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General relativistic treatment of f -mode oscillations of hyperonic stars
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We present a systematic study of f -mode oscillations in neutron stars containing hyperons, extending recent
results obtained within the Cowling approximation to linearized general relativity. Employing a relativistic
mean-field model, we find that the Cowling approximation can overestimate the quadrupolar f -mode frequency
of neutron stars by up to 30% compared to the frequency obtained in the linearized general relativistic
formalism. Imposing current astrophysical constraints, we derive updated empirical relations for gravitational
wave asteroseismology. The frequency and damping time of quadrupole f -mode oscillations of hyperonic stars
are found to be in the range of 1.47–2.45 kHz and 0.13–0.51 s, respectively. Our correlation studies demonstrate
that among the various parameters of the nucleonic and hyperonic sectors of the model, the nucleon effective
mass shows the strongest correlation with mode characteristics and neutron star observables. Estimates for the
detectability of f modes in a transient burst of gravitational waves from isolated hyperonic stars is also provided.
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I. INTRODUCTION

Neutron stars (NS) are natural laboratories to probe the be-
havior of matter under extreme conditions, such as ultra high
densities, rapid rotation, or ultrastrong magnetic fields [1–3].
With the interior composition of the NS core uncertain, it is
conjectured that strangeness in the form of hyperons, meson
condensates, or even deconfined quark matter may appear at
such high densities, which can affect several NS observable
properties. For example, the appearance of hyperons can af-
fect NS maximum mass, radius, cooling, or gravitational wave
(GW) emission from unstable quasinormal modes [4], and one
can then look for the signatures of such exotic matter in NS
observables.

A good theoretical model of NS should be able to explain
basic NS astrophysical observables, such as its mass or radius.
In order to connect the NS internal composition with these
global properties, one requires an equation of state (EoS).
Various EoS models exist that employ ab initio many-body
methods or phenomenological theories in order to extrapo-
late baryon-baryon interaction to densities or neutron-proton
asymmetries relevant for describing NS matter. Among the
different EoS models, one class of realistic phenomenolog-
ical models is based on the relativistic mean field (RMF)
approach, which is a particular self-consistent approxima-
tion to in-medium nuclear many-body forces and contains
density-dependent parameters that are fit to nuclear experi-
mental observables [5,6]. In this work, we adopt one such
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RMF model as a representative of this class of EoS and call it
simply “the RMF model.”

With the current generation of space-based and ground-
based telescopes, neutron stars are observed at multiple
wavelengths of the electromagnetic spectrum from radio
to x-rays to gamma rays. For neutron stars in a binary,
post-Keplerian effects allow the component masses to be de-
termined to high accuracy [7–11]. Radius measurements that
rely solely on thermal emission from the NS surface suffer
from several uncertainties and cannot be determined with
high precision. However, the recently launched Neutron Star
Interior Composition Explorer (NICER) mission [12] has im-
proved radius determination by employing novel techniques
to study pulse modulation profiles, which enables up to 5%
accuracy in the determination of the radius [13,14].

In addition to electromagnetic emission, neutron stars can
also act as sources of GWs. Any nonaxisymmetric pertur-
bation or a merger of neutron stars in a binary can produce
copious amounts of GWs. In the case of mergers, the tidal
deformation of a component NS under the strong gravita-
tional force of the other can constrain the properties of matter
in the interior [15–18]. Recent detections of NS-NS (BNS)
collisions (GW170817) or NS-BH mergers (GW200105 and
GW200115) by the LIGO-Virgo-KAGRA collaboration of
GW detectors have opened up new frontiers in multimessen-
ger astronomy [19].

In the context of GW, the secular quasinormal modes
(QNM) of NS are particularly interesting, since they carry
information about the interior composition and viscous forces
that damp these modes. QNMs in neutron stars are catego-
rized by the restoring force that bring the perturbed star back
to equilibrium [20–22]. Examples include the fundamental
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f mode, p modes, and g modes (driven by pressure and
buoyancy respectively), as well as r modes (Coriolis force)
and pure space-time w modes. Several of these modes are
expected to be excited during SN explosions [23], or in a
starquake [24] or in isolated perturbed NSs [25], or dur-
ing the post-merger phase of a binary NS [26–28], with the
f mode being the primary target of interest. It has been ar-
gued that spin and eccentricity enhance the excitation of the
f modes during the inspiral phase of NS mergers [29,30].
The fundamental f modes are within the sensitivity range
of current generation of GW detectors and are correlated
with the tidal deformability during the inspiral phase of NS
mergers [31–34].The g modes can be excited during inspiral
of a merger event [34] and are also sensitive to the internal
composition of NS [35,36]. However, the impact on GW is too
weak to be noticed by the current generation of instruments
[34]. Which leads us to focus on f mode oscillation of NS.

Among the many studies in the literature that study the
f mode, the pioneering work of Andersson and Kokkotas
[37,38] relating the NS global properties such as mass, radius,
or compactness with the frequency and damping times of
QNMs is the most relevant motivation to our work. However,
the majority of these studies rely on the Cowling approxi-
mation (neglecting perturbations of the background metric),
instead of calculating in full general relativity (GR). While
the Cowling approximation is justified as a first reasonable
estimate of the mode frequency, full GR is required for a more
accurate computation of the mode frequency and to find the
damping time in order to extract reliable information about
the NS EoS from GW data.

In a recent study [39], we performed a systematic inves-
tigation of the role of nuclear saturation parameters on the
oscillation modes for a purely nucleonic nonrotating NS in the
framework of the RMF model. We then extended this investi-
gation [40] to study the effect of the appearance of hyperons
on the f -mode frequencies. Completing the analysis, in this
work, we present the results of calculations of f modes of
hyperonic stars in a fully general relativistic framework.

This paper is organized in the following way. In Sec. II,
we discuss the RMF model Lagrangian and the model’s pa-
rameters. In Sec. III, the resulting macroscopic properties of
the NS are presented, followed by Sec. IV detailing the GR
equations used to determine the global f -mode frequency. We
compile our results in Sec. V and summarize our conclusions
in Sec. VI.

