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In this work we present a framework that allows one to solve the Faddeev equations for three-nucleon
scattering using the wave-packet continuum-discretization method. We perform systematic benchmarks using
results in the literature and study in detail the convergence of this method with respect to the number of wave
packets. We compute several different elastic neutron-deuteron scattering cross-section observables for a variety
of energies using chiral nucleon-nucleon interactions. For the optimized next-to-next-to-leading order interaction
N2LOopt we find good agreement with data for nucleon scattering-energies ELab � 70 MeV and a slightly larger
maximum of the neutron analyzing power Ay(n) at ELab = 10 and 21 MeV compared with other interactions.
This work represents a first step towards a systematic inclusion of three-nucleon scattering observables in the
construction of next-generation nuclear interactions.
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I. INTRODUCTION

Nucleon-nucleon (NN) and nucleon-deuteron (Nd) scatter-
ing are prototypical processes for analyzing ab initio nuclear
Hamiltonians [1,2]. While NN cross sections are straightfor-
ward to calculate and are nowadays routinely being used to
calibrate modern NN interactions [3–6], the computation of
three-nucleon (NNN) scattering processes like Nd scattering
is much more demanding due to the presence of energy poles
in the underlying equations, contributions from NNN inter-
actions, and the existence of multiple reaction channels. In
fact, it is a computationally challenging task to numerically
solve the Faddeev equations [7] and its extensions [8–12] in
a reliable and accurate way. That is why it was only in the
late 1980s that realistic quantum scattering calculations [13]
began to emerge. Due to this complexity, it has not yet been
feasible to perform a simultaneous statistical analysis of NN
and NNN interactions using Nd and NN cross section data.

In this paper we present an implementation of the wave-
packet continuum-discretization (WPCD) method [14] to
solve the Faddeev equations with the chiral optimized next-to-
next-to-leading order (N2LOopt)[15] interaction. The WPCD
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method is one of many bound-state techniques [16] for solv-
ing the multiparticle scattering problem, and especially bears
similarities with the continuum-discretized coupled chan-
nels method [17–19]. The main advantages of the WPCD
method are (i) coarse graining the continuum using a square-
integrable basis smooths out all singularities and facilitates
straightforward numerical solutions of the Faddeev equa-
tions for the scattering amplitude, (ii) all on-shell energy
dependence resides in a closed-form expression of the channel
resolvent, and (iii) once the wave-packet basis is antisym-
metrized, which has to be done only once computationally, the
computational cost of predicting scattering observables scales
sublinearly with the number of scattering energies. This opens
ways for efficient computation of coarse-grained Nd predic-
tions for several scattering energies. The computational cost
depends polynomially on the number of wave packets used
for discretizing the continuum. To that end we also study the
convergence of the WPCD results with respect to the number
of employed wave-packet basis states.

We benchmark the WPCD results against published cross
section results for the traditional Nijmegen-I NN interaction
[20] and systematically compare and analyze different cross
section observables at a variety of energies using the Idaho
next-to-next-to-next-to-leading order (Idaho-N3LO) [21] and
N2LOopt interactions. Both interactions have a history of be-
ing routinely employed in ab initio studies of nuclear structure
and nucleon-nucleus reactions. The latter one, N2LOopt, is a
next-to-next-to-leading order chiral interaction optimized to
reproduce NN scattering phase shifts, and yields an accurate
description of low-energy NN scattering data up to 125 MeV
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scattering energy. More importantly, it also reproduces key
nuclear properties such as the location of the oxygen neutron
drip-line and calcium shell closures without having to invoke
NNN interactions. N2LOopt also gives a rather good descrip-
tion of selected nuclear structure physics, transitions, and
reaction data; see, e.g., Refs. [22–24]. Of course, a complete
calculation requires NNN interactions and these correlations
can play a pivotal role for obtaining realistic ab initio pre-
dictions of bound and continuum nuclear observables; see,
e.g., Refs. [25–32]. From these observations it is therefore
interesting to predict Nd scattering observables with the
N2LOopt interaction. In this work we pay particular attention
to the low-energy neutron (n) analyzing power Ay(n), where a
long-standing puzzle [33] resides,1 and the neutron-deuteron
(nd) differential cross section dσ/d� at nucleon laboratory
scattering energy ELab = 64.5 MeV. The latter observable is
known to depend sensitively on NNN interactions [34,35].

In Sec. II we present the formalism that we implemented
to solve the Faddeev equations for elastic Nd scattering and
benchmark its convergence with respect to basis dimension.
In Sec. III we present predictions for nd scattering cross sec-
tions using the N2LOopt interaction, and end with a summary
and outlook in Sec. IV.

II. ELASTIC Nd SCATTERING USING THE WPCD
METHOD

In this section, we present (i) the WPCD method for solv-
ing the Nd Faddeev equations in momentum space (Sec. II A),
(ii) how to construct a WPCD-basis and its partial-wave ex-
pansion (Sec. II B), (iii) our computational implementation for
solving the resulting matrix equation (Sec. II C), and (iv) a
convergence analysis of the WPCD method (Sec. II D). All
detailed expressions are relegated to Appendices A–E.

A. The Faddeev equations in momentum space

The Faddeev equations can be reduced to the Alt-
Grassberger-Sandhas (AGS) equation [11], which for elastic
Nd scattering and without a NNN interaction can be written
as

Ûi(E ) = P̂v̂i + P̂v̂iĜi(E )Ûi(E ), (1)

where E denotes the on-shell scattering energy and where we
used the usual “odd-man-out” notation such that the index i
here refers to the incoming nucleon relative to an antisymmet-
ric state of a nucleon pair ( jk), e.g., the deuteron, for unequal
i, j, k ∈ {1, 2, 3}. Our goal is to calculate elastic cross sec-
tions via the elastic transition operator Ûi. The three operators
Ûi are related via the permutation operators P̂i jk ≡ P̂i j P̂jk :

Û2 = P̂123Û1 = P̂12P̂23Û1,

Û3 = P̂132Û1 = P̂13P̂32Û1, (2)

1The so-called Nd vector Ay puzzle, which is equally observed
for low-energy pd and nd scattering. The same puzzle is observed
for the deuteron vector analyzing power iT11 =

√
3

2 Ay(d ) whereas the
deuteron tensor analyzing power is well understood.

where P̂12 permutes nucleons 1 and 2 etc. The operator P̂ ≡
1 + P̂123 + P̂132 ensures full antisymmetrization of the Nd
state. See Appendix A for the expressions we employ to
compute the partial-wave projected P̂123 operator. The two
remaining operators entering Eq. (1) are the NN potential
v̂i acting in the pair-system ( jk), and the channel resolvent
Ĝi(E ) ≡ 1

E−Ĥi±iε
, where Ĥi ≡ ĥi ⊕ ĥ0

i is the full Hamiltonian,

ĥi = ĥ0 + v̂i is the NN Hamiltonian, ĥ0 is the kinetic energy
of the pair, and ĥ0

i is the free Hamiltonian of the third nucleon
relative to the pair. Since Ûi for i = 1, 2, 3 in Eq. (1) are not
independent it suffices to solve for only one of them, e.g., U1.
For the most part we will also drop this subscript. This will
hopefully avoid possible confusion with respect to subscripts
denoting different basis states defined below.

In the WPCD method, the channel resolvent Ĝ(E ) is di-
agonal and straightforward to evaluate analytically using a
WPCD-basis of scattering states. This has the advantage of
removing all complications from singularities that plague
the Faddeev method formulated in a plane-wave basis. Such
points are essentially averaged out when using wave packets
to represent states in the continuum. Furthermore, the entire E
dependence of the scattering process resides in the channel re-
solvent Ĝ(E ) and multiple scattering energies can be accessed
without inducing much computational overhead.

