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Pion exchange is the central ingredient to nucleon-nucleon interactions used in nuclear structure calculations,
and one-pion exchange (OPE) enters at leading order in chiral effective field theory. In the 2S+1LJ = 1S0 partial
wave, however, OPE and a contact term needed for proper renormalization fail to produce the qualitative, and
quantitative, features of the scattering phase shifts. Cutoff variation also revealed a surprisingly low breakdown
momentum �b ≈ 330 MeV in this partial wave. Here we show that potentials consisting of OPE, two-pion
exchange (TPE), and a single contact address these problems and yield accurate and renormalization group
(RG) invariant phase shifts in the 1S0 partial wave. We demonstrate that a leading-order potential with TPE can
be systematically improved by adding a contact quadratic in momenta. For momentum cutoffs � � 500 MeV,
the removal of relevant physics from TPE loops needs to be compensated by additional contacts to keep RG
invariance. Inclusion of the � isobar degree of freedom in the potential does not change the strong contributions
of TPE.

DOI: 10.1103/PhysRevC.106.024004

I. INTRODUCTION

Ever since its introduction by Yukawa [1], boson exchange
has been central to the theory of nuclear interactions. In
quantum chromodynamics, chiral symmetry is spontaneously
and explicitly broken, and the pion emerges as the corre-
sponding pseudo-Nambu-Goldstone boson. Pion exchange,
together with contact interactions that account for unknown
short-range physics, thus are the ingredients in a chiral ef-
fective field theory (EFT) description of the nucleon-nucleon
interaction [2–9].

In chiral EFT, and within the commonly employed
Weinberg power counting, the leading-order contributions to
the nucleon-nucleon interaction consist of one-pion exchange
(OPE) and one contact each in the 1S0 and 3S1 partial waves.
At next-to-leading order (NLO) in Weinberg counting the
leading two-pion exchange (TPE) contributions as well as
contacts quadratic in momenta enter.

Statistical analyses of higher-order chiral EFT predictions
for nucleon-nucleon scattering data infer a breakdown mo-
mentum �b ≈ 600–700 MeV, and that higher chiral orders
yield systematical improvements in powers of Q/min(�,�b)
beyond the leading-order results in the Weinberg power count-
ing [10–12]. Here Q is the low-momentum scale of interest,
e.g., the external momentum in nucleon-nucleon scattering,
and � is the cutoff employed in the regularization of the
theory. While this looks encouraging, there are well-known
challenges [13], and we mention two of them.

First, recent computations in the Weinberg [14] and a
modified power counting [15] show that leading-order chiral

EFT potentials predict light-mass nuclei that are unstable with
respect to breakup into α particles and lighter-mass clus-
ters, raising questions about what should be expected from a
nuclear EFT at leading order. Of course, the lack of any spin-
orbit contributions at leading order in the Weinberg power
counting would also presumably make well-known nuclear
shell structure a subleading effect.

Second, the leading-order description of nucleon-nucleon
phase shifts in the 1S0 partial wave are problematic in the
Weinberg power counting [15–31] (see Ref. [32] for a recent
review). The combination of OPE and a single contact fails
qualitatively to capture the pronounced peak at 60◦–70◦ in the
phase shift at about 8 MeV of laboratory scattering energy (see
blue dotted line in Fig. 1). For all results in this figure, the 1S0

contact is adjusted to the reference phase shifts of the potential
[33] (shown as a solid black line) at a laboratory scattering
energy E = 15 MeV. This energy matches the relevant scale
of pion physics as m2

π/mN ≈ 20 MeV using the pion and nu-
cleon masses mπ and mN , respectively. The OPE phase shifts
are much too attractive beyond the matching point and clearly
fail to capture the characteristics of the reference phase shifts.
Also, the slope of the OPE phase shift has the wrong sign. We
note that the interaction consisting of OPE plus subleading
TPE is more accurate than OPE plus leading TPE. This is
an indication that the role of subleading TPE might not be
correctly reflected in the Weinberg power counting.