II. MICROSCOPIC MODEL FOR
THE EQUATION OF STATE

A. The relativistic mean-field model

The charge-neutral, β-equilibrated matter in the NS inte-
rior is described by our chosen RMF theory, which provides
a Lorentz covariant description of the microphysics of the
NS interior. In the RMF model, baryon-baryon interaction
is mediated by the exchange of scalar (σ ), vector (ω), and
isovector (ρ) mesons, while hyperon-hyperon interactions are
mediated by additional strange scalar (σ ∗) and strange vector
(φ) mesons [41]. The interaction Lagrangian density (L) can

be written as

L =
∑

B

ψ̄B (iγ μ∂μ − mB + gσBσ − gωBγμωμ

− gρBγμ �IB.�ρμ)ψB + 1

2

(
∂μσ∂μσ − m2

σ σ 2
) − Uσ

+ 1

2
m2

ωωμωμ − 1

4
ωμνω

μν − 1

4

(
�ρμν.�ρμν − 2m2

ρ �ρμ.�ρμ
)

+�ω

(
g2

ρN �ρμ.�ρμ
) (

g2
ωNωμωμ

) + LYY + L�, (1)

where

Uσ = 1

3
bmN (gσNσ )3 + 1

4
c(gσNσ )4,

LYY =
∑

Y

ψ̄Y (gσ ∗Y σ ∗ − gφY γμφμ)ψY + 1

2
m2

φφμφμ

− 1

4
φμνφ

μν + 1

2
(∂μσ ∗∂μσ ∗ − m2

σ ∗σ
∗2),

L� =
∑

�={e−,μ−}
ψ̄�(iγ μ∂μ − m�)ψ�.

The governing field equations for constituent baryons and
mesons can be found in our previous work [40]. In the
mean-field approximation, meson fields are replaced by their
ground-state expectation values. Replacing the nonvanishing
mean-meson expectation components as [5] “σ̄ = 〈σ 〉, ω̄0 =
〈ω0〉, ρ̄03 = 〈ρ03〉, σ̄ ∗ = 〈σ ∗〉, φ̄0 = 〈φ0〉,” the energy den-
sity for the given Lagrangian density (1) is given by [40]:

ε = 1

2
m2

σ σ̄ 2 + 1

2
m2

σ ∗ σ̄ ∗2 + 1

2
m2

ωω̄2
0 + 1

2
m2

ρρ̄
2
03

+ 1

2
m2

φφ̄2
0 + 1

3
bmN (gσN σ̄ )3 + 1

4
c(gσN σ̄ )4

+
∑

B

gsB

2π2

∫ kFB

0

√
k2 + m∗

B
2 dk

+ 3�ω(gρN gωN ρ̄03ω̄0)2

+
∑

�

gs�

2π2

∫ kF�

0

√
k2 + m�

2 dk, (2)

where gsi and kFi represent spin degeneracy and Fermi mo-
mentum of ith species, respectively. m∗

B is the effective mass
for baryon B and given by

m∗
B = mB − gσBσ̄ − gσ ∗Bσ̄ ∗. (3)

The pressure (p) is given by the Gibbs-Duhem relation [6],

p =
∑
i=B,�

μini − ε, (4)

with ni and μi as the number density and chemical potential
of the ith constituent, respectively. The baryon and lepton
chemical potentials can be expressed respectively as

μB =
√

k2
FB + m∗

B
2 + gωB ω̄0 + gφB φ̄0 + I3B gρB ρ̄03 ,

μ� =
√

k2
F� + m�

2. (5)
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TABLE I. Range of saturation nuclear parameters used in this work. Masses of mesons and the nucleon are fixed as mσ = 550 MeV,
mω = 783 MeV, mρ = 770 MeV, mσ∗ = 975 MeV, mφ = 1020 MeV, and mN = 939 MeV. For the masses of the hyperons, we use data from
Ref. [42].

n0 Esat K J L
Model (fm−3) (MeV) (MeV) (MeV) (MeV) m∗/mN

RMF [6] 0.15–0.16 −15.5 ±0.5 230–280 32 ± 2 50 ± 10 0.65 ±0.10

B. Parameters of the RMF model

1. Nucleon couplings

Here we briefly discuss the coupling constants, which
may be regarded as model parameters. The nucleon isoscalar
coupling constants (gσN , gωN , b, c) are set by fixing nuclear
saturation properties: nuclear saturation density (n0), binding
energy per nucleon (E/A or Esat), incompressibility (K), and
the effective nucleon mass (m∗) at saturation. The isovector
coupling constants (gρN ,�ω) are obtained by fixing the sym-
metry energy (J) and its slope (L) at saturation [5,6]. It was
concluded that in RMF models the stiffness of the EoS is
mainly controlled by m∗ [6]. We consider a reasonable range
of m∗ such that the maximum mass is above the observed limit
(m∗ < 0.75) and does not induce the appearance of instabili-
ties in the neutron matter EoS (m∗ > 0.55) [6]. The. effect of
astrophysical constraints on m∗ is discussed in detail at the
end of Sec. III. The range of saturation nuclear parameters
considered in this work have been summarized in Table I.

2. Hyperon couplings

RMF models with attractive hyperon-hyperon interaction
(mediated by the strange meson σ ∗) are incompatible with
the current highest observed NS mass [43]. Thus, we exclude
the attractive hyperon-hyperon interaction. The nonstrange
scalar-hyperon couplings (gσY ) are fitted to available hyperon-
nucleon potential depth in normal nuclear matter [U N

Y (n0)]
using Eq. (6) [41,43] and the vector and isovector hyperon
couplings (gωY , gρY , gφY ) are fixed to their theoretical values
using the symmetries of the SU(6) quark model summarized
in Refs. [41,43],

U N
Y (n0) = −gσY σ̄ + gωY ω̄0. (6)

gω� = gω� = 2gω� = 2

3
gωN ,

gρN = gρ� = 1

2
gρ� gρ� = 0,

2gφ� = 2gφ� = gφ� = −2
√

2

3
gωN . (7)

Among the nucleon-hyperon potentials U N
Y , the best known

potential depth is that of �, U N
� (n0) = −30 MeV [44,45].

Although there is an uncertainty in U N
� , it has been concluded

from experiments that U N
� is repulsive [45–48]. We fix the

U N
� potential to its most commonly adopted value +30 MeV.

However, the value of U N
� is attractive and highly uncertain

[47,49,50]. So we vary the value of U N
� within the range of

−40 MeV to +40 MeV for our investigation. Once all the
coupling constants for a fixed parameters set are determined,

the EoS can be evaluated for the Lagrangian given in Eq. (1).
Each of the saturation parameters is randomly drawn from a
uniform distribution defined in the range of the corresponding
parameter as given in Table I. After applying the astrophysical
constraints (Mmax � 2M� and tidal deformability constraint
from GW170817 [18]), we are left with approximately 1500
(1483 to be exact) microscopic models for pure nucleonic
matter and 1000 (1123 to be exact) microscopic models for
neutron stars with nucleon-hyperon matter. For providing the
asterosismolgy relations in Sec. V, we have obtained f -mode
characteristics for 2.5 × 105 neutron star.

