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Optimized Dirac Woods-Saxon basis for covariant density functional theory
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The Woods-Saxon basis has achieved great success in both nonrelativistic and covariant density functional
theories in recent years. Due to its nonanalytical nature, however, applications of the Woods-Saxon basis are
numerically complicated and computationally time consuming. In this paper, based on the deformed relativistic
Hartree-Bogoliubov theory in continuum (DRHBc), we check in detail the convergence with respect to the basis
space in the Dirac sea. An optimized Dirac Woods-Saxon basis is proposed, whose corresponding potential is
close to the nuclear mean field. It is shown that the basis space of the optimized Dirac Woods-Saxon basis
required for convergence is substantially reduced compared with the original one. In particular, it does not need
to contain the bases from continuum in the Dirac sea. The application of the optimized Woods-Saxon basis would
greatly reduce computing resource for large-scale density functional calculations.
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I. INTRODUCTION

The study of exotic nuclei far from the β stability line
has been at the forefront of nuclear physics research since
the discovery of the first halo nucleus 11Li in the 1980s [1].
In addition to halos, novel phenomena found in exotic nu-
clei include the pygmy resonance [2], the disappearance of
traditional magic numbers, and the emergence of new ones
[3]. These phenomena not only promote the worldwide devel-
opment of radioactive ion beam facilities but also challenge
conventional nuclear models.

The nuclear density functional theory (DFT) is able to
provide a unified description for almost all nuclei in the
nuclear chart and has become one of the most important
microscopic methods for the study of nuclear structure [4].
Its relativistic version, i.e., the covariant density functional
theory (CDFT), has attracted wide attention in recent years
for many advantages, such as the automatic inclusion of the
nucleonic spin degree of freedom and the spin-orbital inter-
action [5], the explanation of the pseudospin symmetry in
the nucleon spectrum [6–11] and the spin symmetry in the
antinucleon spectrum [11–13], and the natural inclusion of
the nuclear magnetism [14], which plays an important role
in nuclear magnetic moments [15–19] and nuclear rotations
[20–32].

In the nuclear DFT, the equations of motion for
(quasi)nucleons are either solved in coordinate space or trans-
formed into a matrix diagonalization problem in a complete
basis, e.g., the harmonic oscillator (HO) basis. As a good
approximation for the mean field of stable nuclei, the HO
potential can be solved analytically, and the HO wave function
in analytical form may bring convenience in the calculation
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of some matrix elements, e.g., the separable pairing force
[33]. Due to the incorrect asymptotic behavior of HO wave
functions, however, the expansion in a localized HO basis is
incapable of describing nuclei with very diffuse spatial den-
sity distributions. To improve the asymptotic behavior of HO
wave functions, a transformed HO basis has been proposed in
Refs. [34,35] via a local scaling transformation.

Solutions in coordinate space can describe properly the
asymptotic behavior of wave functions. When dealing with
systems having small separation energy, the coordinate-space
calculations in large boxes were found to be more effective
than the transformed HO basis [36]. In the CDFT, the relativis-
tic Hartree equation that neglects pairing correlations has been
successfully solved on a three-dimensional lattice [37]. For
the treatment of pairing correlations in weakly bound nuclei,
it was shown that the Bogoliubov transformation is more suit-
able than the widely used Bardeen-Cooper-Schrieffer (BCS)
method [38,39]. However, the relativistic Hartree-Bogoliubov
equation in coordinate space has only been solved by as-
suming spherical symmetry [40–42]. Solving the deformed
relativistic Hartree-Bogoliubov equation in coordinate space
is extremely difficult if not impossible [43].

A Woods-Saxon basis was proposed in Ref. [44] as a
reconciler between the HO basis and coordinate space. It is
obtained by solving the Schrödinger equation or the Dirac
equation containing spherical Woods-Saxon potentials with
box boundary conditions, and is correspondingly referred to as
the Schrödinger Woods-Saxon (SWS) or Dirac Woods-Saxon
(DWS) basis. The Woods-Saxon basis has the advantage in
providing appropriate asymptotic behaviors of wave functions
because of the nature of the Woods-Saxon type potential [45].
It was shown in Ref. [44] that for spherical systems the solu-
tion of the relativistic Hartree equations in the Woods-Saxon
basis is almost equivalent to the solution in coordinate space.
Up to the present, the SWS basis has been applied to the spher-
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ical Hartree-Fock-Bogoliubov theory [46,47], and the DWS
basis to the spherical relativistic Hartree theory [44], spherical
relativistic Hartree-Fock-Bogoliubov theory [48,49], de-
formed relativistic Hartree-Bogoliubov theory in continuum
(DRHBc) [50,51], deformed relativistic Hartree-Fock the-
ory [52], and deformed relativistic Hartree-Fock-Bogoliubov
theory [53].