Another problem concerns the breakdown momentum �b.
The analysis of the 1S0 phase shifts by Lepage [34] showed
that a potential consisting of OPE plus leading and subleading
contacts leads to �b ≈ 330 MeV in the 1S0 partial wave. Later
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FIG. 1. Nucleon-nucleon phase shifts in the 1S0 partial wave
versus the laboratory scattering energy E for various chiral inter-
actions. The momentum cutoff is set to 4 GeV and in all cases a
single contact V (0)

ct is adjusted to match the phase shift to that of
the reference potential (high-precision Idaho-N3LO) by Entem and
Machleidt [33] (solid black line) at E0 = 15 MeV. The dotted blue
line shows phase shift obtained for OPE, the dashed orange line for
OPE plus the leading TPE, the dash-dot-dotted green line for OPE
plus subleading TPE, and the dash-dotted red line for the interaction
Vπ,ππ consisting of OPE and leading plus subleading TPE (see text
for details).

analyses exploring perturbative inclusion of subleading TPE
contributions [22,35] confirmed this finding and estimated the
breakdown momentum to be even lower, i.e., �b ≈ 200 MeV.
This questions whether leading-order chiral EFT based on
OPE physics is consistent with the general assumption that
the breakdown momentum is somewhere between ≈500 and
≈1000 MeV.

Several researchers addressed the shortcoming of too at-
tractive 1S0 phase shifts by adding effective-range corrections
[15,36], energy-dependent potentials generated by dibaryon
fields [29], or separable potentials [31] to the OPE as leading-
order contributions. These approaches improve the phase
shifts at a cost of introducing additional parameters. The pro-
motion of TPE to leading order in chiral EFT was proposed
already a decade ago by Birse [25] and Pavón Valder-
rama [37]. We investigate this further; see also the recent
papers [38,39].

In this paper we show that chiral physics in the form
of TPE, a higher-order correction in the Weinberg power
counting, remedies the shortcomings of highly attractive 1S0

phase shifts and without increasing the number of parame-
ters. As Fig. 1 shows, the inclusion of the long-range part of
TPE at leading order significantly improves the accuracy of
the 1S0 phase shifts. We will also show that the estimated
breakdown momentum in this approach is consistent with
expectations from chiral EFT. Of course, promoting TPE to
leading order raises the question whether to promote also
the momentum-dependent counterterms that accompany it in
the Weinberg power counting. Here, we will follow the sim-
plest approach by promoting only the long-range part and
requiring renormalizability at the level of amplitudes, i.e., the
cutoff independence of observables. It is known [40] that one

momentum-independent counterterm (boundary condition) is
sufficient to renormalize the singular TPE interaction in the
1S0 channel.

Phenomenology connects TPE with the strong midrange
attraction of the nucleon-nucleon force [41,42] which is also
attributed to the f0(500) resonance [43] or the σ meson
whose width and mass was determined model independently
in Ref. [44]. The latter is a central ingredient of relativistic
mean-field theories [45–49] and of alternative proposals to
chiral EFT which include the effects of the f0(500) resonance
at leading order via the σ meson [50] or the dilaton [51,52],
i.e., the Nambu-Goldstone boson of a broken and hidden scale
symmetry.

In the Weinberg power counting TPE enters at NLO, but its
strongest contributions involving the pion-nucleon coupling
constants ci, with i = 1, 3, 4, enter at next-to-next-to-leading
order (NNLO). It is known that these subleading TPE con-
tributions are crucial for quantitatively reproducing the 1S0

phase shifts (see, e.g., Refs. [21,53]). We note, however,
that the role of TPE is somewhat obscured in chiral po-
tentials. First, an additional contact potential quadratic in
momentum also enters in the 1S0 partial wave at NLO in the
Weinberg power counting. Second, several popular potentials
[33,54–57] employ relatively low momentum cutoffs and
thereby truncate some parts of the TPE strength.

This paper is ordered as follows: In Sec. II we give the
explicit form of the OPE and TPE potentials, discuss their
relative strengths, and show results for phase shifts in the
1S0 partial wave obtained using the proposed leading-order
potential where we have promoted TPE. In Sec. III we show
that a subleading contact that is quadratic in momenta system-
atically improves upon these results. In Sec. IV we show that
the inclusion of � isobar degrees of freedom does not alter
our conclusions about promoting TPE to leading order. We
end with a summary in Sec. V.