III. MACROSCOPIC FEATURES OF THE NEUTRON STAR

After the EoS is specified, the macroscopic structure of the
NS can be described by solving the Tolman-Oppenheimer-
Volkoff (TOV) equations. Starting with general spherically
symmetric metric (8), the equations describing hydrostatic
equilibrium (TOV) are given by Eqs. (9) and (10) and
the equations governing metric functions �(r) and λ(r) by
Eqs. (11) and (12).

ds2 = −e2�(r)dt2 + e2λ(r)dr2 + r2dθ2 + r2sin2θdφ2, (8)

dm(r)

dr
= 4πr2ε(r), (9)

d p(r)

dr
= −[p(r) + ε(r)]

m(r) + 4πr3 p(r)

r[r − 2m(r)]
, (10)

d�(r)

dr
= −1

ε(r) + p(r)

d p

dr
, (11)

e2λ(r) = r

r − 2m(r)
. (12)

Integration of TOV equations for a given EoS [p = p(ε)] from
the center to the surface with vanishing pressure at the surface
p(R) = 0 provides the stellar radius R and mass M = m(R) for
equilibrium stellar models. Another boundary condition is that
at the surface, �(R) = 1

2 log(1 − 2M
R ). The tidal love number

k2 for a given EoS can be evaluated by solving a set of ad-
ditional differential equations along with TOV equations [51],
which then lead to determination of another important observ-
able quantity, the dimensionless tidal deformability (�̄)

�̄ = 2

3
k2

(
R

M

)5

. (13)

We display the EoSs and corresponding mass-radius rela-
tions used in this work in Fig. 1 and Fig. 2, respectively. Of
the EoSs obtained by randomly varying the saturation param-
eters in Table I, we only consider those which are compatible
with recent astrophysical observational constraints, i.e., the
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FIG. 1. EoSs used in this work. To avoid cluttering we have
displayed here a few of the EoSs with nucleons (solid black lines,
npeμ) as well as models with hyperons (solid red lines, npeμY )
corresponding to the parameter space explained in Sec. II B. Specific
solid (dashed) lines are shown for different effective mass for nu-
cleonic (hyperonic) EoSs with other parameters fixed at n0 = 0.150
fm−3, Esat = −16.0 MeV, J = 32 MeV, L = 60 MeV, K = 240 MeV,
and U� = −18 MeV.

EoS must reproduce the maximum observed neutron star of
2M� mass and also be compatible with the tidal deformabil-
ity estimation from the merger event GW170817 [18]. The
dominant parameter controlling the stiffness of the EoS is

10 12 14 16
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FIG. 2. Mass-radius relation corresponding to EoSs used in this
work (see Fig. 1). Horizontal bands correspond to masses M =
2.072+0.067

−0.066M� of PSR J0740+6620 [11] (green band) and M =
2.01+0.04

−0.04M� of PSR J0348 + 0432 [8] (yellow band). The mass ra-
dius estimates of the two companion neutron stars in the merger event
GW170817 [17] are shown by shaded area labeled with GW170817
M1 (M2) [52].

found to be the nuclear effective mass m∗ [39], and its range
may be constrained by the maximum observed mass and com-
pactness [53]. We note here that while considering models
with nucleonic matter, the maximum 2M� limit does not put
any constraint on the uncertainty of m∗ while imposing the
constraint of an upper limit of tidal deformability coming
from GW170817 [18] allows us to put a tight constraint on
the lower limit, m∗ > 0.60mN . In the case of models with
hyperonic EoSs, the maximum 2M� puts a constraint on the
upper limit m∗ � 0.70mN along with the lower limit constraint
m∗ > 0.60mN from the upper limit of tidal deformability com-
ing from GW170817. We found that EoS models satisfying
the tidal deformability constraint from event GW170817 also
satisfy NS radius constraint resulting from recent NICER
observations [13,14].

IV. CALCULATION OF OSCILLATION MODES

The theory of perturbed NSs, emitting GWs at the char-
acteristic frequency of its QNM, was introduced in a paper
by Thorne and Campolattaro in 1967 [22]. Many works
[54,55], including our previous work [40], use the simplifica-
tion defined by the relativistic Cowling approximation, where
background metric perturbations are neglected. Frequencies
obtained using the Cowling approximation for fundamen-
tal modes ( f modes) are purely real and differ by 20–30%
compared to frequencies obtained from the linearized equa-
tions of general relativity [56]. The Cowling approximation
precludes a calculation of the damping time of QNMs. To
obtain solutions in the fully general relativistic framework,
different methods such as resonance matching (developed by
Thorne [57] and later by Chandrasekhar [58]), direct integra-
tion [59,60], and the method of continued fractions [61,62]
have been applied.

Complicating effects like rotation are essential for describ-
ing a realistic astrophysical scenario. Recent efforts suggest
that the leading-order spin correction to the mode frequency
is 0.2 (νs/νK ) [63] (νs is the spin frequency and νK is the Ke-
pler frequency). Almost all glitching pulsars have a low spin
frequency (νs < 100 Hz). In contrast, the Kepler frequency
is ∼1 kHz, such that they would have f -mode frequency
correction <2%, this implies that the rotation has a minor
effect on a detection event from transient NS f modes from
glitching pulsars. For a merger scenario, recent efforts are
going on to include the impact of f -mode dynamical tides and
the spin effect on NS f -mode dynamical tide [30]. A recent
article [64] concludes that the spin correction to f modes
has a considerable impact on the gravitation wave for rapidly
rotating stars. However, the effect of rotation is still a matter
of investigation.

In this article, we employ the procedure developed by
Lindblom and Detweiler (hereafter called LD) [59,60] for
finding the QNMs of the f modes for nonrotating NSs. In
short, the perturbation equations are solved inside the star
with appropriate boundary conditions. Then a search for the
complex QNM frequency (ω) is carried out for which one
has only outgoing GWs at infinity. The real part [Re(ω)]
of the obtained complex QNM frequency relates to the
QNM frequency( f ) as Re(ω) = 2π f , and the imaginary part
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represents the reciprocal of the damping time ( 1
τ f

), i.e., the

obtained QNM frequency (ω) has the form, ω = 2π f + i 1
τ f

.
In this section, we present the basic equations that need to be
solved for finding the complex QNM frequencies.

