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Investigation of the inner edge of neutron star crusts: Temperature dependence and related effects
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The mutual correlation between the nuclear equation of state (EOS) and the bulk properties of neutron stars
(NS) is crucial in probing both of them. Here, we use EOSs of hot npe (npeμ) nuclear matter, based on the
density-dependent CDM3Y-Paris nucleon-nucleon interaction in the nonrelativistic Hartree-Fock scheme, to
investigate the temperature dependence of the core-crust transition properties under β equilibrium, at the inner
edge of NS. We use four EOSs that provide symmetric nuclear matter saturation incompressibility of 218 and
252 MeV, with two parametrizations of the density dependence of the isovector part of the M3Y force. We
found that the softer EOS estimates larger proton fraction in the NS matter and indicates a wider range for
direct Urca (DU) cooling process within the core center of NSs. Increasing the temperature decreases the density
corresponding to the threshold proton fraction for DU process, increasing the region for the DU process inside
NSs. The muons decrease the isospin asymmetry of the npeμ NS matter at its core center, its thermal pressure,
and the DU threshold density. The muon fraction slightly changes with temperature. A value of about half the
proton fraction is inferred for the β-stable muon fraction of hot npeμ matter, around the core center. Based
on the four considered EOSs, the liquid core-solid crust transition density, pressure, and proton fraction are
estimated to increase from (0.54 ± 0.02)ρ0, 0.36 ± 0.12 MeV fm−3, and 0.03, respectively at T = 0 MeV, to
(0.85 ± 0.04)ρ0, 7.36 ± 0.52 MeV fm−3, and 0.14, respectively at T = 50 MeV.

DOI: 10.1103/PhysRevC.106.015801

I. INTRODUCTION

Over the past decades, neutron stars (NS) had a significant
importance in physics and astrophysics, as a rich physical
system. Their importance stem from the wealthy structure of
their matter under extreme physical conditions [1]. NS form
the remains of massive stars when their lives end in supernova
explosions [2]. They result from the gravitational collapse of
an ordinary star with a large mass ranging from 8 to 25M�
in a supernova event, with temperature reaches several tens
of MeV [2]. The supernova explosion [3–6] happens when
the star exhausts its fuel by nuclear fusion. The star then be-
comes unstable and collapses due to the insufficient pressure
gradient provided by the radiation to balance the gravitational
attraction [1,2,7]. Consequently, the temperature cools down
by neutrino emission within the first minute. While the tem-
peratures in the cores of the compact stars are low relative
to the Fermi energy, the density increases up to ten times the
saturation nuclear density (ρ0). A temperature of more than
50 MeV can be reached for hot proto-neutron star (PNS) [8,9]
formed in the supernova explosion. Higher temperatures of
about 100 MeV can be attained in the neutron-star binary
systems [7]. The structure of the neutron stars can be divided
into atmosphere and four internal regions, namely the inner
and the outer crust and the inner and the outer core [1,2,7].
The atmosphere [10,11] takes shape of a thin layer of plasma
with a thickness varies from tens of centimeters in hot NS
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to a few millimeters in a cold one. The outer crust consists
of ions and electrons, over a thickness of about hundreds of
meters. Going deeper in the neutron star, the density increases
and so the electron Fermi energy, which induces β captures
and enriches nuclei with neutrons. The inner crust consists
of free neutrons, neutron rich nuclei and electrons. Its thick-
ness is about one kilometer and the density reaches about
0.5ρ0 at its base. The outer core consists of neutrons with
admixture of electrons, protons and possible muons, with a
thickness extends to several kilometers. The corresponding
density varies from 0.5ρ0 to about 2ρ0. An ideal Fermi gas
is formed by electrons and muons. The inner core occupies
the center of massive neutron and proto-neutron stars; with
a radius of several kilometers and central density exceeds
1 fm−3 and even reaches (10–15)ρ0 [12–15]. Different models
have been used to describe the composition and the related
EOS of the inner core. The EOSs adopted in the present
study success to describe the dense NM up to such compact
densities [16,17].

