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Background: For data on radioactive nuclei, β decay provides some of the most important information,
applicable to various fields. However, some β-decay data are not available due to experimental difficulties. For
this reason, theoretically calculated results have been embedded in the data on radioactive nuclear β decay to
compensate for the missing information.
Purpose: It is necessary to treat various nuclear correlations as precisely as possible for theoretical β-decay
calculations. In particular, the pairing correlation is one of the most important factors for reproducing β-decay
half-lives correctly. Therefore, we first study the effect of zero- and finite-range isovector pairings on half-lives.
Second, we investigate the isoscalar pairing strengths, which are determined through experimental data of half-
lives. Finally, we predict the isoscalar pairing strengths and half-lives of neutron-rich nuclei.
Methods: To calculate the β-decay half-lives, a proton-neutron quasiparticle random-phase approximation on
top of a Skryme energy density functional is applied with an assumption of spherical symmetry. The half-lives are
calculated by including the allowed and first-forbidden transitions. The isoscalar pairing strength is estimated by
a Bayesian neural network (BNN). We verify the predicted isoscalar pairing strengths by preparing the training
data and test data.
Results: It was confirmed that the finite-range isovector pairing ensures that the β-decay half-lives are insensitive
to the model space, while the zero-range one is largely dependent on it. The half-lives calculated with the BNN
isoscalar pairing strengths reproduced most of the experimental data, although those of highly deformed nuclei
were underestimated. We also studied the predictive performance on new experimental data that were not used
for the BNN training and found that they were reproduced well.
Conclusions: Our study demonstrates that the isoscalar pairing strengths determined by the BNN can reproduce
experimental data with the same accuracy as other theoretical works. To achieve a more precise prediction, the
nuclear deformation is important.
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I. INTRODUCTION

β decay, the representative decay mode of unstable nuclei,
was first recognized at the end of 19th century. The discovery
greatly extended the field of nuclear chemistry and led to the
beginnings of nuclear physics. Nowadays this phenomenon
has become more important for various fields beyond nuclear
chemistry and physics, such as radiology, geoscience, nuclear
engineering, and astrophysics. Needless to say, β decay has
attracted a lot of attention of researchers since its discovery. In
the past decades, the study of β decay has been extended into
very neutron-rich nuclei to study exotic nuclear structure [1]
and for a finer understanding of the r-process nucleosynthesis
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[2], which is a promising scenario of the synthesis of elements
heavier than iron in star evolutions.

Recent progress in experiments on unstable nuclei has
accelerated our understanding of β decay and has provided
the high-accuracy nuclear decay data. Several measurements
of half-lives (T ) and β-delayed neutron emission branching
ratios have started to cover the nuclei relevant to the r pro-
cess [3,4]. However, there still remain a lot of unmeasured
neutron-rich unstable nuclei important for the r process. In
particular, the β-decay data on nuclei located in the southeast
region from 208Pb in the nuclear chart and on neutron-rich
actinides that are fissionable are mostly absent. To compensate
for unmeasured data, it is necessary to use nuclear theoretical
approaches for the r-process simulation.

Because a nucleus is a finite many-body system composed
of nucleons, the calculation requires some model approx-
imations. To predict the β-decay half-lives as accurately
as possible, building a model with less phenomenological
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treatment is important. One of the candidates suitable for this
object is a microscopic model based on a two-body effective
interaction. In particular, a self-consistent framework, which
means the use of the same interaction between the ground and
excited states, is considered to be a reasonable approach to
reduce ambiguities in the interactions. A lot of studies within
this framework have been carried out to study the β-decay
half-lives for specific isotopic or isotonic chains, e.g., by
the proton-neutron quasiparticle random-phase approximation
(pnQRPA) assuming spherical symmetry [5–7] and axial sym-
metry [8–10], and pnQRPA with realistic interactions [11,12].
The pnQRPA on top of the covariant density functional
[13–16] and a finite amplitude method (pnFAM) [17,18], the
configuration interaction methods [19–21], and the interacting
boson model [22] are also developed to study the β-decay
half-lives. Among them, from the viewpoint of computational
feasibility, the pnQRPA and pnFAM are currently the only
methods that have been applied to a systematical prediction
of β-decay half-lives including the first-forbidden (FF) transi-
tions over the nuclear chart [6,18].

To predict the β-decay half-lives, one needs a careful
attention to the pairing correlation, which accounts for a
short-range attractive interaction between nucleons that is
not taken into account in the Hartree-Fock level. The con-
tributions from the pairing correlation to the half-lives are
threefold: (1) additional binding energies to nuclei, (2) vari-
ation of particle occupation probabilities, and (3) supplement
of particle-particle residual interaction. For the pnQRPA
on top of the Skyrme energy-density functional (EDF), the
zero-range interactions have conventionally been used as the
isovector spin-singlet and isoscalar spin-triplet pairing forces
due to their simplicity. However, it was pointed out that the
half-lives calculated with an isoscalar zero-range interaction
are largely different depending on a model space through (3),
and moreover the deviations become larger with increasing
strength of isoscalar pairing interaction [5]. Other studies
[6,10,15] also indicated that different strengths of the isoscalar
pairing interaction are needed to reproduce experimental data
of different isotopic or isotonic chains. These results pose
a question on the effectiveness of the zero-range isoscalar
pairing interaction for the reliable predictions of half-lives.
The same question also arises in the isovector pairing that
mainly affects the β decay through the aforementioned (1)
and (2).

The isoscalar pairing has an effect of considerably reducing
the excitation energies of the low-lying Gamow-Teller (GT)
transitions [23,24]. Since the β decay for nuclei from light to
heavy mass (Z ≈ 82) is largely invoked by the GT transitions,
this reduction enlarges the energy released by the β decay,
that is the so-called end-point energy, reducing the half-lives
significantly [5,8,13,15,25]. In the half-life calculation, the
isoscalar pairing strength has been treated as a free parameter
independent of the effective force used in the ground-state
calculation, and has been adjusted so as to reproduce the ex-
perimental half-lives. We have an interest in how the isoscalar
pairing strength evolves with increasing proton and neutron
numbers, and try to estimate it for neutron-rich nuclei. A
better description for the pairing interactions is the use of
finite-range force. This force naturally includes a cutoff in the

pairing model space [26], avoiding the so-called ultraviolet
divergence, and yields half-lives less sensitive to the model
space [5]. The finite-range pairing forces have been already
applied to study the β decay within the covariant density
functional (CDF)+pn relativistic QRPA (pnRQRPA) [6] and
the Gogny EDF + pnQRPA [11], while its application to the
Skyrme-Hartree-Fock-Bogoliubov (HFB)+pnQRPA is lim-
ited to some isotopes and isotones, and only for the isoscalar
channel [5].

