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The asymmetric fission dynamics of 180Hg has been analyzed in the framework of the time-dependent
generator coordinate method (TDGCM) based on covariant density functional theory (CDFT) with the relativistic
PC-PK1 functional. Three-dimensional (β2, β3, qN ) constrained CDFT calculations have been performed to
determine the scission configurations. Remarkably, an asymmetric fission valley is observed in the potential
energy surface in the β2-β3 plane and the heavy/light fragments at scission are 101Rh/79Br, in good agreement
with the data. Furthermore, we find that the heavy fragments of lowest-energy scission configurations, compared
to those of other scission points, have rather small quadrupole deformations (β2 ∼ 0.4) and certain octupole
deformations (β3 ∼ 0.3–0.4), which are driven by the extended neutron octupole shell gap with N = 56. Based
on the scission configurations, the estimated total kinetic energy distribution is consistent with the trend of
experimental data. Finally, the dynamical TDGCM calculation reproduces the asymmetric yield distribution of
the low-energy fission of 180Hg, especially for the peak positions.
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I. INTRODUCTION

The experimental discovery of asymmetric fission in 180Hg
via the β decay of 180Tl initially came as a surprise since
a mass-symmetric split of this extremely neutron-deficient
nucleus was expected and would lead to two 90Zr fragments,
with magic N = 50 and semimagic Z = 40 [1–3]. This is
regarded as a new type of asymmetric fission, not caused by
large shell effects related to fragment magic proton and neu-
tron numbers, as observed in the actinide region [4–7]. Since
then, fission in the neutron-deficient lead region has attracted
tremendous attention on both the experimental side [8–14]
and theoretical side [15–29] in the last decade. Experi-
mentally, the following measurements of fission fragment
distribution from the compound nuclei around 180Hg formed
in fusion reactions have further confirmed the asymmet-
ric property even for effective excitation energies up to 40
MeV [8–10].

Theoretically, the asymmetric fission of nuclei around
180Hg has been extensively studied by analyzing the mul-
tidimensional potential energy surfaces (PESs) calculated
from the macroscopic-microscopic models and it is ex-
plained as the presence of an asymmetric saddle point with
a rather high ridge between symmetric and asymmetric fis-
sion valleys [1,15–20]. Calculations of fission-fragment yields
have also been done by means of the Brownian Metropo-
lis shape-motion treatment [15–17], Langevin equation [21],
(improved) scission-point model [22–24], etc., based on the
PESs or scission configurations. The results are in approxi-
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mate agreement with the experimental data, a deviation of ∼4
nucleons for the peak positions.

A comprehensive explanation of nuclear fission based on
realistic nucleon-nucleon interaction still eludes us, and there-
fore, self-consistent approaches based on the nuclear density
functional theory (DFT) have recently demonstrated that a mi-
croscopic description has a potential for both qualitative and
quantitative description of fission data [30–35]. The Skyrme
and Gogny energy density functionals have been used to
investigate the asymmetric fission around 180Hg based on
the potential energy surfaces in the multidimensional space
of collective coordinates. The asymmetric fission valleys—
well separated from fusion valleys associated with nearly
spherical fragments—are found and the most probable split
100Ru/80Kr is obtained by analyzing the density distributions
at scission configurations, which is consistent with the ob-
servation [26,29]. Furthermore, the study is extended to the
case with excitation energy up to 30 MeV by using finite-
temperature DFT and demonstrates that fission pathways are
consistent with asymmetric fission at low excitation energies,
with the symmetric-fission pathway opening very gradually
as excitation energy increases [27]. Moreover, the asymmetric
fission in the sub-lead region is explained as the shell effects
stabilizing pear shapes of the fission fragments based on the
static Hartree-Fock+BCS calculations [28]. However, the dy-
namical calculation based on DFT is lacking until now.

Microscopic description of fission dynamics based on DFT
is generally implemented in two ways, i.e., time-dependent
DFT (TDDFT) [32,36–43] and the time-dependent generator
coordinate method (TDGCM) [30,34,44–56]. The fully mi-
croscopic and nonadiabatic TDDFT describes the dynamics
of the fission process starting from an adiabatic configuration
just beyond the saddle and ending with separate fragments. It
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has been shown that many collective degrees of freedom are
excited in the fission process, and that one-body dissipation
plays an important role [57]. Physical observables such as the
most probable charge, mass, and total kinetic energy yields
can be extracted from the TDDFT calculations. However,
a realistic TDDFT description of the entire fission process,
including the first phase from the ground-state potential well
to beyond the fission barrier, is still not possible although
some attempts have been done recently [58,59]. This prevents
the application of TDDFT to the sub-lead region, where the
nucleus splits just after saddle as shown in the DFT calcula-
tions [26,27].