Recently, the DRHBc theory has been successful in study-
ing deformed halo nuclei [50,51,54–59], investigating the
deformation effects on the location of the neutron drip line
[60], predicting stability peninsulas beyond the primary neu-
tron drip line [61–63], exploring rotational excitations of
exotic nuclei with the angular momentum projection [64,65],
and revealing the shape coexistence from light to heavy nu-
clei [66–68]. In particular, stimulated by the success of the
first nuclear mass table with continuum effects [69], many
efforts have been made to construct an upgraded mass table
including simultaneously deformation and continuum effects
based on the DRHBc theory [70], and the DRHBc mass table
for even-even nuclei has just been published [71]. The next
step of the DRHBc mass table is the systematical calculations
of odd-mass and odd-odd nuclei in the nuclear chart [72].
As mentioned in Ref. [70], since the DRHBc theory with
the DWS basis is numerically very complicated, large-scale
DRHBc calculations are extremely time consuming, espe-
cially for odd nuclei where the blocking effects should be
considered.

This paper is devoted to exploring methods to reduce the
computing cost of the DRHBc theory from the perspective
of the DWS basis space. On the one hand, the DWS basis
space includes both bases in the Fermi sea and in the Dirac sea
for completeness [44]. In order to guarantee the convergence
with respect to the basis space, it was suggested to take the
number of DWS bases in the Dirac sea as the same as that in
the Fermi sea [50,51], and later all DRHBc studies followed
this way. However, in the spherical relativistic Hartree-Fock-
Bogoliubov [48,49] and deformed relativistic Hartree-Fock
[52] calculations, the number of DWS bases in the Dirac sea
is only about one third of that in the Fermi sea. On the other
hand, usually the Woods-Saxon potential for the basis is pa-
rameterized [73]. It is natural to consider the possibility of an
optimized DWS basis whose corresponding potential is closer
to the mean field of the calculated nucleus, and as a result
the basis space required for convergence would be reduced.
Following this idea we examine in detail the convergence
behavior against the basis truncation in the Dirac sea and
propose an optimized Woods-Saxon basis for the large-scale
DRHBc calculations as well as other DFT calculations in the
present paper.

This paper is organized as follows: In Sec. II, we introduce
the DRHBc theory and the DWS basis. The numerical details
are given in Sec. III. The results and discussion are presented
in Sec. IV. Finally, a summary is given in Sec. V.

II. THEORETICAL FRAMEWORK

The details of the DRHBc theory with meson-exchange
and point-coupling density functionals can be found in
Refs. [51] and [70] respectively. In the DRHBc the-

ory, the relativistic Hartree-Bogoliubov (RHB) equation
reads [74](

hD − λ �

−�∗ −h∗
D + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (1)

where λ is the Fermi energy, and Ek and (Uk,Vk )T are the
quasiparticle energy and wave function, respectively. hD is the
Dirac Hamiltonian,

hD(r) = α · p + V (r) + β[M + S(r)]. (2)

� is the pairing potential,

�(r1, r2) = V pp(r1, r2)κ (r1, r2), (3)

with a density-dependent force of zero range,

V pp(r1, r2) = V0
1

2
(1 − Pσ )δ(r1 − r2)

(
1 − ρ(r1)

ρsat

)
, (4)

and the pairing tensor κ (r1, r2) [75]. In principle, the zero-
range pairing force is not naturally converged with the pairing
window, and both appropriate pairing strength and pairing
window are significant in the present DRHBc calculations
[70]. It is expected to implement the finite-range pairing force,
e.g., the Gogny [39] or separable pairing force [33], in the
DRHBc theory in future work.