II. CHIRAL OPE AND TPE POTENTIALS

Canonical chiral EFT descriptions of the nuclear interac-
tion employ a power counting for the pion-nucleon potential
as done in chiral perturbation theory. The OPE enters at
leading order, and subleading contributions are presumably
suppressed by powers of gAmπ/(4π fπ ) � 1, where gA ≈
1.28 is the axial-vector constant, mπ ≈ 140 MeV is the pion
mass, and fπ ≈ 92 MeV is the pion-decay constant. The OPE
potential is given by

VOPE(q) = − g2
A

4 f 2
π

τ1 · τ2
(σ1 · q)(σ2 · q)

m2
π + q2

. (1)

Here, q = p′ − p is the momentum transfer. The Pauli ma-
trices of nucleon j in spin and isospin space are denoted as
σ j and τ j , respectively. The TPE potentials considered in this
work can be written as

VTPE(q) = VC (q) + τ1 · τ2WC (q)

+ [VT (q) + τ1 · τ2WT (q)](σ1 · q)(σ2 · q)

+ [VS (q) + τ1 · τ2WS (q)]σ1 · σ2. (2)
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The leading TPE potential, i.e., the contributions that enter at
NLO in the Weinberg power counting, is given by [6,7,53]

WC = − L(q)

384π2 f 4
π

[
4m2

π (5g4
A − 4g2

A − 1)

+ q2(23g4
A − 10g2

A − 1) + 48g4
Am4

π

w2

]
,

VT = −VS

q2
= −3g4

AL(q)

64π2 f 4
π

,

(3)

while the subleading contributions that enter at NNLO are
[6,7,53]

VC = − 3g2
A

16π f 4
π

[
2m2

π (2c1 − c3) − c3q2
]
w̃2A(q),

WT = −WS

q2
= − g2

A

32π f 4
π

c4w
2A(q). (4)

Here, we used the shorthand

w ≡
√

4m2
π + q2,

L(q) ≡ w

q
log

w + q

2mπ

,

w̃ ≡
√

2m2
π + q2,

A(q) ≡ 1

2q
arctan

q

2mπ

, (5)

with q ≡ |q|, and the pion-nucleon constants ci are of the
order of m−1

N with mN denoting the nucleon mass mN . In what
follows we use c1 = −0.74 GeV−1, c3 = −3.61 GeV−1, and
c4 = 2.44 GeV−1 from Ref. [11], obtained from Roy-Steiner
relations [58,59]. (Using ci values from Ref. [53] did not
qualitatively change our findings.) We note here that we have
neglected any relativistic corrections (proportional to m−1

N ) to
the TPE at NNLO, omitted any polynomial contributions, and
suppressed the dependence of the functions (5) on the spectral
function regulator. In what follows, we discuss these points in
more detail.

Relativistic corrections are small and contribute
O(g2

Amπ/(16mN )) to the dominant potential VC . The NLO
potentials (3) also come with a term quadratic in momentum
exchange whose strength depends on the renormalization
scale [6]; it is usually neglected because a contact quadratic
in momenta also enters in the Weinberg power counting at
NLO. We neglect this contact here initially because we will
focus on the long-range behavior of TPE predicted by chiral
EFT. The TPE in the 1S0 partial wave can be renormalized
without it. In other words, we choose the contact quadratic
in momenta such that it exactly cancels the purely quadratic
term in TPE.

The functions L and A in Eqs. (5) are shown as computed
using dimensional regularization [6]. When using spectral
function regularization [60,61], they also depend on the cutoff
�SFR, and expressions (5) are obtained when taking �SFR →
∞. In this work we use spectral function regularization and
set �SFR = 700 MeV, except as indicated otherwise.

FIG. 2. Long-ranged pion-exchange contributions to the
nucleon-nucleon potentials in the spin-singlet/isospin-triplet partial
wave at various orders in Weinberg power counting as a function of
momentum transfer. The OPE potential (black solid line) is leading
order in the Weinberg power counting, the leading TPE (dashed
blue line) is NLO, and the subleading TPE (dash-dotted red line)
enters at NNLO. Any contributions from terms purely polynomial in
momenta are neglected.