1. Perturbations inside the star

The perturbed metric (ds2
p) can be written as [22]

ds2
p = ds2 + hμνdxμdxν . (14)

Following the arguments given in Thorne and Campolat-
taro [22], we focus on the even-parity (polar) perturbations
for which the the GW and matter perturbations are coupled.
Then hμν can be expressed as [22,62]

hμν=

⎛
⎜⎜⎜⎝

rlHe2� iωrl+1H1 0 0

iωrl+1H1 rlHe2λ 0 0

0 0 rl+2K 0

0 0 0 rl+2Ksin2θ

⎞
⎟⎟⎟⎠Y l

meiωt ,

(15)

where Y l
m are spherical harmonics and H, H1, and K are per-

turbed metric functions and vary with r [i.e., H = H (r), H1 =
H1(r), K = K (r)]. The Lagrangian displacement vector ζ =
(ζ r, ζ θ , ζ φ ) associated with the polar perturbations of the fluid
can be characterized as [60,65]

ζ r = rl

r
e−λW (r)Y l

meiωt

ζ θ = −rl

r2
V (r)

∂Y l
m

∂θ
eiωt

ζ φ = −rl

r2sin2θ
V (r)

∂Y l
m

∂φ
eiωt , (16)

where W and V are amplitudes of the radial and transverse
fluid perturbations. The equations governing these perturba-
tion functions and the metric perturbations inside the star are
given by [62,65]

dH1

dr
= −1

r

[
l + 1 + 2m

r
e2λ + 4πr2e2λ(p − ε)

]
H1

+ 1

r
e2λ[H + K + 16π (p + ε)V ], (17)

dK

dr
= l (l + 1)

2r
H1 + 1

r
H −

(
l + 1

r
− d�

dr

)
K

+ 8π

r
(p + ε)eλW, (18)

dW

dr
= reλ

[
1

γ p
e−�X − l (l + 1)

r2
V − 1

2
H − K

]

− l + 1

r
W, (19)

dX

dr
= −l

r
X + (p + ε)e�

{
1

2

(
d�

dr
− 1

r

)
H

− 1

2

[
ω2re−2� + l (l + 1)

2r

]
H1 +

(
1

2r
− 3

2

d�

dr

)
K

− 1

r

[
ω2 eλ

e2�
+ 4π (p + ε)eλ − r2 d

dr

(
e−λ

r2

d�

dr

)]
W

− l (l + 1)

r2

d�

dr
V

}
, (20)

[
1 − 3m

r
− l (l + 1)

2
− 4πr2 p

]
H − 8πr2e−�X

−
[

1 + ω2r2e−2� − l (l + 1)

2

− (r − 3m − 4πr3 p)
d�

dr

]
K

+ r2e−2λ

[
ω2e−2� − l (l + 1)

2r

d�

dr

]
H1 = 0 (21)

e2�

[
e−φX + e−λ

r

d p

dr
W + (p + ε)

2
H

]

−ω2(p + ε)V = 0, (22)

where X is introduced as [59,62]

X = ω2(p + ε)e−�V − We�−λ

r

d p

dr
− 1

2
(p + ε)e�H,

(23)

and m = m(r) is the enclosed mass of the star and γ is the
adiabatic index defined as

γ = (p + ε)

p

(
∂ p

∂ε

)∣∣∣∣
ad

. (24)

While solving the differential equations Eqs. (17)–(20)
along with the algebraic Eqs. (21) and (22), we have to impose
proper boundary conditions, i.e., the perturbation functions
are finite throughout the interior of the star (particularly at
the center, i.e., at r = 0) and the perturbed pressure (�p)
vanishes at the surface. Function values at the center of the
star can be found using the Taylor series expansion method
described in Appendix B of Ref. [59] (see also Appendix A of
Ref. [62]. It is to be noted that the first term in right-hand side
of Eq. (A15) in Ref. [62] misses a factor ε). The vanishing
perturbed pressure at the stellar surface is equivalent to the
condition X (R) = 0 (as �p = −rle−�X ). We followed the
procedure described in LD [59] to find the unique solution for
a given value of l and ω satisfying all the boundary conditions
inside the star.

2. Perturbations outside the star and complex eigenfrequencies

The perturbations outside the star are described by the
Zerilli equation [66],

d2Z

dr2∗
+ ω2Z = VZZ, (25)
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where r∗ = r + 2M log( r
2M − 1) is the tortoise coordinate and

VZ is defined as [66]

VZ = 2(r − 2M )

r4(nr + 3M )2 [n2(n + 1)r3

+ 3n2Mr2 + 9nM2r + 9M3], (26)

where n = 1
2 (l + 2)(l − 1). Asymptotically the wave solution

to (25) can be expressed as (27)

Z = A(ω)Zin + B(ω)Zout,

Zout = e−iωr∗
j=∞∑
j=0

α j r
− j, Zin = eiωr∗

j=∞∑
j=0

ᾱ j r
− j . (27)

Keeping terms up to j = 2 one finds

α1 = − i

ω
(n + 1)α0, (28)

α2 = −1

2ω2

[
n(n + 1) − i3Mω

(
1 + 2

n

)]
α0. (29)

For initial boundary values of Zerilli functions, we use
the method described in Refs. [60,62,67]. Setting m = M and
perturbed fluid variables to 0 (i.e., W = V = 0) outside the
star, connection between the metric functions (15) with Zerilli
function [Z in Eq. (25)] can be written as(

rlK

rl+1H1

)
= Q

(
Z
dZ
dr∗

)

Q =
[ n(n+1)r2+3nMr+6M2

r2(nr+3M ) 1

nr2−3nMr−3M2

(r−2M )(nr+3M )
r2

r−2M

]
. (30)

The initial boundary values of Zerilli functions are fixed
using (30). Then the Zerilli equation (25) is integrated nu-
merically to infinity and the complex coefficients A(ω) and
B(ω) are obtained matching the analytic expressions for Z
and dZ

dr∗
with the numerically obtained value of Z and dZ

dr∗
. The

natural frequencies of an oscillating neutron star, which are
not driven by incoming gravitational radiation, represent the
quasinormal mode frequencies. Mathematically we have to
find the complex roots of A(ω) = 0, representing the complex
eigenfrequencies of QNMs.

We tested our numerical technique by reproducing the
quadrupole f -mode frequencies (complex) from Ref. [62] for
polytropic stars (i.e., Table V and Fig. 5 of Ref. [62] wherein
the method of continued fractions was used to find the com-
plex eigenfrequencies).

V. RESULTS

A. Universal relations in NS asteroseismology

NS asteroseismology (inverse asteroseismology), the tech-
nique of inferring the NS parameters (internal composition)
from QNM characteristics, was first introduced by Andersson
and Kokkotas [37,38]. Theoretically, it was shown that the
frequency of f mode varies linearly with density, whereas
the damping time varies inversely with stellar compactness
when scaled by M3/R4. Therefore empirical fit relations can

TABLE II. Asteroseismology relation coefficients for f -mode
frequency from different works. The coefficients ar and br are related
to f by Eq. (31).