The purpose of this work is to study the isoscalar pairing
strengths of neutron-rich nuclei for the systematical prediction
of β-decay half-lives. To this end, we construct a Skyrme
HFB + pnQRPA with a finite-range pairing force to reduce
the uncertainties coming from the pairing correlations. We
determine the isoscalar pairing strengths so as to reproduce
the experimental half-lives, and estimate those of neutron-rich
nuclei with no experimental data. In particular, we apply a
Bayesian neural network (BNN), which has been applied to
predict nuclear masses [27,28] and β-decay half-lives [29],
for the estimation of isoscalar pairing strengths. We assess
the performance of the strengths calculated by the BNN and
discuss the result quantitatively. It should be mentioned that
this work corresponds to a nonrelativistic counterpart of the
CDF + pnRQRPA [6], although one that uses the isospin-
dependent force [14] of the isoscalar pairing.

This paper is organized as follows. In Sec. II, we describe
the theoretical framework to calculate the β-decay half-lives
using the Skyrme HFB + pnQRPA. In Sec. III, the results
obtained in this work are presented and discussed comparing
with the experimental data and preceding works. Section IV
summarizes this work and presents some perspectives. The
complete data table containing the calculated half-lives is
available in Supplemental Material [30].

II. THEORETICAL FRAMEWORK

A. Skyrme HFB + pnQRPA with a finite-range pairing force

The β-decay calculations of the Skyrme HFB + pnQRPA
are separated into two parts: the ground and excited states.
We begin with calculating the ground state of nuclei, that is
equal to an energy minimum against small-amplitude surface
vibrations, within the HFB approach. In this work, we use
SkO′ [31] for the effective particle-hole two-body interaction,
which is known to give a reasonable agreement with the ex-
perimental Qβ values [17]. The pairing correlations are treated
by considering the finite-range effect, and the Gogny-type
interaction,

V (1)
pp (r1, r2) =

2∑
i=1

(Wi + BiPσ − HiPτ − MiPσ Pτ )e−r2
12/μ

2
i ,

(1)
is used for the isovector particle-particle channel, where r12 =
|r1 − r2|, and Pσ and Pτ are the spin and isospin exchange
operators, respectively. The parameters Wi, Bi, Hi, Mi, and
μi are taken from the D1S force [32]. An advantage of us-
ing the finite-range force, e.g., D1S, is that it automatically
introduces a natural cutoff in the momentum space for the
particle-particle scattering and is capable of avoiding an
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ultraviolet divergence, which occurs in the zero-range forces
[33,34].

The quasiparticle states, denoted by k = {n, j, l}, where n
is the principal quantum number, and j and l are the total and
orbital angular momenta, respectively, are obtained by solving
the HFB equation∫

dr2

(
hq(r1, r2) − λq �q(r1, r2)

�q(r1, r2) −hq(r1, r2) + λq

)(
Uk (r2)
Vk (r2)

)

= Ek

(
Uk (r1)
Vk (r1)

)
, (2)

where h and � are calculated by the first derivatives of the
energy functional with respect to the normal and pairing den-
sities, respectively [35], and λq=n,p are the nucleon Fermi
energies. We expand U and V as

Uk (r) =
∑

l

Ulk ϕl (r),

Vk (r) =
∑

l

Vlk ϕl̄ (r),
(3)

where the basis functions {ϕk} are obtained by solving∫
dr′ h(r, r′)ϕk (r′) = εkϕk (r) in the coordinate space in order

to properly describe the asymptotic behavior of densities [36].
Note that our calculation is carried out assuming spherical
symmetry. For the practical calculation of Eq. (2), we truncate
the expansion of U and V at a point where εk is smaller
than a cutoff energy εcut. The pairing potential is defined as
�(r1, r2) = ∑

k′l ′ V
(1)
pp (r1, r2)κk′l ′ (r1, r2), where κ is the pair-

ing density. The continuum states are discretized by the radial
box of 20 fm with a step size being �r = 0.1 fm.

The excited states of daughter nuclei resulting from β

decay are calculated with the pnQRPA in the canonical basis
of the HFB. The pnQRPA equation is given by the following
eigenvalue problem:

∑
p′n′

(
A(c)

pnp′n′ B(c)
pnp′n′

−B(c)∗
pnp′n′ −A(c)∗

pnp′n′

)(
X (c)

p′n′

Y (c)
p′n′

)
= Ec

(
X (c)

pn

Y (c)
pn

)
. (4)

Here, A(c) and B(c) are matrix elements including the particle-
hole and particle-particle interactions given in the canonical
basis [5,37], and the subscript c = (1+, 0−, 1−, 2−) represents
the β-decay type of the allowed and FF transitions. The eigen-
values Ec are used for calculating the excitation energies of
daughter nuclei, and the eigenvectors X (c) and Y (c), which
respectively correspond to the forward and backward ampli-
tudes of pnQRPA, are used to calculate the transition strengths
of β decay.

For the isoscalar particle-particle residual interaction, we
use the two-Gaussian force [5,6]

V (0)
pp (r1, r2) = −V

∑
i=1,2

gi exp

(
− r2

12

μ′2
i

)

̂S=1,T =0, (5)

where 
̂S=1,T =0 is the projection operator on the isoscalar
spin-triplet channel, and g1 = 1, g2 = −2, μ′

1 = 1.2 fm, and
μ′

2 = 0.7 fm, which are chosen so that V (0)
pp is repulsive at

small distance and attractive at long distance. The parameter
V is the isoscalar pairing strength.

To carry out the diagonalization of Eq. (4), we consider
the single-particle energy in the canonical basis up to εcut =
40 MeV and the two-quasiparticle energy up to Ep + En = 80
MeV, which is enough to obtain a stable result in terms of
model space, as described later.

For calculating the odd-mass nuclei, the same formalism of
the even-even nuclei is applied, as adopted in Ref. [6], namely
the average particle number is adjusted so as to reproduce the
number of nucleons in interest by tuning λq in Eq. (2). We
should mention that a better treatment of the odd-mass nuclei
can be achieved by using the equal filling approximation as
like Ref. [18], and this is the plan for our next works.