In the TDGCM approach, the nuclear wave function is
described as a linear superposition of many-body functions
parametrized by a vector of collective coordinates, e.g.,
quadrupole and octupole deformations β2, β3. In the Gaus-
sian overlap approximation (GOA), the GCM Hill-Wheeler
equation reduces to a local, time-dependent, Schrödinger-
like equation in the space of collective coordinates. Starting
from an initial state of the compound nucleus, the adia-
batic time evolution of the fissioning system is modeled
with the Schrödinger-like equation and the fission fragment
distribution can be obtained by considering the flux of the
probability current through the scission hypersurface. The
essential inputs are the potential and inertia tensor that
can be computed microscopically in DFT calculation. The
TDGCM+GOA based on nonrelativistic Skyrme or Gogny
functionals has been applied to describe fission dynamics of
actinides in several studies [34,44–50]. In Refs. [51–56], the
framework has also been successfully implemented based on
the (finite-temperature) covariant DFT (CDFT) and applied to
the description of induced fission in a series of nuclei in the
actinide region. The fission fragment yields can be reproduced
quite well.

In this work, we will apply the TDGCM+GOA based on
CDFT to describe the asymmetric fission dynamics of 180Hg.
Considering the importance of scission configurations in the
TDGCM+GOA calculation, here we will extend our previ-
ous two-dimensional (β2, β3) constraint calculations around
scission to three dimensions by adding qN , the number of nu-
cleons in the neck, and define the saddle between fission and
fusion valleys as the scission point. This can solve the problem
of discontinuity of the configurations around the scission point
in the two-dimensional calculations [60]. Moreover, we will
analyze the PESs and single-particle levels of fragments to
try to understand the formation of the asymmetric fission
valley. The theoretical framework and methods are introduced
briefly in Sec. II. The details of the calculation and the results
for potential energy surfaces, scission configurations, total
kinetic energies, and the fragment mass yield distributions
are described and discussed in Sec. III. Section IV contains
a summary of the principal results and an outlook for future
work.

II. THEORETICAL FRAMEWORK

Nuclear fission is a slow and large-amplitude collective
motion, and can be described as a collective wave func-
tion with some collective degrees of freedom, e.g., axially

symmetric quadrupole β2 and octupole β3 being used here.
The low-energy fission dynamics could be simulated by a
time-dependent Schödinger-like equation which is derived
from the TDGCM in the Gaussian overlap approximation
(GOA) [30,34,45]:

ih̄
∂
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g(β2, β3, t )

=
[
− h̄2

2

∑
kl

∂
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]

× g(β2, β3, t ), (1)

where g(β2, β3, t ) is a complex wave function of the col-
lective variables (β2, β3) and time t , which contains all the
information about the dynamics of the system. V (β2, β3) and
Bkl (β2, β3) are the collective potential and mass tensor, re-
spectively, and they completely determine the dynamics of the
fission process in the TDGCM+GOA framework. Following
our previous work [51], the software package FELIX-2.0 [61] is
utilized to solve the time-dependent Schödinger-like equation.

Then we can calculate the probability current defined by
the relation
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Starting from an initial state of the compound nucleus, the
collective current will move to a large deformation region and
pass through a so-called scission line that is composed of the
hypersurface at which the nucleus splits. At the time t , the
measurement of the probability of a given pair of fragments
can be calculated when the flux of the probability current runs
through the scission hypersurface. For a surface element ξ , the
sum of the time-integrated flux of the probability F (ξ, t ) can
be read as [61]

F (ξ, t ) =
∫ t

t=0
dt

∫
(β2,β3 )∈ξ

J(β2, β3, t ) · dS. (3)

For each point on the scission line, it contains the information
of (AL, AH ) which represent the masses of light and heavy
fragments, respectively. Hence the yield of fission fragments
with mass AH can be defined formally as

Y (AH ) ∝
∑
ξ∈A

lim
t→+∞ F (ξ, t ), (4)

where A is the set of all elements ξ belonging to the scission
hypersurface such that the heavy fragment has mass AH .