Reference ar (kHz) br (kHz × km)

Andersson and Kokkotas [38] 0.22 47.51
Benhar and Ferrari [68] 0.79 33
D.Doneva et al. [25] 1.562 25.32
Pradhan and Chatterjee [40] 1.075 31.10
This work 0.535 36.20

be defined as follows:

f (kHz) = ar + br

√
M

R3
, (31)

R4

M3τ f
= ai + bi

M

R
. (32)

where the constants ar, br, ai, bi are extracted from the best
fit to the data. The fits were subsequently improved by other
works by including few selected realistic EoSs or those with
exotic matter (hyperons and quarks) [68,69]. Further, NS ro-
tation was considered by Doneva et al. [25], where empirical
relations for frequency in nonrotating limits are also given.
However, many of the selected EoSs considered in previous
works are now incompatible with the ≈2M� maximum mass
constraint or with the tidal deformability (radius) constraints
from the event GW170817 and are hence ruled out.

It is worth noting that although the empirical relations
obtained previously aim to be independent of the underlying
EoS, all the proposed empirical fit relations are somewhat
model dependent. The knowledge of mode frequencies and
the NS masses (which is among the most precisely determined
global variables) can therefore help to discriminate among the
different EoSs, or to understand the behavior of high-density
NS matter [70]. In other words, these empirical relations can
be used not just to infer mass and radius but also to constrain
the EoS stiffness and the presence of exotic matter [68].
Instead of choosing selected EoSs, we fit asteroseismology
relations to cover the full range of uncertainties in nuclear
and hypernuclear saturation parameters in the EoS subject to
current astrophysical constraints. Empirical fit relations for
frequency and damping time of f -modes from different works
along with this work are tabulated in Table II and Table III, re-
spectively. In this work we found ar = 0.535 ± 7.383 × 10−4,
br = 36.206 ± 0.019, ai = (7.99 ± 0.002) × 10−2, and bi =
−0.245 ± 1.005 × 10−4. One may compare the fit results

TABLE III. Asteroseismology relation coefficients for f -mode
damping time from different works. The coefficients ai and bi are
related to τ f by Eq. (32).

Reference ai bi

Andersson and Kokkotas [38] 0.086 −0.267
Benhar and Ferrari [68] 0.087 −0.271
This work 0.080 −0.245
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FIG. 3. The f -mode frequencies as a function of square root of
the mean density. Models with only nuclear (nucleon and hyperon)
matter are shown in orange (blue) lines and the empirical linear fit
relation (31) by black dashed line.

within Cowling approximation [40] and full GR calculations
(this work) for ar and br from Table II. The dependence of
frequency (scaled damping time) with density (compactness)
is displayed in Fig. 3 (Fig. 4), along with empirical fit relation
Eq. (31) [Eq. (32)]. Please note that the coefficients given
in Ref. [38] were incorrect due to a normalization error in
the calculation [71]. These values have now been updated in
Table II.
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FIG. 4. Scaled damping time of f mode as a function of stellar
compactness M/R. Models with only nuclear (nucleon and hyperon)
matter are shown in orange (blue) lines and the empirical linear fit
relation (32) by black dashed line.
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FIG. 5. Dependence of QNM frequency after scaling with NS
mass as a function of stelllar compactness. Scattered orange (blue)
points correspond to models with npeμ (npeμY ) matter. The region
spanned by hyperonic stars comes within the region spanned by the
nucleonic models. The upper panel shows the universality for real
part of Mω, while the lower panel shows the universality of mass
scaled by damping time [ M

τ f
or Im(Mω)].

Contrary to empirical fit relations (31) and (32) which are
model dependent, there are other proposed universal relations
(UR), which are fairly independent of underlying composition
hence, more useful for extracting the NS parameter from
QNM observables. It was shown when the mode characteris-
tics are scaled with NS mass or radius they show correlations
with the stellar compactness [38] and the relations can be
expressed in a universal way. In our previous work [40] we
found the universality between scaled frequency with stellar
compactness holds when ω scaled with NS mass but deviates
from universality when scaled by radius. Tsui and Leung [72]
explicitly demonstrated that the scaled polar QNM frequen-
cies of realistic neutron stars are approximately given by a
universal function of the compactness and improved the linear
UR to quadratic fit, as given in Eq. (33). We note in Fig. 5 that
a similar quadratic fit for Im(Mω) given in Ref. [72] deviates
from universality at large compactness, whereas Eq. (34) pro-
posed by Lioutas and Stergioulas [73] provides a better fit. We
display the dependence of scaled complex QNM frequency
(scaled with NS mass), Mω as a function of compactness
along with the URs from this and past works in Fig. 5. Fit
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TABLE IV. Fit parameters for the URs (33) and (34) obtained in
this work.

Re(Mω) Im(Mω)

a0 0.079 ± 0.002 b0 (9.836 ± 0.003) × 10−2

a1 0.599 ± 0.001 b1 (−4.448 ± 0.002) × 10−1

a2 −0.026 ± 8 × 10−5 b2 (4.915 ± 0.004) × 10−1

parameters corresponding to URs (33) and (34) found in this
work are tabulated in Table IV,

Re(Mω) = a0

(
M

R

)2

+ a1
M

R
+ a2, (33)

Im(Mω) = b0

(
M

R

)4

+ b1

(
M

R

)5

+ b2

(
M

R

)6

. (34)

In a binary NS system, during the inspiral phase, NSs
deform each other by exerting strong gravitational forces and
the deformation depends on the underlying EoS. The anal-
ysis of the tidal deformability from the event GW1701817
plays a crucial role in constraining NS EoS. From our current
understanding of merger simulations, the mass scaled peak
frequency ( fpeak) of the post merger phase shows universal-
ity with tidal deformability or compactness [74–77]. It was
pointed out recently by Chakravarti and Andersson [78] that
the universality between fpeak and tidal deformability can be
explained by adding the rotational and thermal corrections
to the existing universal relation between mode frequency
and tidal deformability of cold nonrotating neutron stars and
the total mass scaled fpeak frequency can be expressed as a
scaling factor times the mass scaled f -mode frequency. Also
during the inspiral phase the f modes are most likely to be
excited and observation of f -mode frequency along with tidal
deformability can be used to probe the NS interior. Analyzing
the event GW170817 along with the universality behavior of
frequency and tidal deformability should allow one to put a
lower bound on the f -mode frequencies for NSs within the
mass range of the two binary components of GW170817 [33].