B. β-decay half-life

The β-decay rate to a daughter nucleus state, denoted by
γ , is calculated by [38]

λ
(c,γ )
β = ln 2

T (c,γ )
= ln 2

D

∫ p0

0
p2

e(W0 − W )2F (Z,W )C(W )d pe,

(6)
where W =

√
(pec)2 + 1 and pec are the electron energy in

terms of the electron mass unit and the electron momentum
in terms of mec, respectively. The physical constant D =
6144.4 ± 2.0 s is taken from Ref. [39]. The maximum elec-
tron energy is defined as W0 = (Qβ − E∗

c,γ )/(mec2), where the
numerator Qβ − E∗

c,γ is called the end-point energy. Qβ and
excitation energy of the daughter nucleus E∗

c,γ are approxi-
mated as [5]

Qβ = λn − λp + �Mn−H − Ecorr (7)

and

E∗
c,λ = Ec,λ − Ecorr, (8)

respectively, and Mn−H ≡ mn − mH = 782.27 keV is the
mass difference between the neutron and the hydrogen atom.
With Eqs. (7) and (8), the end-point energy is given as

Qβ − E∗
c,γ = λn − λp + �Mn−H − Ec,λ. (9)

The correction energy Ecorr is estimated from the fact that
the ground state of the odd-mass nucleus corresponds to one
quasiparticle state on top of the even-mass nucleus [40]. The
explicit form of Ecorr is given as [41]

Ecorr =

⎧⎪⎨
⎪⎩

Ep0 + En0 (β decay for even-even nucleus),
Ep0 (for even-odd),
En0 (for odd-even),
0 (for odd-odd),

(10)

where Ep0 and En0 are the lowest quasiparticle energies for
proton and neutron, respectively.

Figure 1 shows the difference between the calculated and
experimental Qβ , which is defined as δQβ = Qβ,calc − Qβ,exp.
The mean values of δQ̄β and the standard deviations σ are also
shown in the panels. For the even-even, even-odd, and odd-
even nuclei, |δQ̄β | < 0.8 MeV, and their standard deviations
are approximately 1 MeV. On the other hand, the calculated
Qβ for many odd-odd nuclei underestimate the experimental
data and we obtain δQ̄β = −1.70 MeV. This is a natural
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FIG. 1. Difference between the calculated and experimental Qβ

[42] for the even-even (E-E), even-odd (E-O), odd-even (O-E), and
odd-odd (O-O) nuclei. The mean values of δQ = Qβ,calc − Qβ,exp (de-
fined as δQ̄) and the standard deviations (σ ) are shown by the solid
and dotted lines, respectively. The dashed line represents δQ = 0.

consequence of the fact that we use the simple approxima-
tion for odd-mass systems as described above, although the
Skyrme HFB has a pronounced performance for even-mass
systems. As discussed later, this result reflects the predictive
performance of half-lives of odd-mass nuclei.

The shape factor C(W ), which depends on the type of
β-decay, c, is calculated in the same way as Ref. [6], but
the relativistic correction terms of ξ ′v and ξ ′y are reduced
to the non-relativistic limit [43]. The ratio of weak axial-
vector/vector coupling constants reads gA = −1.2762(5)
[44]. However, we use gA = −1 instead, to consider the cou-
pling to more complicated states [45], such as higher-order
configurations and hadronic degree of freedom. The quench-
ing factor in this work is thus about 0.784, which is consistent
to other studies on the GT transitions and β decays [46–48].

The transition strength of the external field operator Ôc [6]
is represented by

Bc,γ =
∣∣∣∣∣
∑

pn

〈p||Ôc||n〉(upvnX (c,γ )
pn + ηunvpY

(c,γ )
pn

)∣∣∣∣∣
2

, (11)

where u and v are the coefficients in the canonical represen-
tation of U and V wave functions of Eq. (3) and η is +1(−1)
when Ôc is even (odd) under time reversal.

C. Bayesian neural network

To obtain a better description for the isoscalar pairing
strengths V , we adopt an approach using a BNN, which has
been successfully applied to the predictions of nuclear masses
[28] and β-decay half-lives [29]. In the BNN approach, the
model parameters ω in the neural network are described by
the posterior distribution p(ω|D),

p(ω|D) = p(D|ω)p(ω)

p(D)
, (12)

where p(D) is a normalization constant. The learning data
are D = {(x1,V1), (x2,V2), . . . , (xN ,VN )}, where Vk is the op-
timized isoscalar pairing strength of nucleus xk = (Z, N )k .
The prior distribution p(ω) is set as a Gaussian distribution
with zero mean. The conditional probability is p(D|ω) =
exp(χ2/2) with

χ2 =
N∑

n=1

[
S(x; ω) − Vk

�Vk

]2

, (13)

where �Vk is the noise error, and the inverse of its square
1/�V 2

k is set to a gamma distribution as in Ref. [28]. The
function S(x; ω) is described by a neural network with one
hidden layer, i.e.,

S(x; ω) = a +
H∑

j=1

b j tanh

(
c j +

I∑
i=1

d jixi

)
. (14)

So the parameters of neural network are ω = {a, bj, c j, d ji}.
The number of hidden neurons is taken as H = 30 in this
work. With the specified p(ω) and p(D|ω), p(ω|D) can be
sampled using the Markov chain Monte Carlo algorithm. The
prediction and the corresponding uncertainty of S(x; ω) for
any input (Z, N ) are then calculated by its mathematical ex-
pectation and standard deviation on p(ω|D).

D. Technical notes for systematical calculation of half-lives

For the systematical calculation of β-decay half-lives in
the present framework, we sometimes confront a problem
of a phase transition. This transition occurs when the cor-
related ground-state energy of pnQRPA is lower than the
HFB ground-state energy. Because the pnQRPA is the model
that assumes a small-amplitude oscillation around the energy
minimum for a collective coordinate, the pnQRPA equation of
Eq. (4) has an instability solution when this transition occurs
(cf. Sec. 8.4.2 of Ref. [40]). In the present framework, the
phase transition is triggered when the isoscalar spin-triplet
residual interaction is too strong and the first 1+ state is lower
than the ground state calculated by the HFB. For such a case,
we switch to the proton-neutron quasiparticle Tamm-Dancoff
approximation (pnQTDA), namely we set the backward am-
plitudes, B of Eq. (4), to be a zero matrix, and omit the
ground-state correlation incorporated by the pnQRPA. In gen-
eral, the result of pnQTDA is quite similar to that of pnQRPA
for neutron-rich nuclei because the backward amplitudes of
pnQRPA are appreciably hindered due to a large difference
of the Fermi energies between proton and neutron. We will
discuss the influence of this problem later.