In the DRHBc theory, the scalar potential S(r) and vector
potential V (r) in Eq. (2) are expanded in terms of the Legendre
polynomials,

f (r) =
∑

λ

fλ(r)Pλ(cos θ ), λ = 0, 2, 4, . . . ; (5)

so are the pairing potential and various densities. In order to
properly describe the large spatial extension of weakly bound
nuclei, the RHB equation, (1), is solved in the DWS basis [44].
After solving the RHB equations self-consistently, the total
energy, rms radii, quadrupole deformation, and other physical
quantities can be calculated.

The wave function of the DWS basis can be written as

φnκm(rsp) = ip Rnκ (r, p)

r
Y l (p)

κm (�, s), (6)

where n, κ , and m are its quantum numbers, which will be
introduced below. r, s, and p are spatial coordinate, spin, and
index (p = 1 or 2) for upper or lower component. Rnκ is the
radial wave function,

Rnκ (r, 1) = Gn,κ (r), Rnκ (r, 2) = Fn,κ (r), (7)

satisfying the radial Dirac equations(
− ∂

∂r
+ κ

r

)
Fn,κ + [VWS(r) + SWS(r) + M]Gn,κ = εnGn,κ ,

(
+ ∂

∂r
+ κ

r

)
Gn,κ + [VWS(r) − SWS(r) − M]Fn,κ = εnFn,κ ,

(8)

where εn is the eigenvalue (energy), and n is the node number.
VWS + SWS and VWS − SWS are parameterized Woods-Saxon
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potentials for the basis,

VWS + SWS = V +

1 + e(r−R+ )/a+ ,

VWS − SWS = V −

1 + e(r−R− )/a− ,

(9)

where V ±, R±, and a± depict the depth, width, and dif-
fuseness of the potential, respectively. A usual choice of the
parametrization can be found in Ref. [73]. Y l

κm is the spinor
spherical harmonic,

Y l
κm(�, s) =

∑
ml ,ms

〈
1

2
mslml

∣∣∣∣ jm〉Ylml (�)χ 1
2 ms

(s), (10)

where Ylml is the spherical harmonic function, χ 1
2 ms

is the
spin wave function, l is the orbital angular momentum, j is
the total angular momentum, and ml , ms, and m are the third
components of l , s, and j, respectively. The quantum number
κ is given by the parity π and j, κ = π (−1) j+1/2( j + 1/2),
running over positive and negative integers ±1,±2, . . . . The
orbital angular momenta for upper and lower components are

l (1) = j + 1
2 sgn(κ ), l (2) = j − 1

2 sgn(κ ), (11)

respectively.

III. NUMERICAL DETAILS

Taking light 20Ne, medium-heavy 112Mo, and heavy 300Th
nuclei as examples, a detailed convergence check of the total
energy against the energy cutoff in the Dirac sea ED

cut will
be performed. The radial Dirac equations for the DWS basis,
Eq. (8), are solved with a box size Rbox = 20 fm and a mesh
size �r = 0.1 fm [44,70]. The angular momentum cutoff for
the DWS basis is Jmax = 23

2 h̄ [70]. The Legendre expansion
truncations in Eq. (5) are chosen as λmax = 6 and 8 for nuclei
with 8 � Z � 70 and 72 � Z � 100, respectively [70,76].
The above numerical details are the same as those used in
the DRHBc mass table calculations for even-even nuclei [71].
Since a zero-range pairing interaction Eq. (4) is adopted in
the DRHBc theory, in the numerical check of the convergence
with respect to the basis space pairing correlations should be
neglected. In the DRHBc mass table calculations [71], the
energy cutoff for the DWS basis in the Fermi sea EF

cut = 300
MeV and the number of DWS bases in the Dirac sea is the
same as that in the Fermi sea, which are able to give con-
verged results as shown in Ref. [70] and thus are taken as the
benchmark in the following.