The composition of NS, which varies from pure neutron
matter (PNM) to symmetric matter (SNM), is determined
by equilibrium condition and charge neutrality with respect
to weak interaction. The matter of NS maintains beta equi-
librium, n → p + e− + ν̃e [18,19]. As the density increases,
and with the chemical potential of electron exceeds the rest
mass energy of muons, the rate of neutralization takes place
through a new channel, n → p + μ− + ν̃μ [20]. The pres-
ence of muons changes the proton fraction. A third channel
n → p + π− takes place when the chemical potential exceeds
the rest mass of π−, 139.6 MeV. Since there is no enough
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Fermi energy to suppress pions with increasing the density,
this channel becomes the favored mode and pions condense
into the lowest state [18,19,21]. The proton fraction is of great
importance in determining the cooling rate and neutrino flux
within evolution of NS. The critical value of the proton frac-
tion for direct Urca process is xDU [22–24], above which the
direct Urca processes n → p + e− + ν̃e and p + e− → n + νe

can occur and then the NS cooling rate by neutrino emis-
sion considerably increases relative to the standard cooling
scenario. The Brueckner approach [22,25,26] is one of the
theoretical methods used to study the proton fraction NS.

A realistic equation of state (EOS) of nuclear matter (NM)
is a key input to study the nuclear structure and reactions,
and some astrophysical phenomena such as the formation,
composition, and merging of NS [27–31]. A series of studies
have been implemented over the last few decades to under-
stand the density and temperature dependencies of the nuclear
EOS over a wide range of density and temperature [27,32–34].
Many microscopic and phenomenological nuclear approaches
and various potentials have been implemented to describe
the nuclear EOS, such as different forms of the M3Y
nucleon-nucleon (NN) interaction, Gogny interaction, chiral
effective-field theory, compressible liquid drop model, and
quantum Monte Carlo methods [5,6,17,27,28,32,33,35–43].
For example, EOS of the NS crust determined by the com-
pressible liquid drop model (CLDM) [44,45] in terms of the
Skyrme-SLy4 interaction [46], in connection with the dif-
ferent regions of the NS crust. A few methods have been
concerned with the dynamical evolution of hot NM and fi-
nite nuclei [16,47–49] since the pioneering work of Brack
and Quentin [50] on thermal Hartree-Fock (HF) calcula-
tions. Nonrelativistic [51,52] or relativistic [53,54] types of
the EOS are adopted according to investigated system, and
their ability to perform ab initio calculations for the intended
study. Different EOSs of the uniform NS core are obtained
for the npeμ composition in the β equilibrium for cold and
hot cases and extended to high densities, using different
mean-field potentials. The density dependent M3Y-types of
the NN interaction come among the trustable semirealistic
interactions being used in the nuclear structure [55–57] and
reaction [58–61] studies, decay modes [62–64], as well as in
cold and hot NM [29,39,56,65] and astrophysical [49,66,67]
investigations. In the present work, the particle fractions and
the core-crust transition properties of NS and their temper-
ature dependence will be explicitly investigated based on
density dependent CDM3Y-Paris NN interaction. Although
we could reach a fair description of the quantities under study,
it remains desirable to achieve more accurate evaluation for
the isovector density dependence through the investigated NS
properties. In the next section, we outline the adopted theoret-
ical framework of nuclear and thermodynamic properties of
hot β stable NS matter. The numerical results are presented
and discussed in Sec. III. Finally, we summarize the obtained
conclusions in Sec. IV.