We evaluated the long-range pion-exchange potentials
in the spin-singlet/isospin-triplet partial waves [where (σ1 ·
q)(σ2 · q) → −q2] and show their magnitudes in Fig. 2 com-
paring the OPE from Eq. (1), leading TPE from Eqs. (3),
and subleading TPE from Eqs. (4) contributions. As expected,
OPE is a dominant contribution around q ≈ mπ while the sub-
leading TPE potential of Eqs. (4) cannot be neglected around
momentum transfers of about 1 fm−1. Clearly, at momentum
transfers of the order of the pion mass (mπ ≈ 0.7 fm−1) or
the Fermi momentum in nuclear matter at saturation (kF ≈
1.35 fm−1), the placement of this TPE potential at NNLO
does not reflect its actual strength. Two comments are in
order. First, for large momentum transfers q 	 mπ we have
VLO → q0, VNLO → q2 log q, and VNNLO → q3. Second, for
small momentum transfers q → 0, the OPE indeed scales as
q2 in spin-singlet partial waves.

Let us study the impact of TPE added to OPE in the 1S0

phase shifts. We define a nucleon-nucleon potential in this
partial wave that is of the form

V (p′, p) ≡ Vπ,ππ + Vct. (6)

Here, Vπ,ππ consists of OPE and the leading and subleading
TPE, while Vct denotes the contact potential to be specified.

At leading order and NLO, the contact potentials are
given by

V (0)
ct (p′, p) = C̃ (7)

and

V (2)
ct (p′, p) = C(p′2 + p2), (8)

respectively. The potentials are also regularized via the nonlo-
cal separable regulator

V → f (p′2/�2)V f (p2/�2) (9)
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FIG. 3. 1S0 phase shifts as a function of the momentum regulator
cutoff � at laboratory energies of E = 4 (dashed), 15 (solid), 75
(dash dotted), and 225 MeV (dotted) for the potential Vπ,ππ + V (0)

ct .
The black stars show the reference phase shifts at these energies.

using p ≡ |p|, p′ ≡ |p′|,
f (x) = e−xn

, (10)

and n = 3.
At leading order we adjust the low-energy constant (LEC)

C̃ such that the phase shift at the laboratory energy E0 =
15 MeV reproduces the value from the high-precision Idaho-
N3LO potential [33], which we take as a reference throughout
this work. The precision of this reference is sufficient for
our purposes, as the phase shifts of this potential are virtu-
ally indistinguishable from a recent partial-wave analysis of
nucleon-nucleon scattering data [62].

The 1S0 phase shifts for our leading-order potential are
shown as the red dash-dotted line in Fig. 1. For comparison,
we also show the results from potentials with other com-
binations of pion exchanges, such as the sum of OPE and
leading TPE (orange dashed line) and OPE plus subleading
TPE (green dash-dot-dotted line). The chiral potential Vπ,ππ

stands out through its accuracy for scattering energies below
and above the energy E0 used for renormalizing the contact
LEC. This suggests that the combination Vπ,ππ of OPE and
TPE should be taken as the leading-order contribution from
chiral physics in the 1S0 partial wave. This is the main result
of this paper. It is consistent with the anticipation obtained
from Fig. 2. Although the combination of OPE and leading
TPE (shown as the orange dashed line in Fig. 1) brings the
phase shift closer to reference, it fails to reproduce the char-
acteristic decrease of the phase shifts with increasing energy,
i.e., a lack of increasing repulsion with E , and the amplitude
zero is nowhere near E ≈ 250 MeV. It is also less accurate
than the combination of OPE and subleading TPE. This mo-
tivates us to promote both the leading and subleading TPE
contributions to LO.

We note that the phase shifts presented in Fig. 1 include
chiral physics plus a single LEC that accounts for unknown
short-range physics. Figure 3 demonstrates that the potential
Vπ,ππ + V (0)

ct yields renormalization group (RG) invariant 1S0

phase shifts as the cutoff � is increased. For a comparison,

FIG. 4. Phase shifts as a function of laboratory energy of the
interaction Vπ,ππ + V (0)

ct at low momentum cutoffs as indicated and
compared to the reference (solid black line). The phase shifts become
increasingly repulsive as the cutoff is increased. For E > 15 MeV
they cross over and become more repulsive than the reference for
cutoffs in the range 500 � � � 520 MeV.

the reference phase shifts are shown as black stars. Figure 3
also shows that the phase shifts are strongly cutoff dependent
for � � 750 MeV. This can be understood as follows: In
coordinate space, the OPE potential exhibits a 1/r3 behavior
at short distances, where r denotes the two-nucleon relative
distance. The TPE potential exhibits a significantly more sin-
gular 1/r6 short-distance behavior with a typical momentum
scale kππ ≈ 115 MeV set by the chiral couplings employed in
the TPE potential [35]. The cutoff needs therefore to be sig-
nificantly larger than kππ to reach convergence. Alternatively,
the relevant scale of the TPE interaction can also naively be
estimated by