IV. RESULTS AND DISCUSSION

Figure 1 shows the convergence of the total energy with
respect to the energy cutoff in the Dirac sea ED

cut (whose zero
point is set to be the continuum threshold in the Dirac sea)
for 20Ne, 112Mo, and 300Th. From panels (a), (b), and (c) one
finds that, although the total energies of the three nuclei are
very different, they show a similar convergence trend with
the increase of ED

cut. When ED
cut = 50 MeV, the difference of

the calculated total energy from the converged one (horizontal
dashed line) becomes marginal in their respective scale. It is

FIG. 1. The total energy is shown as a function of the energy
cutoff in the Dirac sea ED

cut for 20Ne (a), 112Mo (b), and 300Th (c). The
horizontal dashed lines show their total energies, calculated with the
numerical condition that the number of DWS bases in the Dirac sea is
the same as that in the Fermi sea, and are regarded as the converged
results. In (d), the relative difference of the total energy from the
converged one, (ETot − ECon )/ECon, is plotted as a function of ED

cut

for 20Ne, 112Mo, and 300Th. The energy cutoff in the Fermi sea EF
cut is

taken as 300 MeV.

clearly seen in panel (d) that their relative differences from the
converged results are on the order of 10−5. Therefore, ED

cut =
50 MeV for the DWS basis can lead to a satisfactory accuracy
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in the DRHBc calculation. The ED
cut value greater than zero

suggests that the contribution of the bases from continuum in
the Dirac sea is non-negligible with the adopted DWS basis.
A similar conclusion was found in a recent study based on the
axially deformed relativistic Hartree-Fock-Bogoliubov theory
with the density functional PKA1 [53].

To compare the number of bases in the Dirac sea ND with
ED

cut = 50 MeV and that in the Fermi sea NF with EF
cut = 300

MeV, Fig. 2 exhibits NF and the ratio ND/NF as functions
of the absolute value of the quantum number κ in the cal-
culations of 20Ne, 112Mo, and 300Th. The NF as a function
of |κ| is shown in Fig. 2(a), where the basis numbers for
neutrons/protons and positive/negative parities are close to
each other and summed. First, we can see that the NF s are
not very different for 20Ne, 112Mo, and 300Th because of
the large energy cutoff EF

cut = 300 MeV, and they decrease
slowly and almost linearly with |κ|. Second, as shown in
Figs. 2(b) and 2(c), all the ratios of ND/NF are smaller than
1, meaning that the basis space in the Dirac sea is not nec-
essarily as large as that in the Fermi sea in order to obtain
converged results. Third, the ratio of ND/NF shows an odd-
even staggering with the increase of |κ|. This is because, for
the same |κ|, the orbital angular momentum l of the basis
in the Fermi sea and that in the Dirac sea differs by 1, e.g.,
for positive parity the ratio is calculated in the sequence of
s1/2/p1/2, d3/2/p3/2, d5/2/ f5/2, . . . for |κ| = 1, 2, 3, . . . . In a
basis space truncated by energy, the number of bases corre-
sponding to spin-orbit partners is in general the same, and it
decreases with the increasing l . As a result, the numerator ND

and denominator NF do not decrease synchronously, leading
to the odd-even staggering. Fourth, the ratio decreases with
|κ| on the whole, which reflects the influence of the different
depths of the potentials in the Fermi sea and Dirac sea. Finally,
the ratios of ND/NF for the heavy nucleus 300Th are larger than
those for lighter ones 20Ne and 112Mo, which shows that the
bases in the Dirac sea are more important for heavy nuclei
and is consistent with the finding in Ref. [53]. It is also noted
that the ratios for protons are obviously larger than those for
neutrons in the calculation of 300Th, which will be further
discussed below.

Is it possible to optimize the usual DWS basis to achieve
a better performance? We note that Ref. [44] has found when
the Woods-Saxon potentials for the basis become more differ-
ent from the converged mean-field potentials of the calculated
nucleus, the contribution of the basis in the Dirac sea will
be larger. To illustrate this difference in potentials, Fig. 3
compares for 300Th the Woods-Saxon potentials for the basis
and the converged mean-field ones, and for the latter the an-
gular dependence has been averaged. For the V + S potential
of neutrons, the difference mainly appears in 6 � r � 12 fm
and is not remarkable. For the V − S potential of neutrons,
distinguishable difference can also be found in 0 < r � 6 fm.
For protons, however, one finds significant differences in both
V + S and V − S potentials. The depth of the V + S potential
differs by about 10 MeV, and the difference in that of the
V − S potential is larger than 100 MeV. This explains why
the ratios ND/NF for protons are obviously larger than those
for neutrons in Fig. 2(c).