We end this section by linking the form of the AGS equa-
tion used in WPCD, Eq. (1), to its conventional formulation
used as a starting point in standard Faddeev methods. Using
that t̂ Ĝ0 ≡ v̂Ĝ is valid by definition, and v̂ = Ĝ−1

0 when acting
on on-shell states, enables us to replace the interaction v̂ and
the channel resolvent Ĝ with a fully off-shell NN t matrix and
the free resolvent Ĝ0 at the on-shell energy E . This latter re-
placement is necessary since the channel resolvent cannot be
straightforwardly evaluated a priori using only a plane-wave
basis. This also introduces an explicit energy-dependence in
the NN t matrix and thereby in the integral kernel of the
AGS equation. In addition to this, singularities arise in the
representation of both these operators [2]. This can be dealt
with using subtraction techniques. Such complications are
avoided altogether in the WPCD method.

B. Setting up the WPCD basis

We define a free wave packet (FWP) for a pair of par-
ticles with relative momenta p within some interval (bin)
Di ≡ [pi, pi+1], to be defined below, as

|xi〉 = 1

Ni

∫
Di

d p p f (p)|p〉, (3)

where |p〉 is a plane-wave state with momentum p and normal-
ization 〈p′|p〉 = δ(p′−p)

p′ p . This normalization differs from the
one used in Ref. [14], where 〈p′|p〉 = δ(p′ − p) is used. Here,
Ni is the normalization constant of the state |xi〉. The func-
tion f (p) is a weighting function which allows us to define,
for example, momentum wave-packets, f (p) = 1, or energy

wave packets, f (p) =
√

p
μ0

, where μ0 is the reduced mass

of the two-body system. For the two choices, the normaliza-

tion can be shown to be Ni = pi+1 − pi and Ni = p2
i+1

2μ0
− p2

i
2μ0

,
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respectively. The naming convention for the two kinds of wave
packets indicates whether they correspond to eigenstates of
the momentum operator p̂, or the kinetic energy operator ĥ0,
of the two-body system. In the three-body system we define
momentum FWPs as

|Xi j〉 = |xi〉 ⊗ |x̄ j〉, (4)

where we use the bar-notation to denote wave packets with
the momenta q ∈ D̄ j ≡ [q j, q j+1] of the third particle relative
to the center of mass (c.m.) of the pair. In this work, we use
the same number of wave packets, NWP, when discretizing
the continuum of Jacobi momenta p and q. To discretize
continuous momenta we employ the generalized Chebyshev
grid [36]

pi = α tant

(
2i − 1

4NWP
π

)
, i = 1, . . . , NWP, (5)

and in this particular work let α = 200 MeV and t = 1. More-
over, we discretize the continua of p and q momenta using
the same Chebyshev grid. We did not observe any immediate
advantages of using different kinds of momentum discretiza-
tion grids for pi and qi. Our discretization yields wave packets
residing in momentum bins reaching momenta up to ≈10
GeV when using basis sizes with NWP ≈ 100, for which we
also obtain rather well-converged results. Note that the widths
of the momentum bins increases with i, such that the vast
majority of the wave packets reside below momenta of ≈500
MeV, which is where we typically have the most relevant
contributions from modern chiral NN potentials.

We work in a partial-wave representation of NNN states
and introduce a spin-angular basis with total angular momen-
tum J and isospin T ,

|α〉 ≡ |(LS)J (l 1/2) j(J j)J (T 1/2)T 〉 , (6)

where L, S, J , and T denote the relative orbital angular
momentum, spin, total angular momentum, and isospin, re-
spectively, for the antisymmetric nucleon-pair system. The
orbital angular momentum of the third (spin-1/2) nucleon
relative to the c.m. of the pair systems is denoted with l and its
total angular momentum is denoted with j. Each J j-coupled
channel has a total angular momentum J . We can therefore
construct NNN partial waves as

|X α
i j

〉 ≡ |xi〉 ⊗ |x̄ j〉 ⊗ |α〉
= |xi, x̄ j ; (LS)J (l 1/2) j(J j)J (T 1/2)T 〉. (7)

All NNN partial waves are equipped with a unique combina-
tion of good quantum numbers J and parity � = (−1)L+l .
In our calculations we explicitly break isospin T by including
the charge dependence of the strong NN interaction in the 1S0

channel. The impact of this T = 3
2 − 1

2 isospin coupling on
elastic Nd scattering is very small [37]. On the other hand,
the computational costs of including it is negligible. Note that
we do not include Coulomb forces.

The FWP states form a square-integrable basis, with ap-
propriate long-range behavior to approximate scattering states
[38]. It is also straightforward to represent matrix elements of

the permutation operator P̂ and the NN potential operator v̂1

in a basis of such states. See Appendix B for details regarding
these projections. Note that in this work we use both mo-
mentum and energy wave packets. Moreover, it turns out that
the channel resolvent Ĝ(E ) is diagonal (see Appendix B 4) in
an energy wave-packet basis of scattering states defined next.
This is one of the main advantages of the WPCD method.

The basis of NNN scattering wave packets (SWP) is de-
fined as

|Zα
i j

〉 = ∣∣zα
i

〉⊗ |x̄ j〉 ⊗ |α〉, (8)

where |zα
i 〉 are scattering wave packets (eigenstates) of the NN

Hamiltonian ĥ in channel α. The elastic transition operator
will be solved for in the SWP basis. This basis can be approx-
imated in a finite FWP basis as

∣∣zα
i

〉 ≈ NWP∑
j=1

〈
x j

∣∣zα
i

〉|x j〉 ≡
NWP∑
j=1

Cα
ji|x j〉. (9)

where the (real) Cα
ji coefficients are obtained as eigenvectors

via a numerical diagonalization of the NN Hamiltonian in a
basis of FWPs |xi〉. The coefficients allow for straightforward
transformation between FWP and SWP partial-wave bases.
From the diagonalization we obtain eigenvectors and eigen-
values, i.e., scattering wave packets |zα

i 〉 with eigenenergies εα
i

such that ĥ|zα
i 〉 = εα

i |zα
i 〉. The eigenenergies are used to define

the bin boundaries Dα
i ≡ {Eα

i , Eα
i+1} for the scattering wave

packets |zα
i 〉, which we do according to [14]

Eα
1 ≡ 0,

Eα
i ≡ 1

2

(
εα

i−1 + εα
i

)
,

Eα
NWP+1 ≡ εα

NWP
+ 1

2

(
Eα

NWP
− Eα

NWP−1

)
. (10)

We will refer to the (negative) energy bin corresponding to the
deuteron bound state as |zαd

id
〉 and the corresponding NNN par-

tial waves with a deuteron channel as |αd〉. The wave-packet
basis employed here approximates the long-range properties
of scattering states rather well [14]. This is important for
accurately describing scattering observables and also yields
a sufficient description of bound states.

For all computations in this work we use a spin-angular
basis of positive and negative parity NNN partial waves with
J � 17/2 and J � 3. This leads to � 60 channels per NNN
partial wave. In Sec. II D, we study the convergence of the
WPCD method in detail and find that using NWP ≈ 125 wave
packets in both Jacobi momenta is more than sufficient for ac-
curately computing low-energy elastic scattering observables
with ELab � 100 MeV [2], which is the region we focus on in
this work.

C. Computational implementation

Naturally, we solve for the transition operator Û for each
combination of NNN total angular momentum J and parity
� separately. We represent Eq. (1) in matrix form using a
SWP basis,

U(E ) = A + AG(E )U, (11)
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FIG. 1. The nd scattering phase shifts (real and imaginary parts) in the doublet and quartet spin channels of the 1
2

+
(left panel) and 5

2

−

(right panel) NNN partial waves, respectively. Standard Faddeev results at ELab = 13 MeV are from Ref. [2]. See Appendix E for more on the
notation.

where A ≡ CT PVC. Here, we defined finite-dimensional ma-
trices for the NN -potential matrix V and the permutation
matrix P in a NNN momentum-FWP basis. They are obtained
using the expressions in Appendices B 2 and B 3, respectively.
Note that V and C are block diagonal for momenta q in
different bins D̄ j and quantum numbers l and j. Once we have
diagonalized the NN Hamiltonian, we construct an approxi-
mate SWP basis and setup the (block-diagonal) matrix C of
Cα

i j coefficients in Eq. (9). The eigenvalues of G are easily
obtained in the SWP basis; see Appendix B 4. This is of key
importance.