III. RESULTS AND DISCUSSION

A. Isovector pairing and model-space dependence

We first study the relation of the zero-range isovector pair-
ing force and the β-decay half-life by varying εcut that is
introduced for the cutoff energy of the HFB equation (2). To
remove the contribution from the isoscalar pairing strength,
we set the strength V = 0 of Eq. (5).

Figure 2 shows the average proton and neutron pairing gaps
weighted by the pairing density in the canonical basis, 〈uv�q〉
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FIG. 2. (a) Average pairing gaps of proton (p) and neutron (n)
and (b) β-decay half-life of 128Cd as a function of the cutoff energy
εcut .

[49,50] (top panel), and the β-decay half-life (bottom panel)
of 128Cd as a function of εcut. The calculations are carried out
with the D1S finite-range force of Eq. (1) or the zero-range
volume type force given by

V (1)
δ,q (r1, r2) = −Vδ,qδ(r1 − r2). (15)

The proton and neutron pairing strengths of the zero-range
force are Vδ,p = 194 and Vδ,n = 173 MeV, respectively, which
are determined so that the average pairing gaps are equal to
those of the finite-range force when εcut = 20 MeV. For the
pairing gaps shown in Fig. 2(a), the zero-range force shows
a little increment from εcut = 0 to 3 MeV and a plateau from
εcut = 3 to 10 MeV. Above εcut = 10 MeV, the gaps for both
proton and neutron start to monotonically increase with the
model space. This model-space dependence is consistent with
what is reported for the nuclear matter [26]. On the other
hand, the pairing gaps for the finite-range force are rather
insensitive to the model space, although very small increments
are observed. We also tested with a zero-range surface type
force, and a result similar to that of the volume type force is
obtained.

The model-space dependence seen in the pairing gaps
affects the β-decay half-life. It should be noted that the model-
space dependence of half-life is more complicated than that
of the pairing gaps, because the half-life also depends on
the two-quasiparticle model space of the pnQRPA and the
Fermi energies that are dependent on εcut as well. The result
is shown in Fig. 2(b). By εcut = 3 MeV, the half-life increases
for both the zero-range and finite-range forces due to the en-
largement of two-quasiparticle model space and the variations
of the pairing gaps. In the range of 3 � εcut � 10 MeV, the
half-life is insensitive to the model space because the pairing
gaps are almost constant. In addition, the low-lying states
relevant to the β decay are not sensitive to the numbers of
the two-quasiparticle model space enlarging in the range of
3 � εcut � 10 MeV. The half-life of the zero-range pairing
starts to increase from εcut ≈ 12 MeV. This is mainly be-
cause the end-point energy in Eq. (9) is inversely proportional
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FIG. 3. Half-lives of Cd isotopes calculated with different model
spaces εcut for (a) the zero-range and (b) the finite-range isovector
pairing interactions.

to Ec,λ, the eigenvalues of the pnQRPA, which grow with
increasing two-quasiparticle energies and pairing gaps. For
example, the end-point energies are 3.30 MeV for εcut = 20
MeV and 2.93 MeV for εcut = 40 MeV in the case of zero-
range force. Note that this variation is at most the magnitude
of �p + �n. On the other hand, the half-life calculated by
the finite-range force is rather insensitive to the model space,
because the quasiparticle energy does not change significantly
and neither does the end-point energy. The end-point energies
are 3.35 and 3.33 MeV for εcut = 20 and 40 MeV in the case
of finite-range force, respectively. The variation of the Fermi
energies in the first and second terms in Eq. (9) does not affect
the half-life significantly. They are canceled out by the Fermi
energies included in the QRPA phonon energy Ec,λ, which is
expressed in the limit of the noninteracting particle model by
Ec,λ � |λn − εn| + |εp − λp|.

We further study the isotope dependence of β-decay half-
lives in the Cd (Z = 48) isotopes with the zero-range and
finite-range isovector pairing forces. Figure 3 shows the half-
lives of Cd isotopes calculated with the model spaces εcut =
0, 10, 20, 30, 40 MeV, where the top and bottom panels are
the results of the zero-range and finite-range forces, respec-
tively. For the zero-range force, the half-lives of different εcut

deviate greatly. The deviations of half-lives are sizable for the
light-mass isotopes and become smaller with increasing mass
number. The variation of end-point energy, i.e., the variation
of pairing gaps, is only a few hundred keV, and its effect on
half-life is significant when the end-point energy is small,
while it diminishes for the neutron-rich nuclei that have a
much larger end-point energy than the variation of pairing
gaps. We obtain the same result even when we use the sur-
face type pairing. In contrast, the half-lives calculated with
the finite-range force converge rapidly in a small εcut for all
the isotopes due to the insensitivity of the pairing gaps to the
size of the model space.

In practice, a systematical calculation of β-decay half-lives
is carried out by fixing εcut to a certain value. However, it
is anticipated that the calculated half-lives will have different
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behaviors of isotopic dependence on the chosen size of model
space in response of the pairing gap variation and Qβ . This
fact will not be favorable for a systematical estimation of the
isoscalar pairing strength. In contrast, the half-lives calculated
with the finite-range pairing forces are rather insensitive to
choice of the model space. Such a result has an outstanding
advantage of reducing the uncertainties arising from the selec-
tion of model space and is the main reason that the finite-range
force for both the isoscalar and isovector pairing channels is
adopted in this work. In the following calculations, we adopt
εcut = 40 MeV to ensure we include enough configurations
and to satisfy the Ikeda sum rule by more than 99.8% for the
GT transition.

B. Isoscalar pairing strength

The β-decay half-lives are also sensitive to the isoscalar
spin-triplet pairing in addition to the isovector spin-singlet
pairing. The isoscalar pairing strength is independent of other
effective forces in the present framework and is freely ad-
justed in calculating half-lives. The isoscalar pairing strength
that reproduces the experimental half-life is different for
different nuclei, and an isospin-dependent force has been
used for the previous systematical calculations of half-lives
[6,14,15]. However, it is still not clear whether the isospin-
dependent force is an appropriate form. In this section, we
study the relation of the isospin pairing strength and the half-
life more carefully.

To quantify the prediction performance of an isospin pair-
ing strength, let us begin with defining the mean deviation of
the calculated and experimental half-lives for N nuclei as

r̄ = 1

N

N∑
i

ri, ri = log10

(
Tcalc,i

Texp,i

)
, (16)

and the standard deviation as

s =
√√√√ 1

N

N∑
i

r2
i . (17)

Note that they are defined in a logarithmic scale consid-
ering the wide range of half-lives of unstable nuclei. The
ideal condition is r̄ = s = 0. We use the evaluated data of
NUBASE2016 [51] for Texp and choose the nuclei that have
Texp < T max

exp with the upper limit of T max
exp , if the computed

Qβ of Eq. (7) is greater than 0. Moreover, if a half-life is
insensitive to the isoscalar pairing strength, the nucleus is
excluded from the chosen group.