The entire dynamics of the Schrödinger-like equation (1)
is governed by the collective potential V and mass parameter
B, which are determined by performing constrained CDFT
calculations for a specific choice of the nuclear energy den-
sity functional and pairing interaction. The entire map of the
energy surface in collective space is obtained by imposing
constraints on the collective coordinates. As mentioned above,
the scission configurations in the TDGCM+GOA calculation
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are very important. Therefore, here we will extend our previ-
ous two-dimensional (β2, β3) constraint calculations around
scission to three dimensions by adding qN , the number of
nucleons in the neck:

〈ECDFT〉 +
∑

k=2,3

Ck (〈Q̂k〉 − qk )2 + CN (〈Q̂N 〉 − qN )2, (5)

where 〈ECDFT〉 is the total energy of CDFT, and Q̂2, Q̂3,
and Q̂N denote the mass quadrupole and octupole operators
and the Gaussian neck operator, respectively. qk and qN are
the constraint values of these operators. The Gaussian neck
operator is generally chosen as Q̂N = exp[−(z − zN )2/a2

N ],
where aN = 1 fm and zN is the position of the neck determined
by minimizing 〈Q̂N 〉 [62]. The left and right fragments are
defined as parts of the whole nucleus with z � zN and z � zN ,
respectively. One should note that the three-dimensional (3D)
constrained calculation is only performed to determine the
scission configuration and fission path around it. The fully
3D dynamical calculation is our next step. The microscopic
computation for the collective potential V and mass parameter
B can be found in Ref. [51].

III. RESULTS AND DISCUSSION

In this section, we present the theoretical results for the
asymmetric fission of 180Hg. In the first step, a large-scale con-
strained CDFT calculation with the PC-PK1 functional [63]
is performed to generate the potential energy surface, mass
parameters, scission line, and so on. The range of collective
variables is −1.00 to 4.70 for β2 with a step �β2 = 0.04,
from 0.00 to 3.84 for β3 with a step �β3 = 0.08, and from
∼5 to ∼1.5 with �qN = 0.5 (qN constraint is done only
around scission line). The self-consistent Dirac equation for
the single-particle wave functions is solved by expanding the
nucleon spinors in an axially deformed harmonic oscillator
basis in cylindrical coordinates with 18 major shells, and the
number of states in the Fermi sea for protons or neutrons
reaches 1941 at β2 = 4.5 as an example.

Figures 1(a) and 1(b) display the three-dimensional PES
and corresponding two-dimensional contour map for 180Hg in
the β2-β3 plane calculated by constrained CDFT with the PC-
PK1 functional. The energy difference between neighboring
contour lines is 1.2 MeV. The purple solid and red dotted
curves denote the static fission path and scission line, respec-
tively. The scission line is determined by checking the PESs
in the β2-qN plane for each β3, e.g., the PES for β3 = 2.08
in the inset of panel (b). We can see clearly the fission valley
and fusion valley, and they are separated by a saddle point
(denoted by a filled circle), which is chosen as the scission
point here.

The PES of 180Hg in the quadrupole-octupole space is com-
parable to those obtained using the Hartree-Fock-Bogoliubov
framework based on the Gogny D1S functional [26] and
Skyrme SkM∗ functional [26,27]. The static fission path starts
from a nearly spherical equilibrium state, passes through
three local minima with β3 = 0, and then bends toward re-
flection asymmetry at β2 = 0.98 till scission at (β2, β3) =
(4.38, 2.08). This scission point is 12.17 MeV higher than
the equilibrium state and the heavy/light fragments are

FIG. 1. Potential energy surfaces of 180Hg in the β2-β3 plane
[panels (a), (b)] and in the β2-qN plane for fixed β3 = 0.00 [panel
(c)] and β3 = 2.08 [inset of panel (b)] calculated by the constrained
CDFT with PC-PK1 functional. The purple solid and red dotted
curves in panels (a), (b) denote the static fission path and scission
line, respectively. The filled circle in the inset of panel (b) denotes the
scission point. The symmetric elongated and compact fission modes
are shown by the solid and dashed curves, respectively, in panel (c).

101Rh/79Br, in good agreement with the masses observed
experimentally [1]. Moreover, another fission valley from
(β2, β3) ≈ (2.60, 0.60) to ≈ (4.50, 0.00) is also found. How-
ever, the symmetric scission point, which splits into two 90Zr,
is 2.33 MeV higher than the asymmetric one. This will lead to
an asymmetric yield distribution in the low-energy fission of
180Hg (cf. Fig. 6).
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In Fig. 1(c), a symmetric compact fission mode denoted
by the dashed curve is also found, and the fragments are
two nearly spherical 90Zr with magic N = 50 and semimagic
Z = 40. However, this mode is unfavored since the barrier is
∼5 MeV higher than the lowest asymmetric scission point and
∼2.5 MeV higher than the saddle point of the symmetric elon-
gated fission path (orange solid curve). This is different from
the case in the region around 264Fm, where the symmetric
compact fission mode splitting into two 132Sn is dominated.