Formally, Eq. (11) is a matrix equation that can be solved
via inversion. However, straightforward inversion, or numer-
ically stable equivalents, is unviable for realistic nuclear
potentials since the matrix A is too large to be stored in mem-
ory for the basis sizes we require for convergence. Fortunately
it is possible to store the matrices necessary to construct A in
memory, i.e., C, V, and P. Indeed, P only has to be computed
once and is very sparse (>99%). We see that A is 100 times
denser than P.

We solve Eq. (11) for the on-shell transition operator in the

SWP basis U
α′

d αd

id j ≡ 〈Zα′
d

id j |Û |Zαd
id j〉, i.e., the transition matrix

elements corresponding to an incoming nucleon with on-shell
momentum q ∈ D̄ j scattering elastically off a deuteron. We
compute this amplitude by summing the first 20–30 terms of
the Neumann (or Born) series

U
α′

d αd

id j = [U](id , j;α′
d ),(id , j;αd ) =

∞∑
n=0

[AKn](id , j;α′
d ),(id , j;αd ), (12)

where we have defined K(E ) ≡ G(E )A. Note that G, and
thereby also K, depend on the on-shell scattering energy E ,
and that since G is diagonal, A and K have identical densities.
Thus, K must be recomputed in segments and as needed for
the repeated matrix-vector multiplications needed to generate
the terms of the series above. We employ a Padé extrapolation
[39] to handle a divergent Neumann series and we find that
this rational approximant facilitates a convergent resumma-
tion in our case; see Appendix C.

Next to the computational cost of initially constructing P,
the cost of setting up the kernel K constitutes the numeri-
cal bottleneck in our current implementation of the WPCD

method as it must be repeated several times. The product
GA is trivial, which in turn makes it trivial to compute
transition matrices at several different energies E with the
WPCD method. The product CT PVC is a product of the
sparse matrix P with the block-diagonal matrices CT and VC
on either side. Note also that C and V have the same block-
diagonal structure. For the product AKn we reuse the on-shell
row(s) of the AKn−1 matrix product computed for the (n −
1)th term.

The (complex) on-shell transition amplitudes U (E ) for
spin- 1

2 –spin-1 scattering constitutes a 3 × 3 matrix. Once this
matrix is computed in all relevant NNN partial waves, i.e.,
for J � 17/2 and J � 3 in our case, it is straightforward
to obtain the 6 × 6 spin-scattering matrix for describing the
elastic Nd scattering cross sections at kinetic energy ELab in
the laboratory frame of reference; see Appendices D and E.

D. Convergence with respect to NWP

In the limit NWP → ∞, amplitudes computed using the
WPCD method approach results from the standard Faddeev
method utilizing a plane-wave basis. This infinite limit cannot
be reached in practice and all WPCD predictions that we
present are based on solving Eq. (1) in a finite wave-packet
basis. To analyze the convergence of predictions with respect
to increasing NWP we computed nd scattering phase shifts,
shown in Fig. 1 for the doublet and quartet spin channels
in the J � = 1

2
+

and 5
2

−
NNN partial waves, respectively,

using the Nijmegen-I NN interaction [20]. For this potential
there exists published results [2] from a standard Faddeev
calculation at ELab = 13 MeV, and this provides a valuable
benchmark to ensure the correctness of our implementation.
Detailed numerical inspection of the results reveals that we re-
cover standard Faddeev results for all imaginary and real parts
of the NNN phase shifts for J � � 7

2
±

within ≈1% using
NWP � 125 wave packets. We also observe that the magnitude
of the imaginary part of the phase shifts is |Im(δ)| � 10−2

degrees for scattering energies below the deuteron breakup
threshold. The convergence with increasing NWP is rather
slow, however, which is to be expected since a packetized ba-
sis corresponds to a coarse-grained continuum representation
across a wide range of energies simultaneously. In Fig. 1 it
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FIG. 2. The neutron analyzing power Ay(n) at ELab = 35 MeV
vs c.m. scattering angle θc.m. using the Nijmegen-I NN potential. The
WPCD prediction approaches the standard Faddeev result [2] with an
increasing number of wave packets NWP and they overlap for NWP �
125.

is nevertheless clear that the WPCD method yields highly ac-
curate scattering phase shifts for ELab � 50 MeV already for
NWP � 75. See Appendix E for further information about how
we computed phase shifts from the partial-wave scattering
amplitudes U .

Predicting scattering observables is more interesting than
scattering phase shifts since they are directly comparable to
experimental data. To benchmark our WPCD computation of

observables we compare with the results2 from a standard
Faddeev calculation [2] of the neutron analyzing power Ay(n)
at ELab = 35 MeV using the Nijmegen-I NN potential; see
Fig. 2. For the WPCD-calculations we varied the number
of wave packets between 50 � NWP � 150. The convergence
pattern is very similar to the one we observed for the phase
shifts and for NWP � 125 we hence claim convergence for this
observable. Also in this calculation we included NNN partial
waves with J � � 17

2
±

and NN channels with J � 3.
To further assess the convergence of the WPCD method

with respect to NWP, we study a range of vector (A) and spher-
ical tensor (T ) analyzing powers, spin transfer coefficients
(K ), and differential cross sections for 50 � NWP � 125 at
ELab = 3, 10, 65 MeV using the well-known chiral Idaho-
N3LO interaction [21]; see Fig. 3.

With this result we can establish that for most elastic nd
scattering observables it is indeed enough to employ NWP �
75 wave packets to obtain sufficiently accurate predictions
for ELab � 70 MeV. If one can tolerate a WPCD method
error comparable to typical experimental errors of Nd scat-
tering data, then even NWP ≈ 50 will be enough for most
low-energy Nd predictions. Note that the number of wave
packets dramatically impacts the computational cost of the
WPCD calculations since this scales as ∼N4

WP. Also, solving

2Published results were traced from a figure in Ref. [2]. The calcu-
lations in that work are reported with 1–2% accuracy.
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FIG. 3. The convergence of WPCD predictions for typical elastic nd differential scattering cross sections and polarization observables for
increasing neutron scattering energies with respect to an increasing number of wave packets using the Idaho-N3LO NN interaction [21].
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for all amplitudes with ELab � 100 MeV is merely ≈2 times
slower than solving at a single scattering energy.

In Fig. 3 the wave-packet convergence of the tensor analyz-
ing power T21 stands out and exhibits a noticeable sensitivity
to NWP. This observable is known to also depend more
strongly on Jmax = 4 contributions of the NN interaction
[2]. Observables that depend on finer details of the nuclear
interaction will exhibit a slower convergence with respect
to increasing NWP, due to the coarse graining of WPCD
. Fortunately, poorly converging predictions can be identi-
fied straightforwardly. We explored various modifications to
the wave-packet distributions, e.g., increasing the density of
wave-packets in the vicinity of the scattering energy, but this
did not lead to any clear improvements.

III. PREDICTING nd-SCATTERING CROSS SECTIONS
USING N2LOopt

In this section we present selected low-energy and elas-
tic nd cross sections using the N2LOopt NN interaction and
compare with nd as well as proton-deuteron (pd) data. We
can neglect method uncertainties since we employ NWP = 125
wave packets for all predictions, unless otherwise stated.

The world database of Nd scattering cross sections con-
tains mostly pd data from experiments with either polarized
or nonpolarized proton or deuteron beams. Indeed, nd scat-
tering is difficult to perform. It is challenging to manipulate
and focus electrically neutral particles. The neutron itself is
unstable and does not make for a suitable target material
on its own. Neutron detectors are also less efficient com-
pared charged-particle detectors. Theoretically, we have the
opposite situation. It is typically much easier to compute
Nd scattering cross sections without a Coulomb interaction
[40,41]. Fortunately, Coulomb effects are only significant at
low energies, e.g., below the deuteron breakup threshold, and
for extremal scattering angles. As such, in most kinematic
regions pd scattering data can be compared with theoretical
Nd scattering results without any Coulomb interaction. We
will therefore use pd data in case nd data do not exist or
are very scarce. To be clear, we do not include any Coulomb
effects in our calculations. One can extend the WPCD method
to incorporate such effects. Indeed, the challenge of treating a
long-range interaction for small momenta is alleviated when
using a square-integrable Coulomb wave-packet basis [14].