1. Single isoscalar pairing strength

We first investigate the mean deviation and the standard
deviation by varying the isoscalar pairing strength. Figure 4
shows the results of r̄ (top) and s (bottom) for the isoscalar
pairing strength in the range of 0 � V � 240 MeV, where
different T max

exp are separately plotted. For V = 0 MeV, the cal-
culated half-lives tend to be longer than the experimental data,
giving r̄ > 0 for all T max

exp . Increasing V , r̄ gradually decrease
and turn to be negative at some point. Such turning points are
different for different T max

exp , and become smaller with shorter
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FIG. 4. (a) Mean deviation r̄ from the experimental data of 950
nuclei and (b) standard deviation s as a function of the isoscalar
pairing strength V . The results of different ranges of T are plotted.
The dotted lines of r̄ = ±0.3 are also depicted.

T max
exp . For T max

exp = 10, 1, 0.1 s, in the range of 0 � V � 140
MeV, |r̄| have small values less than ≈0.3, which is equivalent
to reproducing all the half-lives within about a factor of 2 on
average.

The standard deviation s shown in the bottom panel ex-
hibits a rather weak dependence on V . For T max

exp = 103 s,
s ≈ 1.1, and s becomes smaller as T max

exp is made shorter.
For T max

exp = 1, 0.1 s, s ≈ 0.5 with 0 � V � 140 MeV, which
indicates that the present pnQRPA gives the half-lives within
about a factor of 100.5 � 3.1 on average with the single
isoscalar pairing strengths.

The theoretical model of this work assumes the nuclear
shape to be spherical, while a lot of nuclei have a deformed
shape actually. Therefore, we also study the effect of nuclear
deformation. We again consider r̄ and s focusing only on the
nuclei that have a small quadrupole deformation. We take
the information on the quadrupole deformation parameter β2

from Ref. [18], in which the same SkO′ functional [31] as
this work is used and the data for the nuclei with Z � 20
are available. Figure 5 shows the results of r̄ (top) and s
(bottom) of the nuclei with Z � 20, β2 < 0.15 and all nuclei
with Z < 20, the total number of target nuclei being 485. By
comparing Fig. 5 with Fig. 4 that considers all the nuclei,
we can learn the deformation effect on r̄ and s for nuclei
with Z � 20. Compared with Fig. 4, the curves of r̄ do not
change significantly for all T max

exp although some variations are
found for T max

exp = 103, 102, 10 s around V = 180-240 MeV.
As a result, we obtain |r̄| < 0.3 within the almost same range
of V as Fig. 4. Similarly, the curves of s do not change
significantly except for variations around V � 200 MeV for
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FIG. 5. Same as Fig. 4, but for the Z � 20 nuclei with the
quadrupole deformation parameter β2 < 0.15 and all nuclei with
Z < 20. The total number of target nuclei is 485.

T max
exp = 103 s. As a consequence, nuclear deformation is im-

portant if the half-life is long and V is large, while its effect
becomes weakened if the half-life is short, at least for nuclei
with Z � 20. This fact motivates us to predict the β-decay
half-lives of neutron-rich nuclei, keeping the assumption of
spherical shape of nuclei.

2. Optimized isoscalar pairing strengths

We next seek the isoscalar pairing strength that repro-
duces experimental half-life for each nucleus. We denote the
strength as Vopt. The strength Vopt reflects two features: one
is the isoscalar pairing strength itself, and another is a com-
pensation of the missing nuclear structures that the present
framework cannot describe. Accordingly, the result of Vopt as
well as VBNN which is introduced later on is effective only
within the present framework. Figure 6 shows the result of
Vopt in the N-Z plane and the corresponding projections to
the N and Z axes, where the magic numbers are shown by
the double and dashed lines. Looking at the result in the N-Z
plane, on the one hand, we can observe that Vopt become high
around the magic numbers, and this structure is confirmed
more clearly in the panels of the projections to the N and Z
axes. On the other hand, the nuclei between the magic num-
bers, especially those around (Z, N ) = (40, 70) and (60,100),
have small Vopt. As discussed in the next section, the nuclear
deformation is particularly important around those regions
[18,36,52–54]. In general, the deformation effect increases the
half-lives due to the fragmentation of nuclear excited states
[55]. This effect is mimicked by the small Vopt that effectively
make half-lives longer. In contrast, for the heavy nuclei above
Z = 82, N = 126, Vopt stay high and no substantial decrease

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Pr
ot

on
 N

um
be

r

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

  0  50 100150200250300350

 0
 50

 100
 150
 200
 250
 300

 20  40  60  80 100 120 140

V o
pt

 (M
eV

)

Neutron Number

 0
 50

 100
 150
 200
 250
 300

 20  40  60  80 100 120 140

  0 5
0

10
0

15
0

20
0

25
0

30
0  0

10
20

30
40

50
60

70
80

90
Pr

ot
on

 N
um

be
r

Vopt (MeV)

  0 5
0

10
0

15
0

20
0

25
0

30
0  0

10
20

30
40

50
60

70
80

90
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plane determined so as to reproduce the β-decay half-lives of
NUBASE2016 [51], and the corresponding projections to the N
and Z axes. The calculation is performed by the HFB + pnQRPA.
Neutron and proton magic numbers are shown by the double and
dashed lines.

is found although most of those nuclei are deformed. We con-
sider that such a different behavior from that in the (Z, N ) =
(40, 70) and (60,100) regions is due to manifestation of the FF
transitions, which are the main components of half-lives for
the heavy nuclei above (82, 126), and due to the weakening
of the contribution from the GT transitions. Because the FF
transitions are less sensitive to the isoscalar pairing strength,
the isoscalar pairing strengths stay high.

The isospin-dependent isoscalar pairing force has been in-
troduced in calculating the β-decay half-lives systematically
in some previous works [6,14,15]. However, we find that the
isospin dependence in existing literature cannot represent Vopt.
It is difficult to find a simple analytic function that expresses
Vopt in spite of its characteristic structure found in Fig. 6. For
this reason, we apply the BNN for the estimation of V of
neutron-rich nuclei. The BNN learning is carried out with the
950 data points in the N-Z plane of Fig. 6.