�TPE ≡
√

2mπmN ≈ 510 MeV. (11)

Cutoffs lower than �TPE therefore remove physics from the
TPE. This effect is highlighted in Fig. 4. As before, we
adjusted the leading-order contact V (0)

ct to reproduce the ref-
erence phase shift at E0 = 15 MeV. We clearly see the effects
of removing TPE physics for cutoffs � � 500 MeV. Indeed,
comparison with Fig. 1 shows that the phase shifts at a cutoff
of � = 475 MeV are close to those of OPE plus a contact.
As we will see below, adding the subleading contact V (2)

ct will
restore RG invariance in this case.

Figure 4 also allows us to estimate the breakdown momen-
tum in this partial wave as the momentum regulator cutoff
value for which the phase shift predictions are closest to
the reference [34]. Following this strategy we infer �b ≈
500–520 MeV. This is significantly larger than what was
found when only OPE physics is included at leading order
[22,34,35]. It is also in line with expectations from neglecting
the physics of more massive exchange mesons.

We repeated the above calculations with cutoffs �SFR =
900 MeV and 2 GeV in the spectral function regulator. The
phase shifts were consistent with RG invariance in these cases
as well. Figure 5 demonstrates this for �SFR = 2 GeV. Our
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FIG. 5. 1S0 phase shifts as a function of the momentum cutoff
� using the cutoff �SFR = 2 GeV in the spectral function regulariza-
tion. Phase shifts are shown at laboratory energies of E = 4 (dashed),
15 (solid), 75 (dash dotted), and 225 MeV (dotted) for the potential
Vπ,ππ + V (0)

ct . The black stars show the reference phase shifts at these
energies.

analysis yields a breakdown scale of about 475 and 425 MeV
for �SFR = 900 MeV and 2 GeV, respectively.

III. SYSTEMATIC IMPROVEMENTS

We propose to employ higher-order contacts to systemati-
cally improve upon the results of our leading-order potential
Vπ,ππ + V (0)

ct . Thus, contact (8) enters as the subleading cor-
rection [34]. This introduces a new LEC, C, and we adjust
C̃ and C such that the reference phase shift and its slope are
reproduced at the laboratory energy E0 = 15 MeV. In our
numerical work, we used the secant slope between E0 and
a second point just below this energy rather than the exact
tangent slope. We work at a cutoff of � = 800 MeV.

The question then arises whether one should treat the
subleading correction perturbatively, or not. In the nonper-
turbative approach, the full potential is iterated to solve the
Lippmann-Schwinger equation, while the perturbative ap-
proach is linear in the subleading correction. We followed
both approaches and found similar results for the phase shifts.

Let us discuss the nonperturbative approach. A simultane-
ous fit of the two LECs (C̃,C) to the phase shift and its slope at
E0 is somewhat challenging. Instead, we first calibrated C̃ and
subsequently determined C such that the reference phase shift
is reproduced at E0. Repeating this procedure for various val-
ues of C̃ yields a one-parameter curve C(C̃). Interestingly, we
found that this is a quadratic function to very high accuracy.
We then moved along this parabola and determined the point
where the slope of the phase shift agrees with the reference
as well. The resulting phase shifts are shown as a dashed
blue line in Fig. 6 and compared to our leading-order results
(red dash-dotted line). The improvement is clearly visible.
Figure 7 shows the absolute differences between our phase
shifts and the reference on a log-log plot. The systematic
power-law improvement from the quadratic contact is evident.

FIG. 6. Systematic improvements of the 1S0 phase shifts by
adding the subleading contact V (2)

ct to the potential Vπ,ππ + V (0)
ct .

The cutoff is 800 MeV. Results for the potentials Vπ,ππ + V (0)
ct and

Vπ,ππ + V (0)
ct + V (2)

ct are shown as a dash-dotted red line and as blue
lines, respectively. The dashed and the dotted blue line correspond
to the nonperturbative and the perturbative inclusion of the sublead-
ing contact V (2)

ct , respectively, and the solid black line shows the
reference.

We also note that C�2
b/C̃ ≈ −4, and this is consistent with

EFT expectations, where this dimensionless number should
be O(1) in size.