It was argued that the f -mode frequencies can be detected
very accurately with improved sensitivity of GW detectors,
whereas damping time may not be detected with such good
accuracy [79]; in this case the universal relations can be help-
ful in constraining the damping time. The detection of f -mode
characteristics [70] or fpeak [77] along with tidal deformability
can also be used to verify the presence of quarks in the interior
of NS. We provide the UR between f -mode characteristics
and tidal deformability as suggested in Refs. [31,80]. We tab-
ulate the complex α j from (35) found in this work in Table V
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FIG. 6. Dependence of QNM frequency after scaling with NS
mass as a function of dimensionless tidal deformability. Scattered
orange (blue) points correspond to model with npeμ (npeμY ) matter.
The region spanned by hyperonic stars comes within the region
spanned by the nucleonic models. The upper panel shows the uni-
versality for real part of Mω, while the lower panel shows the
universality of mass scaled by damping time [ M

τ f
or Im(Mω)].

and display in Fig. 6,

Mω =
∑

j

α j (ln �̄) j
. (35)

We also found that there exists a universal relation between
QNM characteristics (i.e., frequency and damping time) when
they are scaled by NS mass. The universal relation between
mass scaled angular frequency [Re(Mω)] and mass scaled
damping time [Im(Mω) or M/τ f ] can be described by the
following relation:

Im(Mω) =
∑

j

γ j[Re(Mω)] j . (36)

We tabulate the fit parameters of Eq. (36) in Table VI.
Even in a binary NS system, there exists universality be-

tween mode characteristics and tidal deformability in the
inspiral phase [31,70] and between fpeak and tidal deforma-
bility [77]. With future detections of BNS merger events the

TABLE V. Values of the fit parameters α j found in this work for the given equation (35).

α0 α1 α2 α3 α4 α5

1.814 × 10−1 +
i3.362 × 10−5

−5.824 × 10−3 +
i3.993 × 10−5

−4.725 × 10−3 −
i1.0215 × 10−5

6.337 × 10−4 +
i1.270 × 10−7

−2.871 × 10−5 +
i1.230 × 10−7

3.150 × 10−7 −
i7.817 × 10−9
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TABLE VI. Values of the fit parameters γ j found in this work for the given equation (36).

γ0 γ1 γ2 γ3 γ4 γ5

6.002 × 10−6 −4.053 × 10−4 1.339 × 10−2 −6.577 × 10−2 2.620 × 10−1 −1.072

constraint on the tidal deformability will improve, and these
in turn can then be used to constrain the mode characteristics.
Our result for the lower bound on the mode frequency is in
good agreement with the limit obtained from observations of
GW170817 [33]. In order to test this hypothesis, we display
the dependence of f -mode frequency as a function of tidal de-
formability for canonical NSs in Fig. 7. Looking at the points
corresponding to the maximum limit of the tidal deformability
of a 1.4M� in Fig. 7, one can conclude that for a 1.4M� the
lower bound on mode frequency will be around 1.60 kHz.
Similarly, we found the upper bound on τ f for a 1.4M� NS
to be 0.28 s.

B. Correlation studies

The uncertainty in the EoS and hence in mass-radius re-
lations corresponding to uncertainty associated with nuclear
and hypernuclear saturation data are discussed in Sec. II B.
Having tested our numerical scheme for complex f -mode
frequencies, and obtained scaling rbelations with neutron star
global parameters, we now extend our investigation to study
the effect of microscopic (saturation) parameters on the f -
mode observables ( f and τ f ).

1. Nucleonic matter

We first consider only nucleonic EoSs to find the ef-
fect of nuclear saturation data on NS observables and then

400 500 600 700
Λ̄1.4M�

1.60

1.65

1.70

1.75

1.80

1.85

f 1
.4

M
�

(k
H

z)

(720,1.60)

npeμ

npeμY

M = 1.4M�

FIG. 7. Universality between f -mode frequencies and tidal de-
formability (�̄) of a canonical 1.4M� NS. Scattered orange (blue)
points correspond to models with npeμ (npeμY ) matter. The black
dashed line is obtained using the UR (35). The red crossed point is
corresponding to the maximum limit for (�̄)1.4M� .

extend to involve hyperons. For better understanding, we ob-
tained the Pearson’s correlation coefficients (RX1X2 ) among
the saturation parameters, NS observables such as radius
and tidal deformability and QNM characteristic for canonical
1.4M�, and massive 2M� NSs. Pearson’s linear correlation
coefficient (RX1X1 ) between two random variables X and Y can
be defined as [81]

RX1X2 = Cov(X1, X2)

S(X1)S(X2)
, (37)

where Cov(X1, X2) is the covariance and S(Xi ) denotes stan-
dard deviation of variable Xi. We present the correlation
matrix in Fig. 8. From Fig. 8 the following conclusions can
be drawn:

(i) NS observables show strong correlation among them-
selves as well as with the QNM characterstics. As
expected from (13) �̄ shows a strong correlation with
R (0.97 for 1.4M� and 0.98 for 2M�). Frequency and
damping time also show a strong correlation among
themselves.

(ii) We find strong correlations between f -mode fre-
quency and radius which can be explained by looking
at (31) given in Sec. V A, similarly the high cor-
relation between damping time and radius can be
explained by (32) from Sec. V A.

(iii) Among the saturation parameters m∗ shows strong
correlations with radius and tidal deformability (0.85

FIG. 8. Correlation matrix for nuclear saturation parameters, NS
observables, and QNM characteristics considering models with npeμ
matter after applying astrophysical constraint (Mmax � 2M� and
�̄1.4M� � 720). In the color bar the correlation changes from positive
to negative going from red to blue in color. However, the absolute
value of correlations are written in the correlation matrix.
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FIG. 9. The f -mode frequencies of stable NS configurations as a
function of stellar mass (upper panel) with npeμ matter for different
nuclear effective mass (m∗ at saturation). For comparison, results
obtained using Cowling approximation (dashed lines) and obtained
in full GR (solid lines) are shown. Lower panel shows relative er-
ror for f -mode frequencies obtained using two different methods.
While varying m∗ other parameters are fixed at, n0 = 0.150 fm−3,
Esat = −16.0 MeV, J = 32 MeV, L = 60 MeV, and K = 240 MeV.

with R and 0.93 with �̄ for 1.4M�) which is expected
as m∗ is the dominant parameter controlling the stiff-
ness of EoS and hence the radius.