FIG. 2. The number of DWS bases in the Fermi sea, NF , and the
ratio of the number of DWS bases in the Dirac sea to it, ND/NF , are
shown as functions of the absolute value of the quantum number κ

in the calculation of 20Ne, 112Mo, and 300Th. For clearness, the ratios
for positive parity (+) and negative parity (−) are shown respectively
in (b) and (c), where the values for protons (P) and neutrons (N) are
distinguished by symbols. The energy cutoff in the Fermi sea EF

cut and
that in the Dirac sea ED

cut are taken as 300 and 50 MeV, respectively.

According to the above discussion, a possible way to opti-
mize the DWS basis and reduce the basis space is using the
Woods-Saxon potentials close to the converged mean-field
ones to generate a new basis replacing the original DWS
basis. As an attempt, for deformed nuclei, we solve a Dirac
equation containing the angle averaged converged mean-field
potentials to obtain the new basis, referred to as the opti-
mized Dirac Woods-Saxon (ODWS) basis. This optimized
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FIG. 3. The Woods-Saxon potentials V + S (a) and V − S
(b) used to generate the DWS basis and those corresponding to the
converged mean field are plotted as functions of the radial coordinate
r for 300Th. Here the angular dependence of the deformed mean-field
potentials has been averaged. The energy cutoff in the Fermi sea
EF

cut and that in the Dirac sea ED
cut are taken as 300 and 50 MeV,

respectively.

basis is in spirit somewhat similar to the method proposed
in Refs. [77,78], where deformed relativistic Hartree equa-
tions are solved by expanding the Dirac spinors in terms of
basis functions calculated from the self-consistent spherical
Hartree potential of the same or a nearby nucleus. At the end
of this section, we will see the unique advantage making the
ODWS basis superior to the recipe in Refs. [77,78].

To test the performance of the ODWS basis with respect to
the convergence behavior, Fig. 4(a) shows the difference of the
total energy from the converged result as a function of EF

cut in
both calculations with the DWS and ODWS bases for 300Th.
It is easy to see that although both calculations lead to con-
vergence with increasing cutoff energies, the results obtained
with the ODWS basis are always closer to the converged
one. In particular, when EF

cut = 100 MeV, the total energy
calculated with the ODWS basis is � 1 MeV lower than that
with the DWS basis. The results with the ODWS basis not
only exhibit better convergence with the increasing EF

cut, but
also hardly change with the increasing ED

cut. This suggests that

we can obtain converged results even without the bases from
continuum in the Dirac sea, which would significantly reduce
the basis space.

To more finely evaluate the convergence with respect to
ED

cut, in Fig. 4(b) we reduce the range of EF
cut from [100, 300]

MeV in Fig. 4(a) to [200, 300] MeV, and thus we rescale
the vertical axis. It is found that for the usual DWS basis,
the calculated total energy changes by about 0.5 MeV from
ED

cut = 0 to 50 MeV, suggesting the importance of the bases
from continuum in the Dirac sea. In contrast, for the ODWS
basis, the calculated total energy is almost a constant under
different cutoff energies. For example, the difference between
the results from EF

cut = 200 MeV, ED
cut = 0 MeV and EF

cut =
300 MeV, ED

cut = 50 MeV is only 0.005 MeV, about 10−6 of its
total energy. Therefore, the calculation using the ODWS basis
can provide converged total energies for heavy nuclei such as
300Th, with EF

cut = 200 MeV and ED
cut = 0 MeV that are both

smaller than those required for the DWS basis. We have fur-
ther reduced ED

cut to negative values to see if a smaller ODWS
basis space in the Dirac sea could give converged results.
It turns out that ED

cut � −100 MeV leads to a ground-state
deformation completely different from the converged one, and
the difference between the total energy from ED

cut ≈ −50 MeV
and the converged one is more than 0.3 MeV. This indicates
that some bound bases within 50 MeV from the continuum
threshold in the Dirac sea are important for convergence.
Thus, an energy cutoff of ED

cut = 0 MeV, i.e., the truncation
right at the continuum threshold in the Dirac sea, is suggested
for the ODWS basis to guarantee convergence for different
nuclei.