In a second approach, we treated contact (8) in perturbation
theory. Our leading-order theory is adjusted to the reference
phase shift at E0 and the corresponding LECs are (C̃,C) =
(C̃0, 0). In a perturbative approach the LECs become (C̃0 +
δC̃, δC) in the presence of the potential V (2)

ct . We expand the
phase shift as

δ(E ) ≈ δ(E )|0 + ∂δ(E )

∂C̃

∣∣∣∣
0

δC̃ + ∂δ(E )

∂C

∣∣∣∣
0

δC. (12)

FIG. 7. Log-log plot of absolute differences to the reference
phase shifts versus the energy difference to the matching point.
The cutoff is 800 MeV. Results for the potentials Vπ,ππ + V (0)

ct and
Vπ,ππ + V (0)

ct + V (2)
ct are shown as dash-dotted red and as blue lines,

respectively. The dashed and the dotted blue line correspond to
the nonperturbative and the perturbative inclusion of the subleading
contact V (2)

ct , respectively.
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FIG. 8. The 1S0 phase shifts as a function of the laboratory
energy E with the interaction Vπ,ππ + V (0)

ct + V (2)
ct at low cutoffs

as indicated and compared to the reference (solid black line). The
additional contact V (2)

ct restores the RG invariance that was lacking
in Fig. 4.

Here, the subscript zero implies that all functions are eval-
uated at (C̃0, 0). We determine the derivatives numerically.
Keeping the phase shift at E0 unchanged implies

∂δ(E0)

∂C̃

∣∣∣∣
0

δC̃ + ∂δ(E0)

∂C

∣∣∣∣
0

δC = 0, (13)

and, thus, a linear relation between δC̃ and δC. A one-
parameter search along this line yields the optimal point that
also reproduces the slope of the reference phase shifts at E0.
We can estimate this parameter by looking at

δ(E ) = δ0(E ) + α f0(E ), (14)

with

f0(E ) ≡
(

∂δ(E )

∂C̃

∂δ(E0)

∂C
− ∂δ(E )

∂C

∂δ(E0)

∂C̃

)
0

. (15)

We seek the parameter α such that the phase shift be repro-
duced at the neighboring point E . Thus,

α = δRef (E ) − δ0(E )

f0(E )
. (16)

We then compute the resulting phase shifts using Eq. (12).
The corresponding results are shown as blue dotted lines in
Figs. 6 and 7. We see that the phase shifts from perturbative
and nonperturbative solutions are close to each other, and
that both yield a power-law improvement of our leading-order
results. We also note that �2

bδC/(C̃0 + δC̃) ≈ −0.03, and this
is smaller in magnitude than expected from EFT estimates.

We also revisited the low cutoffs at and below the scale
�TPE in Eq. (11) and employed the subleading contact V (2)

ct in
Eq. (8) nonperturbatively by matching the phase shift and its
slope to the reference at a laboratory energy of 15 MeV. The
results are shown in Fig. 8 and comparison with Fig. 4 shows
that RG invariance is restored also at low momentum cutoffs.

Let us discuss other cutoffs. First, we checked whether
the systematic improvements from the additional contact in-
volving the LEC C discussed above are reproduced at larger

cutoffs � while keeping �SFR fixed at 700 MeV. Both per-
turbatively and nonperturbatively, we obtain improvements
qualitatively identical to those shown in Fig. 7 for cutoff
values up to � ≈ 2 GeV. Second, we changed �SFR to
900 MeV. In this case, we were able to obtain the same
improvements, nonperturbatively, for cutoffs � as large as 4
GeV. Likewise, for �SFR = 2 GeV we also obtain the same
power-law improvements up to � = 4 GeV in the nonper-
turbative approach. In the perturbative approach, however,
fitting the additional contact to match the slope at E0 at these
larger values of �SFR becomes numerically challenging for
� � 1 GeV.

IV. THE ROLE OF � ISOBAR DEGREES OF FREEDOM

The strong contributions of the subleading TPE in chiral
EFT, i.e., the relatively large values of the pion-nucleon LECs
ci, are usually attributed to “resonance saturation.” Conse-
quently, these couplings become more natural in size when the
� isobar degrees of freedom are included. Notably, such chiral
EFTs have TPE terms that involve a � excitation already
at NLO in the Weinberg power counting. The corresponding
expressions for the potentials (2) were derived by Kaiser et al.
[63] and we use those published by Krebs et al. [64] in their
Eqs. (2.5)– (2.8). The chiral potential we employ thus consists
of the OPE [given in Eq. (1)], leading TPE [given in Eqs. (3)],
the contact (7), and the leading � contributions to TPE. In our
numerical implementation this potential is regularized with
n = 4 in the regulator (10) and spectral-function regulariza-
tion was used with a cutoff of �SFR = 700 MeV.

