 0 0 8730 1125 1395 585 −495 −495 585 1395 1125

−245 −315 0 0 0 655 8500 970 340 1000 1000 −290 −860 1585

−175 0 −315 0 0 320 395 8285 2345 245 −700 455 1115 −745

−105 0 0 −315 0 −15 30 2370 7590 615 120 390 570 −60

−35 0 0 0 −315 −350 1165 445 730 7225 1450 235 −470 1345

35 0 0 0 −315 −145 1220 −625 170 1505 7280 665 290 1040

105 0 0 −315 0 600 −435 105 195 285 780 7395 1905 −345

175 0 −315 0 0 1075 −1370 340 130 −425 520 2020 7510 −230

245 −315 0 0 0 470 710 −1945 −745 1385 1385 −115 −115 7625

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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V 6 = 1075200

11

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4221 −297 270 162 −216 21006 12339 12339 9585 6831 6831 9585 12339 12339
−297 5229 −990 −594 792 12339 21006 5913 8667 14175 14175 8667 5913 21006

270 −990 5040 540 −720 12339 5913 21006 12798 10044 10044 12798 21006 5913
162 −594 540 4464 −432 9585 8667 12798 21006 10044 10044 21006 12798 8667

−216 792 −720 −432 4716 6831 14175 10044 10044 21006 21006 10044 10044 14175
558 0 0 0 0 6057 −954 −387 1179 2475 2475 1179 −387 −954
217 279 0 0 0 −764 5959 1630 1264 472 472 634 328 364
155 0 279 0 0 −736 1253 6338 728 1169 224 −469 323 476

93 0 0 279 0 183 426 291 6501 417 714 192 −816 237
31 0 0 0 279 1102 −617 445 70 6334 493 367 −470 −470

−31 0 0 0 279 1373 −364 −427 236 218 6059 −61 488 −511
−93 0 0 279 0 996 555 −687 −201 −111 −408 6108 420 744

−155 0 279 0 0 349 1006 538 −1124 −1151 −206 73 6553 1783
−217 279 0 0 0 −190 1106 629 −283 −1453 −1453 347 1931 6701

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V 8 = 975421440

143

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7143 −21 60 −84 42 −12342 −8823 −8823 −4845 −867 −867 −4845 −8823 −8823
−21 7287 −420 588 −294 −8823 −12342 459 −3519 −11475 −11475 −3519 459 −12342

60 −420 8340 −1680 840 −8823 459 −12342 −9486 −5508 −5508 −9486 −12342 459
−84 588 −1680 9492 −1176 −4845 −3519 −9486 −12342 −5508 −5508 −12342 −9486 −3519

42 −294 840 −1176 7728 −867 −11475 −5508 −5508 −12342 −12342 −5508 −5508 −11475
−306 0 0 0 0 4491 −72 9 −1053 −1845 −1845 −1053 9 −72
−119 −153 0 0 0 −122 5657 −2530 −1068 −584 −584 −438 −76 −1078
−85 0 −153 0 0 512 −2111 6184 −2436 −973 −28 273 −491 −542
−51 0 0 −153 0 −141 −342 −2097 6723 −2019 −588 −234 522 −369
−17 0 0 0 −153 −794 239 −445 −1770 7192 −2321 −339 470 20

17 0 0 0 −153 −1051 28 469 −222 −2116 7397 −1653 −446 247
51 0 0 −153 0 −912 −345 519 117 27 −1404 7074 −2100 −318
85 0 −153 0 0 −503 −502 −496 858 997 52 −1851 6179 −2071

119 −153 0 0 0 50 −1022 −83 381 851 851 −249 −2537 5713

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(24)

Some patterns leap to the eye. The entries in V 0

are easily understood. Thus V0|m1m2m3m4〉 van-
ishes unless two of the m’s form a pair m,−m, in
which case the remaining two do the same. Further,
V0|m1, m2,−m2,−m1〉 = (−)m1−m2+12(nm1 + nm2 )φ0, so
the states nmφ1 do not contribute to any V0ψi. This expression
follows from V0|m,−m〉 = 2

∑
m′ (−)m′−m|m′,−m′〉, where

|m1m2〉 = α†
m1

α†
m2

|〉, and the observation that the coefficient
of |m1, m2,−m2,−m1〉 in the expansion (5) of φ0 is
(−1)m1−m2+1. By using it in combination with the expansions
(5), it is, in fact, straightforward to reconstruct every entry in
V 0, and in particular, the simple pattern in its upper left 5 × 5
submatrix. Notice to this end that the last eight terms in the
expansion of φ1 do not contribute to V0φ1.