In Fig. 4 we show our predictions for the total nd scattering
cross section with the N2LOopt interaction. The reproduction
of experimental nd data is excellent up to ELab ≈ 70 MeV.
At this point we also begin to see a difference between the
NWP = 100 and NWP = 125 calculations. At ELab > 70 MeV,
the inclusion of J > 3 NN channels will have a percent-level
effect on the predictions. We also note that ELab ≈ 70 MeV
corresponds to a relative momentum q ≈ 240 MeV of the
incident neutron. This translates to a NN scattering energy
of 125 MeV in the laboratory frame. The N2LOopt goodness-
of-fit measure, i.e., χ2/Ndatum with respect to NN scattering
data, is ≈1 up to 125 MeV scattering energy. Therefore, it is
reasonable to expect a gradual deterioration of the predictive
power for ELab > 70 MeV.

1 10 50 90

ELab (MeV)

102

103

σ
to

t
(m

b)

N2LOopt

NWP = 100

NWP = 125

FIG. 4. Total nd cross sections computed using the WPCD
method and the optical theorem; see, e.g., Ref. [42]. Experimental
nd data were retrieved via EXFOR [43].

At energies below ELab ≈ 50–100 MeV the effects of NNN
interactions are typically smaller [25,30,35,47], and the bulk
of low-energy Nd scattering observables can be described
quite well using only NN interactions. However, there exist
a few scattering observables at these low energies that exhibit
discrepancies due to missing NNN forces and (or) possibly
fine-tuning effects, e.g., low-energy analyzing powers, the
high-energy differential cross section minimum, and the nd
doublet scattering length. The latter is known to correlate
with the triton binding energy via the well-known Phillips
line [48]. The nd scattering length can be computed using a
bound-state formulation of the Faddeev equations [49] or via
numerical extrapolation of the scattering amplitude to q → 0.
Unfortunately, this limit is challenging to reach in the WPCD
method with the Chebyshev distribution we employ. Resorting
to a basis with an increased number wave packets at small
momenta will of course remedy this. However, simultane-
ously maintaining accurate scattering amplitudes for higher
scattering energies will result in a needlessly large basis size.

The prediction of the neutron analyzing power Ay(n) at
ELab = 10 MeV with N2LOopt is shown in Fig. 5. For compar-
ison we also include WPCD results using the Idaho-N3LO and

0 60 120 180

θc.m.(deg)

0.00

0.05

0.10

0.15

A
y
(n

)

Nijmegen-I

Idaho-N3LO

N2LOopt

FIG. 5. The neutron analyzing power Ay(n) at ELab = 10 MeV
computed using the WPCD method with NWP = 125 wave packets.
At the maximum, the top dashed line is the N2LOopt result. Experi-
mental nd data are from Ref. [44].
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θc.m.(deg)

100
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/
d
Ω

(m
b)

ELab=64.5 MeV

Idaho-N3LO

N2LOopt

FIG. 6. The differential cross section for elastic nd scattering computed using the WPCD method with NWP = 125 wave packets. The
experimental nd data (empty markers) at ELab = 6, 12, 25 MeV in the left panel are from Ref. [45] and the pd data (filled markers) at ELab =
64.5 MeV in the right panel are from Ref. [46]. For ELab = 64.5 MeV (right panel) the Idaho-N3LO predicts a slightly smaller cross section at
the minimum.

Nijmegen-I potentials. All three potentials yield virtually the
same result and the discrepancy with respect to 2 H (n, n)2H
data [44] at the c.m. scattering angles θc.m. ≈ 120◦, known as
the Ay puzzle [33], persists also with N2LOopt. There is some
tendency of a slight increase using this latter potential, but this
is certainly not significant on an absolute scale. This result
reflects that the low-energy interaction in the 3P channels of
N2LOopt, to which we know that Ay is most sensitive [33], is
similar to the ones in Idaho-N3LO and Nijmegen-I. A detailed
calculation [35] to very high chiral orders suggests that the
inclusion of leading NNN forces does not resolve the Ay

puzzle. Instead, there are hints that the Ay puzzle could be
resolved with subleading NNN forces [47]. Alternatively, the
Ay puzzle might vanish in a simultaneous NN +NNN analysis
conditioned on NN and Nd scattering data and informed by
model discrepancies such as the truncation error in effective
field theory.

Low-energy nd differential cross-section data are very well
reproduced by N2LOopt (see the left panel of Fig. 6), and the
results are identical to what is obtained using the Idaho-N3LO
potential. At higher energies, however, there are some discrep-
ancies with respect to data and the two employed potentials
differ slightly in the vicinity of the cross section minimum.
A previous study [34] concluded that the effects of NNN
interactions are expected to be particularly noticeable in
this angular region. Although the N2LOopt prediction lies
marginally closer to the experimental data at θc.m. ≈ 120◦, the
shape of the differential cross section is not correct.

In Fig. 7 we show a range of spin observables for ELab =
13–70 MeV. Overall, N2LOopt and Idaho-N3LO describe the
data rather well in this energy region, and the two different
potentials produce virtually identical results. In the top row
of Fig. 7 we present Ay(n) for increasing values of ELab. It
is well known that at energies below ≈30 MeV nearly all
NN interactions fail to describe the data for this observable
[50]. As was discussed above, the N2LOopt interaction does
not remedy the puzzle. Nevertheless, careful inspection re-
veals that the predictions for Ay at ELab = 21 MeV fit the
data slightly better at large scattering angles when using
N2LOopt . Unfortunately, discrepancies with respect to data
persists for small scattering angles, i.e., at the minimum value

of Ay. In the second row of Fig. 7 we present low-energy
neutron-to-neutron spin transfer (K) and neutron-to-deuteron
correlation (C) observables. Previous studies [57] have found
that the Ky′

y spin transfer is most sensitive to the structure of
the NN interaction in the 3S1 −3D1 and 1P1 channels. Since
Idaho-N3LO and N2LOopt have very similar NN phase shifts
below ELab = 100 MeV in these channels it is not surprising
to recover very similar results also for these observables. Of
course, the former potential incorporates higher-order long-
and short-range physics that modify the off-shell structure of
the potential, but this does not appear to alter the predictions
much. Regarding the tensor analyzing powers presented in
the third row, the discrepancy between theory and data for
Axx(d ) at θc.m. ≈ 150◦ persists for both potentials. Inclusion
of modern NNN forces does not resolve this [47].

IV. SUMMARY AND OUTLOOK

In this work we presented a framework that allows to solve
the Faddeev equations for elastic Nd scattering using a newly
developed code based on the WPCD method. We analyzed the
convergence of the WPCD method, applied to chiral poten-
tials, with respect to the number of basis wave packets NWP.
We find negligible method errors when using NWP = 125 in
the regime ELab � 70 MeV.

We studied different nd scattering observables up to ELab =
70 MeV with the N2LOopt NN interaction and find a good
overall reproduction of the scattering data. However, the Ay

puzzle remains unsolved when applying the N2LOopt inter-
action. Compared to the Nijmegen-I and Idaho-N3LO NN
interactions, we detect a minor increase in the maximum of
the theoretical predictions of this observable at low energies.
For other cross sections we find a good reproduction of ex-
perimental data, and the results are virtually indistinguishable
from the Idaho-N3LO interaction. The N2LOopt interaction
prediction for dσ/d� at ELab = 64.5 MeV is slightly closer
to the data at the differential cross section minimum. This
observable is typically associated with an increased sensitivity
to NNN interactions.
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FIG. 7. Spin observables for elastic nd scattering computed using the WPCD method with NWP = 125 wave packets and the N2LOopt and
the Idaho-N3LO potentials. The experimental nd data (empty markers) at ELab = 21, 22.5, and 65 MeV are from Refs. [50], [51], and [52],
respectively. The pd data (filled markers) at ELab = 13, 35, 47.5, 65, and 70 MeV are from Refs. [53], [54], [55], [46], and [56], respectively.
See the main text for detailed discussion.