As a typical example, the results of V (denoted as VBNN)
for the Cd isotopes are shown in Fig. 7(c), where the mean
values are shown by the dashed line and the 1σ uncertainty by
the shaded area. The BNN reasonably reproduces Vopt, which
are shown by the filled circles, and predicts 100 � V � 150

TABLE I. Training and test data sets, which are selected for
Texp � Tdiv and Texp < Tdiv from 950 nuclei, respectively. Results of
the mean deviation r̄ and standard deviation s using four different
settings of training and test data are shown.

Tdiv Number of Number of
Setting (s) training data test data r̄ s

1 1.00 569 381 −0.080 0.478
2 0.50 626 324 −0.020 0.494
3 0.10 776 174 −0.085 0.335
4 0.05 841 109 −0.031 0.270
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FIG. 7. Isoscalar pairing strengths in the Cd isotopes estimated
by the BNN (VBNN). The top, middle, and bottom panels are the
results of setting 1 (Tdiv = 1 s), 3 (Tdiv = 0.1 s) of Table I, and that
using all data for training (i.e., Tdiv = 0 s), respectively. The mean
values of VBNN are shown by the dashed lines and the shaded areas
are the uncertainties of 1σ . The data set of training Vopt (filled circle)
and test Vopt (open circle) are plotted together. Evolution of VBNN with
increasing number of training data can be seen through the panels
(a)–(c).

MeV from N = 86 to 115. Although the uncertainties become
larger toward the neutron-rich side, we have checked that its
propagation to the half-life uncertainties is not significant. As
an example, Tcalc = 0.789 ± 0.007 ms for 163Cd.

We consider that VBNN need to be checked to see if they
are fair enough for the prediction of β-decay half-lives of the
unmeasured neutron-rich nuclei. One of the methods to do so
is to separate Texp data used to obtain Vopt into the training
and test sets. The training set is used for calculating VBNN

as we have just done, and the test set is used for quantifying
the predictive performance of the half-lives computed with the
VBNN. Here we divide the total data into the training set with
Texp � Tdiv and the test set with Texp < Tdiv, and calculate r̄ and
s by taking Tdiv = 1.00, 0.50, 0.10, and 0.05 s as examples.
Table I lists the results of r̄ and s for four different settings of
the training and test data. When the training data is limited to
Texp � 1 s, we obtain r̄ = −0.080 and s = 0.478. For Tdiv =
0.50 s, r̄ slightly improves, becoming −0.020, and s worsens
slightly. Increasing the number of training data further, s be-
comes even smaller and the mean deviation fluctuates around
r̄ = −0.050. For Tdiv = 0.05 s, we obtain r̄ = −0.031 and
s = 0.270. Figure 7 illustrates the evolution of VBNN for the
Cd isotopes with increasing number of training data, where
VBNN for Tdiv = 1, 0.1 s and that using all data for training are
shown. For Tdiv = 1 s, the BNN severely underestimates the
test data of Vopt. We consider that the number of training data
is not enough for the prediction of V in this case. However, the
predictive performance of the BNN gradually improves with
increasing number of training data. From Fig. 7(b), the BNN
reproduces the test data of Vopt roughly within the uncertainty
when Tdiv = 0.1 s, and accordingly the standard deviation s
improves from that of Tdiv = 1.0, 0.5 s, as found in Table I. As
mentioned above, the BNN reasonably reproduces Vopt when
we use all experimental data [Fig. 7(c)].

FIG. 8. (a) Distribution of ri as a function of Qβ . (b) The his-
togram of the statistics of ri with a bin �ri = 0.2. The mean deviation
and the standard deviation of the histogram are r̄ = −0.155 and
s = 1.153, respectively.

We find that VBNN become negative at some point for
Fig. 7(a) and 7(b) despite the fact that V is a positive number
by definition. This issue is also observed for elements other
than Cd. This indicates that the BNN does not work well for
very neutron-rich sides if the number of training data set is
small. However, we found that the number of negative VBNN

greatly decreases with increasing number of training data. As
seen from Fig. 7(c), the issue of negative VBNN is reasonably
solved, showing a V � 150 ± 90 MeV at N = 115. We thus
consider that the number of training data that are taken from
presently available experimental data is adequate for the pre-
diction of V of neutron-rich nuclei.

From Table I, when Tdiv = 0.05 s (the number of training
data is 841), we obtained r̄ = −0.031 and s = 0.270. Trans-
forming them in the linear scale, r̄lin � 0.93 and slin � 1.9.
The same performance is expected in the predicted half-lives
when we fully use experimentally available data as the train-
ing set. In the latter section, the predicted half-lives of VBNN

will be further validated by comparing with new experimental
data.

C. Systematical calculation of T with VBNN

In this section, we present the result of the systematical
calculation of T with VBNN and compare it with other theo-
retical data. The targets are unstable nuclei against β− decay
with the theoretically calculated two-neutron separation en-
ergy S2n > 0 MeV.

Figure 8(a) shows ri as a function of Qβ setting T max
exp =

1010 s. The dashed lines indicate ri = ±0.3 that corresponds
to reproducing Texp within a factor of 2. At small Qβ close to
zero, ri distribute widely from −5 to 5. The β-decay half-life
is sensitive to Qβ and approximately proportional to Q−5

β . The
EDFs including the present framework cannot always repro-
duce Qβ with an accuracy of keV order; the wide fluctuation
thus emerges at small Qβ . With increasing Qβ , ri converge
to around 0. This may imply that the present framework has
a higher performance when going to the neutron-rich nuclei
that have large Qβ . The histogram shown in Fig. 8(b) is the
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FIG. 9. (a) Number of nuclei, (b) mean deviation r̄, and (c) stan-
dard deviation s within the upper limit of half-life T max

exp . The results
of Skyrme HFB + pnQRPA with VBNN (this work), D3C∗ [6], and
pnFAM [18] are plotted together for comparison.

statistics of ri with a bin size �ri = 0.2. We can see that
the calculated ratios distribute centering ri = 0. The mean
deviation and the standard deviation of the histogram are
r̄ = −0.155 and s = 1.153, respectively.