(iv) Strong correlations exist between mode characteris-
tics ( f and τ f ) and nucleon effective mass (m∗) for
1.4M�(0.91 with f and 0.92 with τ f ) as well as
for 2M� (0.95 with f and 0.97 with τ f ). This leads
us to conclude that the nucleon effective mass has
the most dominant effect on the QNM characteristics
compared to other nuclear saturation parameters.

We display the dependence of frequency and damping time
as a function of stellar mass for variation of m∗ in Fig. 9 and
Fig. 10, respectively. Extension of our previous calculations
from Cowling to involve linearized gravity provides us an
opportunity to compare the f -mode frequencies from the two
different methods. We display a comparison of frequency
obtained by two different methods with variation of nucleon
effective mass m∗ in Fig. 9. We find Cowling approximation
can include error of 10–30% in the quadrupole f -mode fre-
quencies and the error decreases with increasing mass. The
obtained trend of decreasing error with increasing mass is in
good agreement with the previous result from Ref. [56]. A
possible explanation for this trend was discussed in Ref. [82],
given that the f -mode eigenfunction is peaked near the sur-
face, increasing mass (or compactness for the given mass
range and models considered) can make the metric pertur-
bations less relevant for f -mode eigenfunction resulting in a
smaller error compared to the frequency obtained within the
relativistic Cowling approximation.
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FIG. 10. The f -mode damping time as a function of stellar mass
with npeμ matter for different m∗. While varying m∗ other parame-
ters are fixed to n0 = 0.150 fm−3, Esat = −16.0 MeV, J = 32 MeV,
L = 60 MeV, and K = 240 MeV.

2. Inclusion of hyperons

We extend our investigation by including presence of hy-
perons in the NS core and present the correlation matrix in
Fig. 11 in a similar fashion as given for nucleonic models.
Looking at Fig. 11 one can conclude the following:

(i) NS observables show strong correlations among
themselves as well as with the QNM characteristics.
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FIG. 11. Correlation matrix for nuclear saturation parameters,
NS observables, and QNM characteristics considering models with
npeμY matter after applying astrophysical constraints (Mmax � 2M�
and �̄1.4M� � 720). In the color bar the correlation changes from
positive to negative going from red to blue in color. However, the
absolute value of correlations are written in the correlation matrix.
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(ii) Interestingly the correlation between L and radius of
1.4M� star increases when compared to the nucleonic
case (from 0.24 to 0.52) while the correlation between
m∗ and R1.4M� decreases from 0.85 to 0.57 compared
to the nucleonic case.

(iii) However, when it comes to QNM characteristics, they
show strong correlations with m∗ for a 1.4M� star as
well as for a 2M� star. It is worth noting that the corre-
lations among m∗ and NS observables have decreased
compared to the models with only nucleonic EoSs.

In light of these inferences from the correlation plot
Fig. 11, one can conclude that the m∗ has the most dominant
effect on the QNM characteristics compared to other nuclear
and hypernuclear saturation parameters, even in the presence
of hyperons.

VI. DISCUSSIONS

A. Summary of this work

We revisit the NS asteroseismology problem in this work,
considering realistic EoSs in the RMF framework and cur-
rent astrophysical constraints. In a recent publication [40],
we studied the effect of the influence of the uncertainties in
the underlying nuclear and hypernuclear physics on f -mode
frequencies within the relativistic Cowling approximation.
Here we extend this work to study the effect of uncertainties
in the underlying nuclear and hypernuclear physics on com-
plex f -mode characteristics (frequency and damping time)
of nonrotating perturbed NSs by solving the perturbation
equations based on complete linearized equations in general
relativity. We provide the asteroseismology relations by con-
sidering EoSs with the nuclear and hypernuclear matter in the
NS core.

Previous works on NS asteroseismology or inverse aster-
oseismology involved selected realistic or polytropic EoSs.
Many of the chosen EoSs have now been rendered incompati-
ble with large NS mass observations or the tidal deformability
constraint from merger event GW170817. Hence the empir-
ical relations from past works need to be modified. There
are a few efforts to investigate the effect on f modes of the
inclusion of exotic forms of matter (hyperon or quark mat-
ter) [54,55,68,69,83–85] or to improve the asteroseismology
relations with current astrophysical constraints [80,86–88].
However, the works are either limited to selective EoSs or
used Cowling approximation to find the mode characteristics.

As mentioned, the extension of our previous work [40]
(where relativistic Cowling approximation was used to find
the mode frequency), by involving complete linearized equa-
tions of general relativity, allows us to compare the mode
frequencies obtained within the two different methods. For
the models considered, frequencies obtained using relativis-
tic Cowling approximation can include an error up to 30%
compared to those obtained in full general relativity. Solving
the NS oscillation in full general relativity enables us to in-
vestigate the effect of uncertainties in the underlying nuclear
and hypernuclear physics on both frequency and damping
time of the f mode. The dependence of mode frequencies
on the stellar mass remains qualitatively similar (increasing)

to results obtained using relativistic Cowling approximation
irrespective of the composition of the NS interior. The f -
mode damping time shows an inverse relation with NS mass
for both nuclear and hypernuclear matter EoSs. Considering
NS masses starting from 1M� and up to the possible maxi-
mum stable NS mass configuration of each model along with
current astrophysical constraints, the frequency and damping
time of quadrupole f -mode oscillations are found to be in
the range of 1.47–2.45 kHz and 0.13−0.51 s, respectively.
In this work, we also obtained the UR involving tidal de-
formability and mass scaled f -mode characteristics. We tested
the hypotheses of universality between tidal deformability
for a canonical 1.4M� NS. Using the upper bound of tidal
deformability, we found the lower bound on the f1.4M� to be
1.6 kHz, which is in agreement with the result obtained with
Bayesian estimation from Pratten et al. [33]. We also found
that, using the upper bound of the tidal deformability coming
from the event GW170817 for a 1.4M� (i.e., �̄ � 720), the
damping time of a 1.4M� has an upper limit of 0.28 s. From
Fig. 7, it is evident that frequencies above 1.7 kHz are difficult
to describe with hyperonic EoSs in our model.

We found that while considering nucleonic EoSs and im-
posing current astrophysical constraints, among all the nuclear
saturation parameters, the nuclear effective mass m∗ has the
most dominant effect on f -mode characteristics. We explored
correlations among saturation parameters, NS observables
(radius and tidal deformability), and f -mode characteristics
for a canonical 1.4M� and a massive 2M�. NS observables
show strong correlations among themselves as well as with
f -mode characteristics. The strong correlations of m∗ with
NS observables (R1.4M� , �̄1.4M� ) and f -mode characteristics
( f1.4M� , τ f 1.4M� ) for NS with 1.4M� remain so even for 2M�.