Next, we will explore discretized bases with different
numbers of wave packets for the p and q momenta, make
predictions for breakup cross sections, and incorporate NNN
interactions in our calculations. Although some observ-
ables, that depend sensitively on finer details of the nuclear
interaction, require more wave packets to be accurately re-
solved, one can obtain sufficiently accurate predictions for the
vast majority of low-energy Nd cross sections with NWP ≈ 50
wave packets, which will help to reduce the computational
demands of the calculations to a level that allows a study of
Nd scattering observables within a statistical analysis. Specif-
ically, in the near term we plan to employ WPCD predictions
to sample Bayesian posterior predictive distributions for Nd
scattering. Work in this direction, using frequentist methods,
was also initiated in [58]. In the longer perspective, emulator
methods based on perturbation theory [59] or eigenvector
continuation [60] promise an efficient method for fast and
accurate emulation of scattering observables [61–64] and will
open new ways to systematically incorporate Nd scattering
observables in the construction and fitting process of next-
generation NN and NNN interactions.
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APPENDIX A: PARTIAL-WAVE DECOMPOSITION OF THE
PERMUTATION OPERATOR IN A PLANE-WAVE BASIS

In this Appendix we present the permutation operator P̂123

in a plane-wave partial-wave basis. The permutation operator
P̂i jk = P̂i j P̂jk performs two pairwise interchanges of particles:
first j ↔ k followed by i ↔ j. Our derivation follows the
steps presented in [32], as well as the notation and convention
for the Jacobi momenta p and q. For this section we will use
the indexing (i j) to denote the i j-pair system for the sake of
clarity, rather than the odd-man-out notation. To complement
[32], we use the (12) subsystem as our initial states upon
which the permutation operator acts. One can show that all
representations of P̂123 are invariant under change of reference
system. Furthermore, one can show [1,32] that, for a basis that
is antisymmetric under exchange of particles 2 and 3, we have
〈P̂123〉 = 〈P̂132〉. This allows us to express projections of P̂ in
Eq. (1) simply as 〈P̂〉 = 〈1 + 2P̂123〉.
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Our starting point is the following overlap:

12〈p′q′; α′|P̂123|pq; α〉12 = 12〈p′q′; α′|P̂12P̂23|pq; α〉12

= 12〈p′q′; α′|pq; α〉23, (A1)

which, projected in a partial-wave basis, becomes (note that
that magnetic quantum numbers mJ and mT are implied in
|α〉)

12〈p′q′; α′|pq; α〉23 =
∑
LS

∑
L′S ′

√
Ĵ ′ ĵ′L̂′Ŝ ′

√
Ĵ ĵL̂Ŝ

×
⎧⎨
⎩

L′ S′ J ′

l ′ 1
2 j′

L′ S ′ J ′

⎫⎬
⎭
⎧⎨
⎩

L S J
l 1

2 j
L S J

⎫⎬
⎭

×
∑

mLmS

∑
mL′ mS′

C
J ′mJ ′
L′mL′ ,S ′m′

S
CJmJ
LmL,SmS

× 12〈p′q′; L′l ′L′mL′ |pq; LlLmL〉23

× 12〈
(
S′ 1

2

)
S ′mS ′

∣∣(S 1
2

)
SmS

〉
23

× 12〈
(
T ′ 1

2

)
T ′mT ′

∣∣(T 1
2

)
T mT

〉
23 ,

(A2)

where the spin and isospin recouplings are given by the
Wigner-6j symbols,

12

〈(
S′ 1

2

)
S ′mS ′

∣∣(S 1
2

)
SmS

〉
23

= δS ′SδmS′ mS (−1)S
√

Ŝ′Ŝ
{ 1

2
1
2 S′

1
2 S S

}
. (A3)

Here, Cl3m3
l1m1,l2m2

denote Clebsch-Gordan coefficients and we

use the notation n̂ ≡ √
2n + 1 The recoupling of orbital angu-

lar momenta are calculated using momentum-space projection
in the pair systems (12) and (23),

12〈p′q′; L′l ′L′mL′ |pq; LlLmL〉23

=
∫ ∞

0
d p′′′

12 dq′′′
12d p′′

23 dq′′
23 Y

∗L′mL′
L′l ′ ( p̂′′′

12, q̂′′′
12)

× 12〈p′′′q′′′|p′′q′′〉23 YLmL
Ll ( p̂′′

23, q̂′′
23)

×
[
δ(p′ − p′′′)

p′ p′′′
δ(q′ − q′′′)

q′q′′′

]
12

×
[
δ(p′′ − p)

p′′ p
δ(q′′ − q)

q′′q

]
23

, (A4)

where the hat notation on vectors indicates unit vectors, and
we introduced the coupled spherical harmonics

Y l3m3
l1l2

(â, b̂) =
∑
m1m2

Cl3m3
l1m1,l2m2

Yl1m1 (â)Yl2m2 (b̂) , (A5)

and where Ylm(â) = Ylm(θ, φ) are the spherical harmonics,
which we use with the following normalization:

Ylm(θ, φ) = (−1)m

√
2l + 1

4π

(l − m)!

(l + m)!
Pm

l ( cos(θ ))eimφ .

(A6)
Note that we use the Condon-Shortley phase factor.

The inner product of Jacobi momenta,

12〈p′′′q′′′|p′′q′′〉23 = δ(p′′′
12 − p′′

12)δ(q′′′
12 − q′′

12), (A7)

can be resolved using the identities p′′
12 = − 1

2 p′′
23 + 3

4 q′′
23 and

q′′
12 = −p′′

23 − 1
2 q′′

23, from which we can define four variables
that fulfill momentum conservation,

12〈p′′′q′′′|p′′q′′〉23 = δ(p′′
23 − p̄)δ(q′′

23 − q̄)

= δ(p′′′
12 − p̃)δ(q′′′

12 − q̃)

= δ(p′′′
12 − π′)δ(p′′

23 − π)

= δ(q′′′
12 − κ′)δ(q′′

23 − κ). (A8)

Here, we also defined [in the pair system (12)]{
p̄ ≡ − 1

2 p′′′
12 − 3

4 q′′′
12

q̄ ≡ p′′′
12 − 1

2 q′′′
12

}
,

{
p̃ ≡ − 1

2 p′′
23 + 3

4 q′′
23

q̃ ≡ −p′′
23 − 1

2 q′′
23

}
,

{
π ≡ − 1

2 q′′′
23 − q′′

12
π′ ≡ 1

2 q′′
12 + q′′′

23

}
,

{
κ ≡ 2

3 p′′′
23 + 4

3 p′′
12

κ′ ≡ − 4
3 p′′′

23 − 2
3 p′′

12

}
.

(A9)

Note that the exact form of these relations depends on the
choice of pair system. See [32] for a summary of three-body
kinematics.

Choosing to conserve ( p̄, q̄) will restrict the bra-momenta
of an operator to the right of the permutation operator in the
Faddeev equation due to the ensuing delta functions (used in,
e.g., [2,32]). Likewise, ( p̃, q̃) will restrict the ket momenta of
an operator to the left, while (κ, κ′) will restrict p of operators
on both sides, and lastly (π,π′) will restrict q on both sides
(used in, e.g., [1,65]). In this work we have followed [32] and
conserve ( p̄, q̄). From this point on we drop the (12) subscript
on momenta and get

12〈p′q′; L′l ′L′mL′ |pq; LlLmL〉23 =
∫ ∞

0
d p′′′ dq′′′

× Y∗L′mL′
L′l ′ ( p̂′′′, q̂′′′)

× YLmL
Ll ( ˆ̄p, ˆ̄q)

× δ( p̄ − p)

p̄p

δ(q̄ − q)

q̄q
,

(A10)

where p̄ = | p̄| and q̄ = |q̄|. The integral is invariant under ro-
tations, making it proportional to δL′LδmL′ mL . This invariance
allows us to simply average out mL, giving a factor 1