Since it is difficult to reproduce a long Texp in the present
framework and our interest is weighted on the prediction
of shorter half-lives rather than that of longer ones, we
present the results limiting T max

exp to a relatively short time.
The mean deviation r̄ and standard deviation s for T max

exp =
10−1, 100, 101, 102, and 103 s are shown in Fig. 9, where the
results of D3C∗ [6] and pnFAM [18] are also plotted together
for comparison. The top panel shows the numbers of nuclei
within the range of the given upper limits of T max

exp . This work
includes almost the same numbers of nuclei as the D3C∗ for
the present analysis, while those of pnFAM are smaller be-
cause the Z < 20 nuclei are not considered there. The middle
panel shows the results of r̄. This work provides |r̄| within 0.1
for different T max

exp and is comparable with the pnFAM, while
the D3C∗ gives much larger values not only for long T max

exp but
also for short T max

exp . The bottom panel illustrates the results of
s. This work shows that s are within 0.6 even for T max

exp = 103 s
and gradually decrease with shorter T max

exp . This work is almost
comparable with the pnFAM for T max

exp = 100, 101 s and gives
a slightly larger value than the pnFAM and D3C∗ by about 0.1
for T max

exp = 10−1 s.
Table II shows the mean variation and standard deviation

when nuclei are categorized as the even-even, even-odd, odd-
even, and odd-odd ones for T max

exp = 10 s. For the even-even
and even-odd nuclei, r̄ of this work is better than the pnFAM

TABLE II. Mean deviation r̄ and standard deviation s grouped
by the even-even (E-E), even-odd (E-O), odd-even (O-E), and odd-
odd (O-O) nuclei for T max

exp = 10 s. The results of the pnQRPA
calculations with VBNN (this work), D3C∗ [6], and pnFAM [18] are
compared.

This work D3C∗ pnFAM

r̄ s r̄ s r̄ s

E-E −0.009 0.294 −0.001 0.475 −0.039 0.428
E-O −0.020 0.301 0.019 0.544 −0.055 0.428
O-E 0.043 0.406 0.153 0.608 −0.014 0.338
O-O 0.106 0.552 0.378 1.154 0.120 0.557

and comparable with the D3C∗. For the odd-even nuclei, this
work is better than the D3C∗. For the odd-odd nuclei, this
work is better than both the D3C∗ and the pnFAM. For the
standard deviation s, this work is better than the D3C∗ for
all the categories. This work is also better than the pnFAM
for the even-even and even-odd nuclei and comparable for the
odd-odd nuclei. Only for the odd-even nuclei does the pnFAM
clearly show a better performance of r̄ and s than this work. Of
four groups in this work, the result of odd-odd nuclei shows
larger r̄ and s than the others. This would be related to the
reproduction power of Qβ that we have discussed in Fig. 1.

Figure 10 shows the β-decay half-lives of the Kr (Z = 36),
Rb (Z = 37), Cd (Z = 48), and In (Z = 49) isotopes com-
pared with the D3C∗ functional [6] and pnFAM [18]. This
work reproduces the experimental half-lives of nuclei from
near the β-stability line to the neutron-rich side reasonably.
This result is due to the flexible character of the BNN that does
not assume a specific function for Vopt. For the neutron-rich
side where no experimental data are available, the present re-
sult is about half shorter than those of pnFAM and pnRQRPA
for the Kr and Rb isotopes, while it is close to that of pnFAM
for the Cd and In isotopes.
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this work
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FIG. 10. Calculated β-decay half-lives of this work, D3C∗ [6],
and pnFAM [18] for Kr, Rb, Cd, and In isotopes. The solid circles
are taken from NUBASE2016 [51].
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FIG. 11. Ratios between the calculated and experimental half-
lives in the N-Z plane.

We also plot the ratios between the calculated and exper-
imental half-lives in the N-Z plane in Fig. 11. We can see
that the ratio is approximately 1 for most nuclei. However,
underestimations are found around (Z, N ) = (45, 65) and
(65, 95). As mentioned above, in these regions, the nuclear
deformation plays a significant role [36,52–54]. The low-lying
states related to the β decay are degenerate if one assumes the
spherical shape. The nuclear deformation breaks the degener-
ation and fragments the low-lying states into a wider energy
range, resulting in a longer half-life than with the spherical
shape. The isoscalar pairing strength mimics the effect of nu-
clear deformation by reducing its value. However, due to the
large deformations, the isoscalar pairing strength estimated by
the BNN failed to compensate for the effect. Figure 12 shows
the β-decay half-lives of the Mo (Z = 42), Tc (Z = 43), Sm
(Z = 62), and Eu (Z = 63) isotopes, in which the nuclear de-
formation becomes significant. This work clearly gives shorter
half-lives than the experimental data for the light-mass nuclei.
The quadrupole deformation parameters are about β2 � 0.20
for N = 60-70 of the Mo and Tc isotopes and β2 � 0.34 for
N = 95-110 of the Sm and Eu isotopes [18]. Due to the large
deformations, the isoscalar pairing strength calculated by the
BNN could not substitute the effect. On the other hand, the
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FIG. 12. Same as Fig. 10, but for Mo, Tc, Sm, and Eu isotopes.
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FIG. 13. Percentages of the contributions from the first-
forbidden transitions to the total β-decay rates.

pnFAM, that considers the nuclear deformation, reproduces
the half-lives of those nuclei reasonably. It is reported that
the half-life of 106Zr is increased by about a factor of 3 if
the nuclear deformation is considered [55]. Therefore, the
underestimations found in those nuclei are expected to be
improved by considering the nuclear deformation.

Figure 13 shows the percentages of the contributions from
the first-forbidden transitions to the total β-decay rates. As
mentioned already, the FF transition becomes a main con-
tributor of β decay for the nuclei above Z = 82, N = 126.
In particular, its percentage becomes even higher when get-
ting across N = 126. For N < 126, the allowed transition is
the main contributor of β decay; however, we can see that the
FF transition becomes important for some spots close to the
β-stability line and around Z = 28, N = 60 and Z = 45, N =
100 regions, where the transitions from the neutron sdg shell
to the proton p f shell and from the neutron 3p, 2 f , and 1h
orbitals to the proton sdg shell are open, respectively.

D. Comparison with new experimental data

So far, our analysis of the isoscalar pairing strength is car-
ried out based on NUBASE2016 [51]. It is a concern whether
the present work could predict Texp if new experimental results
that are not in NUBASE2016 become available. Recently,
RIKEN measured the β-decay half-lives of 55 neutron-rich
nuclei of Z = 50-55 [4]. Fourteen nuclei out of them are not
in NUBASE2016; they are 140–142Sb, 139–144Te, 143–146I, and
148Xe. We use them for estimating the predictive performance
of the present framework.

The ratios between the half-lives calculated by the Skyrme
HFB + pnQRPA and the new 55 data of Texp are shown in
Fig. 14. Except for 134Sn, this work can predict the new ex-
perimental data within a factor of 2. The half-lives of fourteen
nuclei that are not in NUBASE2016 are also reproduced well,
validating that the present approach is effective for prediction.