We repeated the calculations presented above and found
very similar results regarding the quality of the phase shifts
in the 1S0 partial wave, a breakdown momentum �b ≈
500 MeV, and a systematic power-law improvement when
contact (8) quadratic in momenta is included. An example is
shown in Fig. 9, to be compared with Fig. 6.

V. SUMMARY AND DISCUSSION

We analyzed chiral EFT in the 1S0 partial wave and propose
to promote the long-range parts of the leading and subleading
TPE to accompany OPE along with a single contact V (0)

ct at
leading order. Naturally, power counting in EFT applies to
observables or amplitudes. Nevertheless, the promotion of
the long-range parts of the TPE to leading order is inspired
by the unexpectedly large matrix elements of the TPE po-
tential that formally enter at NNLO in the Weinberg power
counting. We find that our leading-order interaction cures two
problems with the standard approach. First, the phase shifts
in the 1S0 partial wave are accurately reproduced and RG
invariant for scattering energies of the order m2

π/mN and for
large cutoffs. Second, the estimated breakdown momentum
�b ≈ 500 MeV in 1S0 is consistent with assumptions from
chiral EFT. We also showed that adding a contact quadratic
in momenta as a subleading correction leads to a systematic
power-law improvement of the phase shifts. These results are
based on an implementation of chiral EFT using spectral func-
tion regularization, and they are robust as the corresponding
cutoff �SFR is varied from 700to 900 MeV and to 2 GeV.
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FIG. 9. The 1S0 phase shifts as a function of the laboratory en-
ergy E for the V �

π,ππ interaction, i.e., our leading-order potential with
� isobars included in the leading TPE potential. The dash-dotted
red line uses a single contact V (0)

ct to reproduce the value of the
reference phase shift at E0 = 15 MeV. The dashed blue line shows
the phase shift when leading and subleading contacts V (0)

ct + V (2)
ct are

fit to reproduce the value and the slope of the reference phase shift at
E0. The cutoff is 800 MeV, and the reference phase shifts are shown
as a solid black line. The results are close to those shown in Fig. 6.

We also pointed out that chiral EFTs with momentum cutoffs
below about 500 MeV are really “two-pion-less” EFTs as they
cut off parts of the TPE; in such cases higher-order contacts
are needed for maintaining proper RG invariance. Lastly, we
found that including the leading � contributions to TPE as a
new leading-order contribution yields similar results.

We note that the proposed promotion of solely the
long-range parts of TPE—while sufficient from an RG
perspective—would preclude one to explore the quark-mass
dependence of the resulting nucleon-nucleon potentials. Such
studies need to include the polynomial terms of the TPE
potential (see, e.g., Ref. [65]).

We also note that the chiral expansion of nucleon-nucleon
forces converges only slowly (see Refs. [56,66]). This raises
the question if higher orders of TPE should also be promoted.

While we do not have a rigorous answer to this question, this
work demonstrates that the proposed promotions are sufficient
to address two known problems in the 1S0 partial wave.

We finally remark that results shown in Fig. 1 seem to be
consistent with model-independent large-Nc arguments from
quantum chromodynamics [67–70]. In the limit of a large
number of colors, Nc, potentials with the same spin/isospin
structure as WT , VC , and WS in Eq. (2) are leading order. We
can easily identify the potential WT with OPE, while VC and
WS appear as contributions to subleading TPE. In contrast all
potentials contributing to the leading TPE are suppressed by
factors 1/N2

c from large-Nc arguments. Figure 1 shows that
the 1S0 phase shifts are well described by a combination of
OPE with subleading TPE while the impact of leading TPE
is significantly smaller. Thus, promoting subleading TPE to
one order before leading TPE could be seen as natural from
the 1/Nc expansion. We therefore speculate that a combi-
nation of arguments from large Nc and chiral perturbation
theory [71–76] could guide us in the construction of nuclear
potentials.
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