2L+1 . We
now have freedom in the choice of axes. Choosing ẑ ‖ p̂′′′

and the polar angle of q̂′′′ to zero, we can simplify a spheri-

cal harmonic: YL′mL′ ( p̂′′′) = (−1)mL′
√

L̂′
4π

δmL′ 0. By solving the
remaining angular integrals we are left with

12〈p′q′; L′l ′L′|pq; LlL〉23 = 8π2 δL′L

L̂

∫ +1

−1
dx

× δ( p̄ − p)

p̄p

δ(q̄ − q)

q̄q

×
∑
mL

Y∗L′mL′
L′l ′ ( p̂′′′, q̂′′′)

× YLmL
Ll ( ˆ̄p, ˆ̄q), (A11)
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where vectors are functions of (p′, q′, x) and x = cos(φ) (the
angle from q′′′ to p′′′). Notice the change in notation of states

on the left-hand side as we averaged with respect to mL.
Inserting Eqs. (A11) and (A5) back into Eq. (A2) gives

12〈p′q′; α′|P̂123|pq; α〉12 =
∫ 1

−1
dx Gαα′ (p′, q′, x)

δ( p̄ − p)

p̄p

δ(q̄ − q)

q̄q
, (A12)

with the geometrical function Gαα′ (p′, q′, x) in a form that is straightforward to implement algorithmically,

Gαα′ (p′, q′, x)= δJ ′J δT ′T
∑
LS

√
Ĵ ′Ĵ
√

ĵ′ ĵŜ

⎧⎨
⎩

L′ S′ J ′

l ′ 1
2 j′

L S J

⎫⎬
⎭
⎧⎨
⎩

L S J
l 1

2 j
L S J

⎫⎬
⎭(−1)S

√
Ŝ′Ŝ
{ 1

2
1
2 S′

1
2 S S

}
(−1)T

√
T̂ ′T̂

{ 1
2

1
2 T ′

1
2 T T

}

× 8π2

√
L̂′

4π

∑
mLmLml

CLmL
L′0,lmLCLmL

LmL,lml
YLmL ( cos(θ1))Ylml ( cos(θ2))(−1)mLYl ′mL (x), mL ≡ mL + ml , (A13)

expressed with shorthand notation Ylm( cos(θ )) ≡ Ylm(θ, 0),
where we defined

cos(θ1) ≡ p̄ · ẑ
p̄

= − 1
2 p′ − 3

4 q′x
p̄

,

cos(θ2) ≡ q̄ · ẑ
q̄

= p′ − 1
2 q′x

q̄
(A14)

and where we used mL′ = 0. Given that we have S = S ′,
mS = mS ′ , L = L′, and mL = mL′ , we used the orthogo-
nality of Clebsch-Gordan coefficients to set J ′ = J and
mJ = mJ ′ .

Previously, in [1] the angular dependence in Gαα′ (p′, q′, x)
was evaluated separately from the recoupling terms. This al-
lows precalculation of the geometric recouplings before doing
the angular integration. However, it turns out that keeping the
angular dependence as above is both more numerically effi-
cient and stabler with higher l and L [32]. As this function is
the most computationally costly part of evaluating the integral
of Eq. (A12), we mention some key optimizations one can
use.

The simplest and most effective optimization is to calculate
Gαα′ (p′, q′, x) and store it in the computer memory in its
entirety. From a computational viewpoint the function is five
dimensional, which is still storable in the computer memory
for the basis sizes and number of quadrature points we typi-
cally require.

Regardless of whether prestorage of Gαα′ (p′, q′, x) is possi-
ble, we still wish to speed up the calculation of Gαα′ (p′, q′, x).
To this end, everything before the second sum in Eq. (A13)
(i.e., all geometric recoupling) can easily be precalculated to
improve computational performance. The second summation
can be sped up by prestoring the three Legendre polynomials
individually, which is usually still manageable and quite fast.

APPENDIX B: PROJECTING OPERATORS TO THE
WAVE-PACKET BASIS

In this section we present the expressions we employ for
projecting operators to a wave-packet basis. The three-body

FWP state defined in Eq. (4) is explicitly written as

|Xi j〉 = 1

Ni j

∫
Di,D̄ j

d p p dq q f (p) f̄ (q) |p〉 ⊗ |q〉, (B1)

where f (p) was defined in the context of Eq. (3), f̄ (q) serves
the same purpose with f̄ (q) = 1 for momentum wave packets

and f̄ (q) =
√

q
2μ1

for energy wave packets, and where we de-

fine a shorthand notation Ni j ≡ NiN̄j . Here, μ1 is the reduced
mass of the pair-spectator system and N̄j is the normalization
of |x̄ j〉.

An FWP state is projected onto the plane-wave basis
straightforwardly,

〈p, q|Xi j〉 = 1

Ni j

∫
Di,D̄ j

d p′ p′dq′q′ f (p′) f̄ (q′)〈p, q|p′, q′〉

= 1

Ni j

f (p) f̄ (q)

pq
1Di (p)1D̄ j

(q), (B2)

where 1Di (p) is the indicator function. From this we can show
that a FWP projection of a general NNN operator will look as
follows:〈

X α′
i′ j′
∣∣Ô∣∣X α

i j

〉 = 1

Ni′ j′Ni j

∫
Di′ ,D̄ j′

d p′ p′ dq′ q′ f (p′) f̄ (q′)

×
∫
Di,D̄ j

d p p dq q f (p) f̄ (q)

× 〈p′q′; α′|Ô|pq; α〉. (B3)

The three-body SWP state defined in Eq. (8) is more
complicated when written explicitly since ĥ1 has both bound
eigenstates |ψα

n 〉 with eigenenergies εα
n < 0 for n � Nb and

continuum eigenstates |ψα
p 〉 with energies Ep > 0, that are

handled separately analytically,

∣∣Zα
i j

〉 = 1

N̄j

Nb∑
n=0

∫
D̄ j

dq q f̄ (q)
∣∣ψα

n , q
〉

+ 1

Nα
i j

∫
Dα

i ,D̄ j

d p p dq q
√

p

μ0
f̄ (q)

∣∣ψα
p , q
〉
, (B4)

where, e.g., |ψα
p , q〉 ≡ |ψα

p 〉 ⊗ |q〉. Note the α dependency
denoted on the integral range Dα

i . These boundaries are
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constructed from the Hamiltonian eigenvalues that vary per
channel α, which also determines the normalization constant
and gives an α dependency denoted by Nα

i j ≡ Nα
i N̄ j . Note also

that we have explicitly inserted an energy-weighting function
for the p momentum as these are Hamiltonian eigenstates, i.e.,
energy wave packets.

An SWP state is projected onto Hamiltonian bound eigen-
states as

〈
ψα

n , q
∣∣Zα′

i j

〉 = 1

N̄j

Nb∑
n′=0

∫
D̄ j

dq′q′ f̄ (q′)
〈
ψα

n , q
∣∣ψα′

n′ , q′〉

= 1

N̄j

f̄ (q)

q
δα′α1D̄ j

(q), (B5)

and onto scattering states as

〈
ψα

p , q
∣∣Zα′

i j

〉 = 1

Nα′
i j

∫
Dα′

i ,D̄ j

d p′ p′dq′q′
√

p′

μ0
f̄ (q′)

× 〈
ψα

p , q
∣∣ψα′

p′ , q′〉
= 1

Nα
i j

f̄ (q)√
μ0 pq

δα′α1Dα
i
(p)1D̄ j

(q), (B6)

which is very similar in form to Eq. (B2).

1. Two-body free Hamiltonian

For our chosen normalization, the free NN Hamiltonian is
given by

〈p′q′; α′|ĥ0|pq; α〉 = δα′α
δ(p′ − p)

p2

δ(q′ − q)

q2
〈p|ĥ0|p〉. (B7)

Clearly, the free Hamiltonian is also diagonal in the FWP
basis. Depending on the choice of wave packet, we get for
the NN free Hamiltonian

〈
X α′

i′ j′
∣∣ĥ0

∣∣X α
i j

〉 =
⎧⎨
⎩δα′αδi′iδ j′ j

p2
i+1+p2

i

2μ0
, f (p) =

√
p

μ0
,

δα′αδi′iδ j′ j
p2

i+1+pi+1 pi+p2
i

6μ0
, f (p) = 1.