Adding the newly measured half-lives to the training data
of the BNN, we estimate new isoscalar pairing strengths
and study the variations from the prior ones. The number
of training data is 964 = 950 + 14 in total, in which the
overlapping data are replaced by the new ones. The results
for the Te (Z = 52) isotopes are shown in Fig. 15, where
the top and bottom panels are the isoscalar pairing strengths
V and the corresponding uncertainties �V , respectively. The
“prior” and “new” VBNN indicate results calculated only
with NUBASE2016 and with both NUBASE2016 and new
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experimental data, respectively. NUBASE2016 compiles the
Te isotopes up to N = 86, and the new measurement added
the data up to N = 92. We can see that the prior VBNN

predicts the new Vopt fairly well, and is close to the result
of the new VBNN up to around N = 90. Beyond N = 90,
the prior VBNN exhibits a different N dependence from the
new VBNN. For N = 100, the difference between the prior and
new VBNN is about 100 MeV. In Fig. 15(b), the prior and new
�VBNN show similar uncertainties up to N = 92, and begin to
show a difference above N = 92. Due to the increment of data
points, the uncertainties for the new �VBNN are significantly
reduced, being smaller than those for the prior �VBNN.

The β-decay half-lives and the corresponding uncertainties
calculated with the prior and new isoscalar pairing strengths
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FIG. 15. (a) Isoscalar pairing strengths V and (b) their uncertain-
ties �V for Te isotopes estimated by the BNN with NUBASE2016
[51] (prior VBNN) and with NUBASE2016 and new measure-
ments [4] (new VBNN). The optimized strengths Vopt estimated with
NUBASE2016 and new data are also shown.
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FIG. 16. (a) β-decay half-lives and (b) their uncertainties of Te
isotopes calculated with the isoscalar pairing strengths estimated by
the BNN with the prior VBNN and new VBNN. The experimental data
of NUBASE2016 [51] and new measurements [4] are also plotted for
comparison.

are shown in Fig. 16. The uncertainty is calculated by

�T =
∣∣∣∣∂T

∂V

∣∣∣∣�V ∼
∣∣∣∣T (V ) − T (V − �V )

V − (V − �V )

∣∣∣∣�V

= |T (V ) − T (V − �V )|. (18)

Due to the increment of new VBNN above N � 94, the cor-
responding half-lives are reduced slightly. For example, the
half-lives of 152Te (N = 100) obtained with the prior and
new VBNN are 11.2 and 9.3 ms, respectively, showing about
20% difference. The reduction is not as remarkable as VBNN.
This is because the variation of excitation energies due to the
change of VBNN is relatively small (about 200 keV in the case
of the low-lying 1+ state) as compared with its Qβ = 10.6
MeV, where half-lives are approximately proportional to Q5

β .
In Fig. 16(b), �T of the new VBNN are meaningfully reduced
for N = 93, 94, and 95. On the other hand, those for N � 96
are almost the same as the prior VBNN. The uncertainty is
calculated with the multiplication of ∂T/∂V and �V . We
confirmed that the new �VBNN around N = 100 are about half
of the prior �VBNN as seen in Fig. 15, while ∂T/∂V of the
new VBNN is about twice larger than that of the prior VBNN. As
a result, their �T become close to each other.

Before closing this section, we should note the phase
transition explained in Sec. II D. We observed 993 nu-
clei in which the phase transition occurs when using only
the NUBASE2016 database as the training data. For Z � 68,
the corresponding nuclei are about 70 and all are close to the
β-stability line. No phase transition is observed for predicted
nuclei for Z � 68, and therefore the influence of such a prob-
lem is very limited at least for those elements. The remaining
nuclei, about 93% of the phase transition, are in neutron-rich
sides of Z > 68, and the majority of them are nuclei with
Z � 84. When adding new experimental data measured at
RIKEN [4] to the training data, the number of nuclei showing
the phase transition decreases to 552, and no phase transition
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is observed for predicted nuclei with Z � 72. From this result,
we consider that the number of the phase transition tends to
decrease with increasing the training data. We also consider
that this problem can be remedied to some extent by consider-
ing the nuclear deformation because those correlations reduce
the ground-state energy further. In fact, many nuclei showing
the phase transition are highly deformed.

IV. SUMMARY AND PERSPECTIVES

We studied the isoscalar pairing strength determined from
the experimental β-decay half-lives of neutron-rich nuclei.
We first presented the model space dependence of half-lives
for different types of isovector pairing force and showed the
importance of using the finite-range force for the systematical
investigation of β-decay half-lives.

We next studied the mean deviation and standard deviation
of half-life with different values of a single isoscalar pairing
strength. It was shown that the half-lives shorter than 10 s
were reproduced well within a limited range of the isoscalar
pairing strength. Limiting nuclei with a small deformation,
the half-lives are reproduced within a factor of 2 in the
range of 0 � V � 140 MeV. The isoscalar pairing strengths
determined from the half-lives in NUBASE2016 showed a
characteristic structure. To represent the N and Z dependence,
we applied the BNN and used it for the systematical prediction
of half-lives. We demonstrated that the calculated half-lives
could predict the experimental data well by dividing the total
data into the training and test sets.

The calculated β-decay half-lives were compared with
other models, showing a comparable result with pnFAM and
a better one than D3C∗. However, we found that some nuclei
with a large deformation could not be well reproduced. The
calculated half-lives were also compared with the experimen-

tal data newly measured at RIBF in RIKEN. It is found that the
new data can be reproduced within a factor of 2. Using the new
experimental data for the training set of BNN, we studied the
variation of VBNN and T . Due to the new data points, �VBNN

were reduced significantly and the uncertainties of T for some
nuclei also become smaller substantially. We should note that
the uncertainty discussed here accounts for the contribution
only from the isoscalar pairing strength. The present study
considers the influences of new experiments on the predic-
tion of half-lives. However, to obtain a correct uncertainty of
half-life within the present framework, it is required to also
propagate the uncertainties of the parameters of SkO′ [31] that
originate from the bulk properties of nuclei.

We expect that considering nuclear deformation will im-
prove the predictive performance of the isoscalar pairing
strengths and β-decay half-lives of neutron-rich nuclei, and
plan to expand our framework to the axially deformed shape.
We also plan to calculate the β-delayed neutron emission and
fission, which are also important for r-process simulation and
nuclear data. Although this work is limited to the β− decays
of neutron-rich nuclei, it is interesting to apply the formalism
to the β+ decays of neutron-deficient nuclei, too.

The complete data table containing the calculated half-lives
is available in Supplemental Material [30].
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