For a general J , one notices in the upper right 5 × 8
submatrix of V J equal contributions to VJn±mφ1 from any
nm′φ0. This is an immediate consequence of nm′φ0 = n−m′φ0

and the symmetry under half-turn rotations about an axis
perpendicular to the quantization axis. The same pattern is
seen in the parts of the sixth rows just below, which display
contributions to VJnmφ1 from n jφ1 for m �= ± j, and again the
reason is the symmetry under half-turn rotations about an axis
perpendicular to the quantization axis. Such a rotation thus
leads to both the replacement of m by −m and the omission
of n jφ1 instead of n− jφ1 in the selection of the states ψi. But
by

∑
m mnmφ1 = J0φ1 = 0, the state n− jφ1 equals n jφ1 plus

a linear combination of states that are common to both the
original and the new basis. Therefore in the original basis
the contribution of n jφ1 to VJn−mφ1 equals its contribution
to VJnmφ1. It follows further that when the lower right 9 × 9

submatrix of V J is written (v1J
mm′ |m, m′ > − j) with indices

referring to the basic states nmφ1, then for m, m′ < j one
should have

v1J
−m′,−m = v1J

m′m − m′

j
v1J

jm. (25)

This is verified by inspection. Similar patterns occur when a
state nmφ1 other than n− jφ1 is omitted in the selection of the
states ψi.

It is trivial by nmφ0 = n−mφ0 that the state nm′φ0 con-
tributes equally to VJn±mφ0. Therefore when v00J

mm′ denotes the
entries in the upper left 5 × 5 submatrix of V J with indices
referring to the basic states nmφ0, and v01J

mm′ denotes those of its
neighboring 5 × 5 submatrix to the right with indices referring
to the basic states nmφ0 and nm′φ1, then for both i = 0 and 1
one has

1

2
VJn̄mφi =

∑
m′>0

v0iJ
m′mn̄m′φ0 + linear combination of nm′φ1

(26)

with n̄m = nm + n−m. The operators n̄m can be expressed by
the tensor operators TI0 defined in the Introduction,

n̄m = (−) j−m2
∑
even I

〈 jm j − m|I0〉TI0. (27)

Since the states TI0φi span the subspace of �40 with angular
momentum I , which is invariant to V J , one can write

VJTI0φi =
∑

i′
wIJ

i′i TI0φi′ . (28)
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By combining the equations (26)–(28) and the definition of
TI0 in the Introduction one obtains

v0iJ
mm′ = (−)m−m′ ∑

even I

〈 jm j − m|I0〉〈 jm′ j − m′|I0〉wIJ
0i , (29)

which is symmetric in m and m′. This explains that the said
submatrices of every V J are symmetric.

A spectacular pattern emerges in the lower left 9 × 5 sub-
matrix of every V J . For j > m � 1/2 the only contribution
to VJnmφ0 from states nm′φ1 is a term γJ n̄mφ1, where γJ is
constant. Upon closer inspection, taking into account again∑

m mnmφ1 = 0, this also hold for m = j. For every m one
thus has

1

2
VJn̄mφ0 =

∑
m′>0

v00J
m′mn̄m′φ0 + γJ n̄mφ1. (30)

(The states n̄mφ0 span the v � 2 subspace of �40.) This is not
dependent on the choice of φ1. Replacing φ1 by any linear
combination φ1 + εφ0 gives a relation of the same structure
with the same γJ . In particular, φ1 could have v = 4. The
origin of this pattern is explained in Appendix B.

VII. CONCLUSION

The existence of the Escuderos-Zamick states was shown
to be equivalent to the invariance to any rotationally invariant
two-body interaction of the span �4 of states generated from
angular momentum zero states by one-body operators. This
equivalence explains the occurrence of the Escuderos-Zamick
states for exactly the angular momenta 4 and 6. The said prop-
erty of the angular momentum zero state space was verified
by exact calculation. This verification was facilitated by the
observation that it is required only for the subspace �40 of
�4 characterized by magnetic quantum number MI = 0 or its
orthogonal complement �⊥

40 within the MI = 0 space. The ac-
tions of five basic rotationally invariant two-body interactions
on four basic states in �⊥

40 and 14 basic states in �40 were
displayed in matrix form, and remarkable regularities in these
matrices disclosed. One of them leads to a rule that relates
the Escuderos-Zamick energy levels to levels with I = 10 and
12. This rule was applied in a discussion of certain aspects
of the spectra of 94Ru, 96Pd, and 74Ni. The said regularity
so far lacks fundamental explanation. Understanding it could
possibly provide a clue towards a more intuitive understanding
of the invariance of �4.