It is also interesting to check whether the ODWS basis
space truncated by EF

cut = 200 MeV and ED
cut = 0 MeV can

guarantee the convergence of single-particle properties. Fig-
ure 5 compares the single-neutron levels of 300Th near the
continuum threshold calculated using DWS and ODWS bases
as well as those from the converged result. Distinguishable
differences can be seen between the result from the DWS basis
and the other two. For example, the difference for the single-
neutron energy of the 5/2+ state is nearly 0.1 MeV. On the
other hand, the result from the ODWS basis and the converged
one are almost the same, with the largest difference less than
0.01 MeV. Therefore, according to this comparison and the
convergence of the total energy in Fig. 4, EF

cut = 200 MeV
and ED

cut = 0 MeV for the ODWS basis are enough to give
converged results in the DRHBc calculation. They correspond
to a certainly smaller basis space than that of the DWS basis
and, thus, require less computing resource.

Finally, one may argue that using the converged mean-field
potentials to construct the ODWS basis makes little sense,
since one never knows a priori the converged potentials of
the calculated nucleus. This is not true. A natural way out
is to construct a new basis set with new potentials in each
step of the iterative solution of RHB equations. This has been
done and can lead to the same results as those calculated by
the ODWS basis, but it is found that the reconstruction of
the basis in each step is time consuming. In practice, we find
that during the iteration only one reconstruction of the basis
is enough to get the same results. Here the reconstruction
happens when a reference parameter σ ≈ 1 MeV, in which
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FIG. 4. The difference of the total energy from the converged result as a function of EF
cut in (a) and of ED

cut in (b) for 300Th. The results from
ED

cut = 0, 10, · · · , 50 MeV in (a) and EF
cut = 200, 220, · · · , 300 MeV in (b) are given by different symbols. Empty and filled symbols represent

the results with the DWS and ODWS basis, respectively.

σ means the largest difference of the mean-field potentials
between the present step and the previous step during the iter-
ation. (When σ is less than a certain value, e.g., 10−4 MeV, the
self-consistent iteration converges.) Note that there is no need
to change the cutoff energies during the iteration in the above
approach; namely, EF

cut = 200 MeV and ED
cut = 0 MeV are

used for the original DWS basis from the beginning and for the
ODWS basis after σ ≈ 1 MeV, up to convergence. It is also
worthwhile to mention that, although this approach replaces
bases during the iteration, there is almost no difference in the
convergence steps compared with the calculation using only
the DWS basis. Therefore, the ODWS basis is practicable, and

FIG. 5. Single-neutron levels of 300Th near the continuum thresh-
old calculated using DWS and ODWS basis with EF

cut = 200 MeV
and ED

cut = 0 MeV as well as those from the converged result. The
quantum numbers mπ are given on the right, and the solid and dashed
lines represent occupied and unoccupied levels, respectively.

its application to large-scale DRHBc mass table calculations
is expected.

V. SUMMARY

In summary, based on the deformed relativistic Hartree-
Bogoliubov theory in continuum, we check in detail the
convergence with respect to the basis space in the Dirac sea,
and propose an optimized Woods-Saxon basis for nuclear
density functional theory. By checking the convergence with
respect to the energy cutoff, we demonstrate that the basis
space in the Dirac sea is not necessarily as large as that in
the Fermi sea in order to obtain results with a satisfactory
convergence accuracy of 10−5. Then we use the converged
mean-field potential to generate a new basis set, referred to as
optimized Dirac Woods-Saxon basis. It is found that the new
basis can lead to convergence in both total energy and single-
particle levels with a basis space truncated by the energy
cutoff EF

cut = 200 MeV in the Fermi sea and ED
cut = 0 MeV in

the Dirac sea, which is substantially smaller than the original
basis space required for convergence. Finally, we suggest a
method to construct the optimized Dirac Woods-Saxon basis
during the iterative solution of relativistic Hartree-Bogoliubov
equations, which guarantees the practicability of the new basis
with a suitable basis space.

The application of the optimized Dirac Woods-Saxon basis
to large-scale mass-table-type calculations based on the co-
variant density functional theory is expected to significantly
reduce computing resource. Similarly, its counterpart, the op-
timized Schrödinger Woods-Saxon basis, is also available for
nonrelativistic density functional theory.
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