(B8)

2. The NN potential

The NN potential v̂ in a NNN partial-wave basis reduces
to

〈p′q′; α′|v̂|pq; α〉 = δγ ′γ δ�′�
δ(q′ − q)

q2
〈p′|v̂n′n|p〉, (B9)

where γ denotes all the quantum numbers for the third
nucleon relative to the pair system, i.e., γ = {l, j}, � =
{J , T } denotes the coupled NNN quantum numbers, and
the pair-system quantum numbers are jointly referred to as
n = {L, S, J, T }. For our predictions we break total T isospin
conservation, and the expressions below must be modified in
an obvious way. We obtain the NN interaction in the NNN
FWP basis via Eq. (B3), and easily resolving the q integral,〈

X α′
i′ j′
∣∣v̂∣∣X α

i j

〉 =δγ ′γ δ��′δ j′ j

Di′Di

∫
Di′

d p′ p′
∫
Di

d p p

× f (p′) f (p)〈p′|v̂n′n|p〉. (B10)

This expression is straightforward to evaluate numerically
using quadrature.

3. The permutation operator

The permutation operator P̂123 in a partial-wave basis,
Eq. (A12), can be inserted into Eq. (B3). The delta-functions
are only nonzero when the Jacobi momenta p̄ and q̄ fall within
the bins Di and D̄ j , which we express using the indicator
function. Choosing momentum wave-packets gives

〈
X α′

i′ j′
∣∣P̂123

∣∣X α
i j

〉 = 1

Ni′ j′Ni j

∫
Di′ j′

d p′ p′ dq′ q′

×
∫ 1

−1
dx Gαα′ (p′, q′, x)

× 1D j ( p̄)

p̄

1D̄ j
(q̄)

q̄
. (B11)

The indicator function is discontinuous and an evaluation of
Eq. (B11) using Gaussian quadrature in the p and q mo-
menta yields poor convergence with an increasing number of
quadrature points. Therefore, we transform the integral over
p′ and q′ to polar coordinates using the procedure presented
in Ref. [65]:{

q′ = k cos(φ)
p′ = k sin(φ)

}
,

{
φ = arctan

( p′
q′
)

k2 = p′2 + q′2

}
, (B12)

Note that the integral-boundaries of k and φ depend on each
other. With this parametrization, Eq. (B11) can be expressed
as

〈
X α′

i′ j′
∣∣P̂123

∣∣X α
i j

〉 = 1

Ni′ j′Ni j

∫ 1

−1
dx
∫ φmax

φmin

dφ
cos(φ) sin(φ)

ζ1ζ2

× Gαα′ ( sin(φ), cos(φ), x)
k′2

max(φ) − k′2
min(φ)

2
,

(B13)

where the momenta p̄ and q̄ are replaced by ζ1 and ζ2,

ζ1 ≡ p̄

k
=
√

1

4
sin2(φ) + 9

16
cos2(φ) + 3

4
x cos(φ) sin(φ),

ζ2 ≡ q̄

k
=
√

sin2(φ) + 1

4
cos2(φ) − x cos(φ) sin(φ). (B14)

Note that Gαα′ ( sin(φ), cos(φ), x) does not depend on k. Fur-
thermore we have defined

k′
min(φ) ≡ max

[
pi′

sin(φ)
,

q j′

cos(φ)
,

pi

ζ1
,

q j

ζ2

]
,

k′
max(φ) ≡ min

[
pi′+1

sin(φ)
,

q j′+1

cos(φ)
,

pi+1

ζ1
,

q j+1

ζ2

]
, (B15)

which incorporates all integration limits imposed on k by
the wave-packet bin boundaries and by φ. To evaluate this
expression we must construct a quadrature mesh for φ which
depends on the bin indices i′, j′, i, and j. An important step
in optimizing the numerical evaluation of this integral is to
first verify that φmin � φmax and kmin � kmax. We find that the
P123 matrix in a FWP basis is less than 0.1% dense due to

024001-11



MILLER, EKSTRÖM, AND HEBELER PHYSICAL REVIEW C 106, 024001 (2022)

momentum conservation. We also mention that we typically
see converged matrix values while using 48 quadrature points
for both the x and φ integrations.

The optimization steps discussed at the end of Appendix A
are not all viable in the WPCD method. Since φ parametrizes
p′ and q′, but depends on four bin indices, Gαα′ (p′, q′, x) is
essentially seven dimensional, incurring a massive memory
cost compared to the continuum representation. This can leave
the precalculation of individual Legendre polynomials as the
only remaining viable optimization step, provided enough
computer memory to store them. The calculation of Eq. (B13)
is somewhat costly, but the resulting matrix is independent of
the interaction and can be stored to disk in a sparse format and
reused.

4. The channel resolvent

The channel resolvent Ĝ1 can be evaluated in closed form
in a SWP basis as shown in Ref. [14]. We recount the neces-
sary steps here. The relevant operator is defined as

Ĝa(E ) = (E − ĥa)−1, a = (1, 2, 3). (B16)

This can also be expressed as a convolution [66] of the two-
body resolvents g(+)

a and g(+)
0 . These depend on the two-body

Hamiltonians ĥa and ĥ0, respectively, where ĥa is the pair-
system Hamiltonian and ĥ0 is the kinetic Hamiltonian of the
third particle relative to the pair-system. The result is

Ĝa(E ) = 1

2π i

∫ ∞

−∞
dε ĝ(+)

a (E − ε)ĝ(+)
0 (ε). (B17)

Following [67], this can be expressed as the sum of two terms,

Ĝa(E ) = R̂a(E ) + Q̂a(E ), (B18)

where

R̂a(E ) =
∑

α

Nb∑
n=0

∫ ∞

0
dEq

∣∣ψα
n , q
〉〈
ψα

n , q
∣∣

E − εα
n − Eq ± iε

(B19)

and

Q̂a(E ) =
∑

α

∫ ∞

0
dEp dEq

∣∣ψα
p , q
〉〈
ψα

p , q
∣∣

E − Ep − Eq ± iε
(B20)

are the bound-continuum (BC) and continuum-continuum
(CC) parts of the channel resolvent, respectively.

Equation (B18) can be projected onto a SWP basis {|Zα
i j〉},

using Eqs. (B5) and (B6), such that〈
Zα′

i′ j′
∣∣Ĝ(E )

∣∣Zα
i j

〉 = δi′iδ j′ jδα′α
[
Rα

i j (E ) + Qα
i j (E )

]
, (B21)

where Rα
i j (E ) ≡ 〈Zα

i j |R̂(E )|Zα
i j〉 is given by

Rα
i j (E ) = 1

D̄ j

∫
D̄ j

dq
f̄ 2(q)

E − εα
i − q2

2μ1
± iε

, (B22)

and Qα
i j (E ) ≡ 〈Zα

i j |Q̂(E )|Zα
i j〉 is given by

Qα
i j (E ) = 1

Dα
i D̄ j

∫
Dα

i ,D̄ j

d p dq
p

μ0

f̄ 2(q)

E − p2

2μ0
− q2

2μ1
± iε

.

(B23)

These integrals can be solved analytically and in the case of
energy SWPs we get

Re
[
Rα

i j (E )
] = 1

D̄ j
ln

∣∣∣∣E
α
j−1 + εα

i − E

Eα
j + εα

i − E

∣∣∣∣,
Im
[
Rα

i j (E )
] = − π

D̄ j

[
�
(
Eα

j + εα
i − E

)
− �

(
Eα

j−1 + εα
i − E

)]
(B24)

and

Re
[
Qα

i j (E )
] = 1

Dα
i D̄ j

[(� + �−) ln |� + �−|

+ (� − �−) ln |� − �−|
− (� + �+) ln |� + �+|
− (� − �+) ln |� − �+|],

Im
(
Qα

i j (E )
) = − π

Dα
i D̄ j

[(� + �+)�(� + �+)

+ (� − �+)�(� − �+)

− (� + �−)�(� + �−)

− (� − �−)�(� − �−)], (B25)

where

� ≡ εα
i + ε̄ j − E , �± ≡ Dα

i ± D̄ j

2
, (B26)

and where ĥ0
1|x̄ j〉 = ε̄ j |x̄ j〉. We also denoted the Heaviside step

function with �. We do not distinguish between εα
i ≶ 0 since

this follows automatically from the operator being calculated,
i.e., Rα

i j or Qα
i j . In Nd scattering there is only one NN bound

state, the deuteron, such that there should only be one index
i = id where Rα

i j �= 0, but here we have kept the expressions
above general.