Figure 2 displays the properties of scission configurations,
including the potential energies, mass and neutron numbers of
heavy fragments, and quadrupole and octupole deformations
of fragments. Nucleon density distributions for four selected
configurations are also shown in panel (a), where one can see
clearly the formation of necks and left/right fragments. As
the reflection asymmetry increases, the potential energies vary
slowly around −1397 MeV till β3 ∼ 1.5, then drop rapidly
to ∼ − 1399 MeV at β3 ∼ 2.0, and finally increase monoton-
ically to very large β3. From panels (b) and (c), one notes
that the mass (neutron) numbers of heavy fragments for the
scission points around minimum in panel (a) are AH = 96 ∼
106 (NH = 54 ∼ 58), corresponding to the peak region of the
yield distribution of fission fragments [1]. Furthermore, it is
remarkable to find that these scission configurations are char-
acterized by rather small quadrupole deformations of heavy
fragments [see panel (d)], which are quite different from those
in other regions. The octupole deformations of heavy frag-
ments remain 0.3 ∼ 0.4 for the scission configurations with
β3 < 2.8 and jump to ∼0.6 for large reflection asymmetric
scission configurations.

To understand the dramatic change of the configurations
around the minimum of the scission line, in Figs. 3 and 4 we
plot the PES and neutron single-particle levels of 100Ru, the
most favorable even-even fragment in the fission of 180Hg. In
the PES plot, the star denotes the quadrupole and octupole
deformations of the heavy fragment at the energy minimum of
scission line. One should note that this is just an estimation for
the deformations of the fragments since they are connected by
a neck but not separated. It is interesting to find that the heavy
fragment locates around a shallow valley from the global min-
imum (β2, β3) = (0.2, 0) to ≈ (0.4, 0.5), which could lower
the binding energy of the whole system. Furthermore, one
finds that the shallow valley in the PES of 100Ru is driven
by the extended octupole shell gap with N = 56, shown in
Fig. 4. This finding is consistent with that in a similar micro-
scopic analysis of the effect of shell structure on the fission
in the sub-lead region based on the Skyrme Hartree-Fock plus
BCS approach. It is notable that the appearance of N = 56 as
well as heavy fragment 100Ru does not necessarily reduce the
binding of scission configuration, e.g., those with β3 ∼ 1.1 in
Fig. 2, where the potential energies are even 3 MeV higher
than the minimum.

The Coulomb repulsive energy of fission fragments is the
main component of the total kinetic energy (TKE) and can
be estimated by using a simple formula e2ZH ZL/dch, where
ZH (ZL) is the charge of the heavy (light) fragment and dch

the distance between fragment centers of charge at scission.
Figure 5 displays the distribution of calculated Coulomb re-
pulsive energy and compared with the measured TKE [3].

FIG. 2. The potential energies (a) and mass (b) and neutron
(c) numbers of heavy fragments, and quadrupole (d) and octupole
(e) deformations of fragments along the scission line labeled by
the corresponding β3 value. Density distributions for some selected
scission configurations are also shown in panel (a).

Although the data are generally overestimated by about sev-
eral MeV, the figure reproduces the trend of the measured
TKE quite well, especially for the dip at AH = 90 and peaks
at AH = 94 and 104. This demonstrates that the scission con-
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FIG. 3. Potential energy surfaces of 100Ru calculated by CDFT
with PC-PK1 functional. The star indicates the corresponding
quadrupole and octupole deformations of the heavy fragment at the
minimum of the scission point. The purple dashed curve denotes the
configurations obtained by only constraining β3 and leaving β2 as
free.

figurations determined in the three-dimensional calculations
(cf. Fig. 1) are quite reliable, which is very important for the
study of fission dynamics. To give a more accurate description
of TKE, one needs to calculate the Coulomb energy between
two fragments exactly based on the proton density distribution
and take into account the collective kinetic energy. Such work
is in progress.

FIG. 4. Neutron single-particle energies as a function of the
quadrupole (lower scale) and octupole (upper scale) deformation
parameters in 100Ru. The dotted curve denotes the Fermi level. The
left panel is for β3 = 0, and the right panel is plotted following the
purple dashed curve in Fig. 3.