APPENDIX A: PROOF THAT cJ
m1m2

ARE INTEGRAL

First notice that the algorithm for cJ
m1m2

described in
Sec. IV ensures the proportionality (11) so that P†

JM given
by (10) is a tensor operator. Besides (13), [I+, P†

JM ] =√
(J − M )(J + M + 1)P†

J,M+1, (12), and (3) give

(J + m1 + m2)cJ
m1m2

= cJ
m1−1,m2

+ cJ
m1,m2−1. (A1)

With

dJ
m1m2

= (J − m1 − m2)! cJ
m1m2

, (A2)

the recursion relations (13) and (A1) take the forms

dJ
m1m2

= ( j − m1)( j + m1 + 1)dJ
m1+1,m2

+ ( j − m2)( j + m2 + 1)dJ
m1,m2+1, (A3)

(J + m1 + m2)(J − m1 − m2 + 1)dJ
m1m2

= dJ
m1−1,m2

+ dJ
m1,m2−1. (A4)

(Again, terms with undefined values of dJ
m′

1m′
2

are omitted.)
Setting m1 = j so that only the second term occurs on the
right in (A3), and using also dJ

j,J− j = 1, one gets for J − j �
m2 � − j, by repeated application of (A3), an expression for
dJ

jm2
as a product of two products of J − j − m2 consecutive

integers. Hence dJ
jm2

is divisible by (J − j − m2)!2, and, all
the more, by (J − j − m2)!. It then follows by induction by
means of (A4) that (J − m1 − m2)! divides dJ

m1m2
for every

m1, m2 with m1 + m2 � 0. Then by (A2), cJ
m1m2

is integral
for m1 + m2 � 0. For m1 + m2 < 0 one can now apply the
second equation in (14). In this case, j + m1 < j − m2 and
j + m2 < j − m1, so the first factor on the right, and hence
cJ

m1m2
, are integral.

APPENDIX B: EXPLANATION OF (30)

The first equation in (5) can be written

φ0 = − 1
2 P†2|〉 (B1)

with

P† =
∑
m>0

(−) j−ma†
ma†

−m. (B2)

Hence

nmφ0 = a†
mamφ0 = −a†

mP†[am, P†]|〉 = −(−) j−mP†a†
ma†

−m|〉
(B3)

and

VJnmφ0 = 1

2

∑
M

P†
JMPJMnmφ0

= −(−) j−m 1

2

∑
M

P†
JM (P†PJM + [PJM, P†])a†

ma†
−m|〉.

(B4)

Since PJMa†
ma†

−m|〉 ∝ |〉, the first term in the parentheses con-
tributes to VJnmφ0 a term proportional to P†

JMP†|〉, which has
v � 2. I proceed by calculating the commutator [PJM, P†].

For convenience, I omit for now the factor cJ in (10). It is
reentered at the end of this Appendix. I then have

[PJM, P†] = 1

2

∑
m1m2m

(−) j−m〈 jm1 jm2|JM〉[am2 am1 , a†
ma†

−m

]

=
∑
m1m2

〈 jm1 jm2|JM〉

× (
(−) j−m1 am2 a†

−m1
+ (−) j−m2 a†

−m2
am1

)
=

∑
m1m2

(−) j−m2〈 jm1 jm2|JM〉[a†
−m2

, am1

]

= 2
∑
m1m2

(−) j−m2〈 jm1 jm2|JM〉a†
−m2

am1
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−
∑

m

(−) j+m〈 jm j − m|JM〉

= 2
∑
m1m2

(−) j−m2〈 jm1 jm2|JM〉a†
−m2

am1

+ δJ0

√
2 j + 1. (B5)

Since P†
J0 ∝ P†, the last term in this expression is seen by

comparison with (B2) to contribute in (B4) a term propor-
tional to nmφ0.

Further,

a†
−m2

am1 a†
ma†

−m|〉 = (
δm1m − δm1−m

)
a†

−m2
a†

−m1
|〉, (B6)

so the first term in the expression (B5) contributes to the sum
in (B4) terms,

2a†
m

∑
Mm2

(−) j−m2〈 j − m jm2|JM〉P†
JMa†

−m2
|〉

− same with −m instead of m. (B7)

Here [7],

ξ =
∑
Mm2

(−) j−m2〈 j − m jm2|JM〉P†
JMa†

−m2
|〉

= −
√

2J + 1

2 j + 1

∑
m2M

〈 j − m2JM| j − m〉a†
−m2

P†
JM |〉 (B8)

is a member with MI = −m of the space �3 defined in Sec. II.
With standard relative phases within its multiplet, one there-
fore has

ξ = (−) j+mam(ζφ0 + ηφ1), (B9)

where ζ and η do not depend on m. Totally, one arrives
at

VJnmφ0 = η(nm + n−m)φ1 + v � 2 state, (B10)

which is equivalent to (30) with γJ = ηc2
J .
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