APPENDIX C: NEUMANN SERIES AND PADÉ
EXTRAPOLANT

The Faddeev equation, just as the Lippmann-Schwinger
and Faddeev-Yakubovsky equations, are Fredholm type II
equations (integral equations), generally written as

f (x) = ϕ(x) +
∫

K (x, y) f (y) dy , (C1)

for any-dimensional variables x and y. The Neumann series of
this equation is written as

f (x) =
∞∑

n=0

Knϕ. (C2)

This series only converges if all so-called Weinberg eigenval-
ues ηi of K satisfy |ηi| < 1, and this is by no means guaranteed
in nuclear physics. Indeed, analyzing the Weinberg eigen-
values for nuclear interactions reveals the nonperturbative
character in many partialwaves, e.g., where we have bound
states [68]. Using Padé approximants is a convenient method
for resumming the terms of the Neumann series and
extrapolating beyond its radius of convergence. See
Refs. [39,69] for more details.
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In brief, a Padé approximant of a meromorphic function
f (z), which is analytic near z = 0, amounts to formulating the
ratio of two polynomial functions PN (z) and QM (z) of degrees
N and M, respectively, such that

f (z) = a0 + a1z + a2z2 + a3z3 + · · ·

= PN (z)

QM (z)
+ O(zN+M+1), (C3)

The advantage of this Padé approximant is that, contrary to
a simple polynomial approximation which would only con-
verge within some radius |z| < R, we can now approximate
singularities in f (z). Finding the (unique) coefficients of the
polynomials PN and QN amounts to solving a system of poly-
nomial equations. The solutions are effectively obtained by
evaluating the following determinants built from the terms in
the Neumann series, {an}N+M

n=0 :

PN (z) =

∣∣∣∣∣∣∣∣
aN−M+1 aN−M+2 . . . aN+1

...
...

. . .
...

aN aN+1 . . . aN+M∑N
j=M aj−Mz j

∑N
j=M−1 a j−M+1z j . . .

∑N
j=0 a jz j

∣∣∣∣∣∣∣∣
, (C4)

and

QM (z) =

∣∣∣∣∣∣∣∣
aN−M+1 aN−M+2 . . . aN+1

...
...

. . .
...

aN aN+1 . . . aN+M

zM zM−1 . . . 1

∣∣∣∣∣∣∣∣
. (C5)

For our studies we have only used “diagonal” Padé approx-
imants where we use M = N ≈ 15 to ensure a convergent
scattering amplitude.

APPENDIX D: ELASTIC SCATTERING CROSS SECTIONS,
POLARIZATIONS OBSERVABLES, AND THE

CHANNEL-SPIN SCATTERING MATRIX

All elastic Nd observables (total and differential cross
sections and spin observables) were calculated using expres-
sions presented in [70], which are straightforward to evaluate
once the spin-scattering matrix M in a “channel spin” basis
representation has been obtained. For explicit forms of spin-
projection operators in such a basis we refer the reader to, e.g.,
[71].

We define the channel spin � as the coupling of the pair-
system total angular momentum J and the spin of the third
nucleon s,

� ≡ J + s . (D1)

The channel spin is coupled to the orbital angular momentum
l of the third nucleon to produce the total angular momen-
tum J . In our conventions, the elastic spin-scattering matrix
M(θ ) at some energy E is represented as a 6 × 6 matrix with
elements given by

M�′m�′ ,�m�
(θ ) =

√
π

ik

∑
J l ′l

il ′−l
√

2l + 1

× CJm�

�m�,l0

× CJm�

�′m�′ ,l ′(m�−m�′ )

× (
SJ

l ′�′,l� − δ�′�δl ′l
)

× Y (m�−m�′ )
l ′ (θ, 0), (D2)

where the S matrix is given by

SJ
l ′�′,l� = δl ′lδ�′� − 2π iqmN il ′−lUJ

l ′�′,l� , (D3)

and where mN ≡ 2mpmn

mp+mn
is the nucleon mass. Note that mN ≡

mp+mn

2 is also commonly used. The difference between the two
expressions occurs at the seventh significant digit and is not
observed to be of any importance in our work. The channel-
spin U matrix of on-shell transition elements are obtained by
recoupling the J j-coupled elements via

UJ
l ′�′,l� =

∑
j′ j

√
ĵ′�̂′(−1)J+ j′

{
l ′ 1

2 j′
Jd J �′

}

×
√

ĵ�̂(−1)J+ j

{
l 1

2 j
Jd J �

}
UJ

l ′ j′,l j, (D4)

where Jd ≡ 1 = |J| is the total angular momentum of the
deuteron. The on-shell U matrix in a plane-wave represen-

tation is extracted from a wave-packet representation U
α′

d αd

id j ,
calculated through Eq. (12), using Eq. (B2):

UJ
l ′ j′,l j = f̄ 2(q)

q2D̄ j
U

α′
d αd

id j 1D̄ j
(q), (D5)

Usually, we find it best to let q fall on bin midpoints and
then interpolate UJ

l ′ j′,l j to do predictions at arbitrary energies
E . This approach works quite well and we see no noticeable
difference in observables in going from linear to higher-order
polynomial interpolation.

APPENDIX E: PHASE SHIFTS AND MIXING ANGLES

Phase shifts and mixing angles are obtained by diagonal-
izing the channel-spin S matrix in the NNN partial wave J �

given by

SJ =

⎛
⎜⎜⎝

SJ
J∓ 3

2
3
2 ,J∓ 3

2
3
2

SJ
J∓ 3

2
3
2 ,J± 1

2
1
2

SJ
J∓ 3

2
3
2 ,J± 1

2
3
2

SJ
J± 1

2
1
2 ,J∓ 3

2
3
2

SJ
J± 1

2
1
2 ,J± 1

2
1
2

SJ
J± 1

2
1
2 ,J± 1

2
3
2

SJ
J± 1

2
3
2 ,J∓ 3

2
3
2

SJ
J± 1

2
3
2 ,J± 1

2
1
2

SJ
J± 1

2
3
2 ,J± 1

2
3
2

⎞
⎟⎟⎠,

(E1)
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where the upper and lower signs correspond to parities � =
(−1)J± 1

2 . We define

SJ = U T e2iδU, (E2)

where δ represents three phase shifts and where U are the
eigenvectors of S. We follow standard practice and use a
notation for the phase shifts according to

δJ �
� l . (E3)

The three mixing angles are derived using a generalization
[71] of the Blatt-Biedenharn method [72] for NN phase-shift
parametrization,

U = uwx, (E4)

where u, w, and x are rotation matrices in the yz, xz, and
xy planes, respectively, according to the Madison convention

[73] for the scattering plane:

u =
⎛
⎝1 0 0

0 cos(ε) sin(ε)
0 − sin(ε) cos(ε)

⎞
⎠,

w =
⎛
⎝ cos(ξ ) 0 sin(ξ )

0 1 0
− sin(ξ ) 0 cos(ξ )

⎞
⎠,

x =
⎛
⎝ cos(η) sin(η) 0

− sin(η) cos(η) 0
0 0 1

⎞
⎠. (E5)

Uniquely identifying the phase shifts and mixing angles re-
quires a convention for the ordering of eigenvectors. Below
the deuteron breakup threshold we order the eigenvectors
(which can be chosen to be real) to have a dominant and pos-
itive diagonal [74]. Above the threshold we will start getting
imaginary components and it becomes necessary to use, for
example, the continuity of eigenvectors to arrange U correctly
to identify phase shifts [75].
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