FIG. 5. The calculated Coulomb repulsive energy of the nascent
fission fragments for 180Hg as a function of fragment mass, in com-
parison to the experimental data of the total kinetic energy [3].

Finally, we perform the TDGCM+GOA [61] to model
the time evolution of the fissioning nucleus with a time step
δt = 5 × 10−4 zs and a long enough evolution time, i.e., 1000
zs, to ensure the convergence of the yield distribution. The
initial state, in principle, should be a series of final states from
electron capture (EC) of 180Tl, lying in the vicinity of the fis-
sion barrier in 180Hg. Here, for simplicity, we follow Ref. [61]
to simulate the initial state as a Gaussian superposition of
collective eigenmodes in an extrapolated first potential well
and the average energy lies 1 MeV above the lowest scission
point [cf. Fig. 2(a)].

Figure 6 shows the calculated mass distribution of the
fission fragments of 180Hg, in comparison with the data [1,3]
and the theoretical results in the framework of Brownian shape
motion on five-dimensional potential energy surfaces, denoted
as BSM(M) [15]. The asymmetric peaks are reproduced by
TDGCM+GOA based on CDFT very well not only for the
positions but also for the heights considering the error bar
of the data, while the results of BSM(M) deviate from the
measured peak position by ∼4. For the symmetric valley,
our calculation overestimates the data and even predicts a
little peak, which may be caused by the fission valley from
(β2, β3) ≈ (2.60, 0.60) to ≈ (4.50, 0.00) in the potential en-
ergy surface (cf. Fig. 1). Moreover, a more asymmetric fission
mode with AH ∼ 116 is predicted in our calculation, corre-
sponding to the shallow channel from (β2, β3) ≈ (3.70, 2.00)
to ≈ (4.10, 2.48) in Fig. 1(b). However, this peak is not ob-
served in the experiment, which could be because we use an
initial state with mixed angular momenta but the experimental
ones only have some certain values due to the selection rule
of EC.

IV. SUMMARY AND OUTLOOK

The asymmetric fission dynamics of 180Hg has been ana-
lyzed in the framework of TDGCM+GOA based on CDFT
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FIG. 6. Mass distribution of the fission fragments of 180Hg cal-
culated by TDGCM+GOA based on CDFT, in comparison with the
data [1,3] and the theoretical results in the framework of Brownian
shape motion on five-dimensional potential energy surfaces, denoted
as BSM(M) [15].

with relativistic PC-PK1 functional. To provide more reli-
able scission configurations, three-dimensional (β2, β3, qN )
constrained CDFT calculations have been performed and the
saddles between fission and fusion valleys have been defined
as the scission points. It is remarkable to find an asymmetric
fission valley in the potential energy surface in the quadrupole
octupole collective space and the heavy/light fragments at
scission are 101Rh/79Br, in good agreement with the masses
observed experimentally. In contrast, the symmetric scission
point, which splits into two 90Zr, is 2.33 MeV higher than
the asymmetric one. Furthermore, we find that the heavy frag-

ments of lowest-energy scission configurations, compared to
those of other scission points, have rather small quadrupole
deformations (β2 ∼ 0.4) and certain octupole deformations
(β3 ∼ 0.3–0.4), which are driven by the extended neutron
octupole shell gap with N = 56. Based on the scission con-
figurations, the estimated distribution of total kinetic energy
reproduces the trend of experimental values. Finally, we have
performed the TDGCM+GOA based on the microscopic PES
and inertia masses to model the time evolution of the fission-
ing 180Hg. The asymmetric peaks are reproduced very well
not only for the positions but also for the heights considering
the error bar of the data. Moreover, a more asymmetric fission
mode with AH ∼ 116 is predicted in our calculation, which
is not observed in the experiment. This could be because
we use an initial state with mixed angular momenta but the
experimental ones only have some certain values due to the
selection rule of electron capture of 180Tl.

The next step could be to construct the initial state based
on the angular momentum projected states of 180Hg, sim-
ulate the fission procedure for each possible state using
TDGCM+GOA, and finally mix the products of all the
simulations by considering the branching ratios of EC of
180Tl. In addition, we could also extend our two-dimensional
TDGCM+GOA calculation to include qN to consider more
fission modes based on a powerful CDFT code using a two-
center harmonic oscillator basis. Such work is in progress.
It is also interesting and necessary to perform a systematic
calculation for the sub-lead region using the extended model
to provide a better description of the yield distributions and
underlying microscopic mechanism.
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