We further investigate the effect of uncertainties in nu-
clear and hypernuclear saturation parameters on the f -mode
characteristics by considering the presence of hyperons on
the NS interior along with the imposition of current astro-
physical constraints. We checked that even in the presence of
hyperons, the nuclear effective mass (m∗) still has the dom-
inant effect on the f -mode characteristics. The hypernuclear
parameter U� was found to have a minor effect on f -mode
characteristics. We also provide correlations among the nu-
clear saturation parameters, hypernuclear parameters as well
as with the NS observables (radius and tidal deformability)
and f -mode characteristics for a 1.4M� and a massive 2M�
for hyperonic stars. Similarly to nuclear-matter models, NS
observables show strong correlations among themselves and
also with f -mode characteristics. Considering the presence of
hyperons in the NS core and imposing the maximum mass
limit of 2M� and �̄1.4M� � 720, the correlation between slope
of symmetry energy at saturation (L) and R1.4M� increases in
comparison with nucleonic models whereas the correlation
between m∗ and R1.4M� decreases.

In our analysis, we provide URs in asteroseismology con-
sidering the entire parameter range of uncertainties within
the framework of the RMF model compatible with state-of-
the-art nuclear and hypernuclear physics subject to current
astrophysical constraints. These empirical relations involv-
ing f -mode frequency and average density or appropriately
scaled damping time and stellar compactness differ in their fit
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parameters compared to those proposed previously in the lit-
erature [37,38,68]. Also in full general relativity, we found
the empirical fits between frequency and density to be depen-
dent on the choice of EoSs considered. We then tested the
hypotheses of universality between stellar compactness and
f -mode characteristics scaled with stellar mass. We provide
a quadratic universal relation among mass scaled angular
frequency and stellar compactness [Re(Mω)=F1(M/R)] and
a universal relation for mass scaled damping time and stel-
lar compactness [i.e., Im(Mω)=Im(M/τ f )=F2(M/R)]. When
the angular frequencies and damping times are scaled ap-
propriately with NS mass, the universality between f -mode
frequency and damping time can be described by the proposed
UR.

B. Future prospects

During the inspiral phase of a binary NS merger, when the
tidal field reaches resonance with the NS internal oscillation
modes, particular new features are created in the GW wave-
form that, if detected, can provide information on the QNMs.
Among these modes, the f mode is the most important one.
Hence studying the effect of dynamical tides can be used to
analyze the influence of QNM modes in the merger waveform
[33,89]. In merger events, tidal deformability is another im-
portant observable parameter. Future detection will put tight
constraints on tidal deformability; hence universal relations
involving f -mode characteristics and tidal deformability are
useful for analyzing the mode characteristics.

To understand the f modes thoroughly, other complicating
effects such as rotation [25,30,63], magnetic fields, the effect
of superfluidity [90], and the presence of deconfined quark
core should be taken into account. Superfluidity will play a
role in the case of cold NSs, whereas rotation will play a cru-
cial role in the hot and differentially rotating merger remnant.
It has been shown that for stars with deconfined quarks in NS
interior, the f -mode vs tidal deformability relation deviates
from the universality in isolated NSs [70] as well as in merger
remnants [77].

C. Detectability

We conclude by making some remarks on the detectability
of the f -mode of hyperonic stars. As the f -mode amplitude
peaks near the star’s surface, it may be excited strongly by
glitching behavior in an isolated star or by tidal forces due
to a companion during the late inspiral in a merger. In the
former case, one would expect a GW burst in the detector,
while in the latter case, the f mode would draw energy from
the orbit, affecting the phase of the gravitational waveform.
The study by Pratten et al. [33] placed a lower bound on the
quadrupolar f2-mode in the region of 1400 Hz, including the
mode excitation directly as a parameter in the analysis of data
from GW170817. Here we will consider isolated hyperonic
stars that emit a burst of GW due to the f mode and estimate
the peak gravitational wave strain and associated energy re-
quired for detection in aLIGO and third generation detectors.
Utilizing the methodology in Ref. [91], wherein the burst
waveform is modelled as an exponentially damped oscillation
with frequency ν f and damping time τ f , we find the peak

FIG. 12. Top panel: Gravitational wave strain corresponding to a
maximum glitch energy observed in Vela pulsar (Crab pulsar) with
distance to be 290 pc (2 kpc) are shown along with the sensitivity
bands of different configurations. The waveforms are generated using
the GW inference package Bilby [92]. Lower panel: Signal-to-noise
ratio (SNR) for a source with f -mode frequency 1.70 kHz and
damping time 0.25 s at different detector configurations as a function
of EGW for sources to be at 10 kpc (solid lines) or at 15 Mpc (dashed
lines).

strain

h0 = 1.46 × 10−13

√
EGW

M�c2

√
1 s

τ f

1 kpc

d

(
1 kHz

ν f

)
. (38)

Choosing a canonical NS mass of 1.4M� at a distance of
10 kpc, an f -mode frequency of 1.70 kHz with a damping
time of 0.25 s, and assuming that EGW is of the order of
a glitch in the Vela pulsar and highly efficient in producing
GW, Figure 12 (top panel) shows the resulting frequency do-
main waveform h̃( f ) against the sensitivity curve of advanced
LIGO (adLIGO) [93], A+ [94] and the Einstein Telescope
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(ET) [95,96] and the EGW (bottom panel) required for the
typical signal-to-noise ratio (SNR ≈ 5) for detection in these
instruments. For sources at 10 kpc for SNR � 5, the en-
ergy EGW should be greater than 5.75 × 10−12M�c2, 2.88 ×
10−11M�c2, and 6.88 × 10−11 for ET, A+ and adLIGO con-
figuration, respectively. For sources at 15 Mpc for SNR � 5
in A+ and ET configuration EGW should be greater than
6.55 × 10−5M�c2 and 1.3 × 10−5M�c2, respectively. As EGW

is a parameter in the waveform, depending on the distance,
GWs induced from (i) NS glitches, (ii) a supernova explo-
sion, or (iii) a prominent phase transition, leading to a mini
collapse in NS are possible sources that could be detectable.
These might be considered optimistic estimates, given that
most glitches are weaker than in Vela pulsar and might not
couple that strongly to GW. In addition, individual sources

may have considerable uncertainty in either the distance or ra-
dius parameters. The statistical approach followed in Ref. [91]
uses the BSk24 EOS (no hyperons or exotic matter) to model
ordinary neutron stars satisfying current observational con-
straints and suggests that third generation detectors like ET
and Cosmic Explorer would offer the best chance to detect
the transient bursts from f modes.
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