II. THEORETICAL FORMALISM

Considering the EOS of the uniform npeμ (npe) composi-
tions of NS in the β equilibrium at zero and finite temperature,

the total-energy density E is given as the sum of the en-
ergy density of baryons including protons and neutrons (Eb =
Ep + En) and the energy density of leptons including electrons
and muons (El = Ee + Eμ) [20,68], in addition to their rest
masses. Electrons and muons can be treated as relativistic
free Fermi gases, in which Coulomb contributions of energy
density are negligible compared with kinetic energies [44,69].
For the density-dependent CDM3Yn [70–72] form of the
M3Y [73] NN interaction and assuming spin saturated NM,
the energy density of baryons at a given baryon density (ρb),
isospin-asymmetry (I), and temperature (T ) can be deter-
mined within the Hartree-Fock approach [29,74] as

Eb(T, ρb, I ) = EA(T, ρb, I ) = E

A
(T, ρb, I )

= Ekin(T, ρb, I ) + Epot (T, ρb, I ). (1)

The kinetic energy is given in terms of the momentum distri-
butions of the proton (neutron) density ρp(n)(k, T ) as

Ekin(T, ρb, I ) = 2

(2π )3ρb

∑
τ=n,p

h̄2

2mτ

∫
ρτ (k, T )k2dk. (2)

The potential-energy term is obtained as the sum of the direct
and exchange contributions of both its isoscalar and isovector
parts [56,70],

Epot (T, ρb, I ) = εD
IS (ρb, I ) + εEx

IS (T, ρb, I )

+ εD
IV (ρb, I ) + εEx

IV (T, ρb, I ). (3)

The direct (D) and exchange (Ex) parts of the CDM3Yn den-
sity dependent form of the NN interaction read v

D(Ex)
00(01)(ρb, r) =

F0(1)(ρb)vD(Ex)
00(01)(r), with density dependence of the form

F0(1)(ρb) = C0(1)(1 + α0(1)e−β0(1)ρb − γ0(1)ρb) [39,56,70].
Here, v

D(Ex)
00(01)(r) denote the radial strengths of the central

direct (exchange) parts of the isoscalar (00) and isovector
(01) components of M3Y NN interaction [65,75]. The
CDM3Y density dependence of the isoscalar (IS) component
of the M3Y Paris and Reid NN interactions has been well
tested in the nuclear matter studies [39,43,65,76] and in
the analysis of the elastic α-nucleus and nucleus-nucleus
scattering, and in other different nuclear reactions and
decays [70,72,77]. Simple formulas have been derived
to parametrize the isoscalar density dependence F0(ρ)
of both the M3Y-Paris and M3Y-Reid interactions in
terms of the saturation properties of symmetric nuclear
matter (SNM) [39]. These derived formulas can give
nuclear EOS characterized by any suggested value of the
saturation incompressibility coefficient (K0) in the range from
K0 = 150 MeV to K0 = 300 MeV [39]. On the other hand,
the isovector (IV) density dependence F1(ρ) can be probed
in the charge-exchange-reaction studies [78], and in some
of the NS properties, as will be seen in the present study.
The same functional form of the IS density dependence has
been used for the IV part (DIV), with a scaling factor that
is determined by fitting through experimental data of (p, n)
cross section [78], or via constrains of NM observables [39].
More accurate method has been developed [79] to parametrize
the IV density dependence form of the CDM3Y6 interaction
using the Brueckner-Hartree-Fock (BHF) description of the
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nucleon optical potential given by Jeukenne, Lejeune, and
Mahaux (JLM) [80] in NM. Considering a direct relation
between the single-particle (SP) potential in NM and the
nuclear symmetry energy [81,82], the parameters of the
IV density dependence of the CDM3Y3 and CDM3Y6
interactions have been determined independently of the
corresponding IS parameters (IIV) [56]. This was done
by matching the HF calculations of the IV part of the
nucleon optical-potential (OP) in NM, which is performed
by including a rearrangement term (RT) of the SP potential
at the Fermi momentum for different NM density, with the
similar BHF results obtained by JLM [80,83]. A consistent
method was suggested to consider effectively the density,
isospin-asymmetry, and the momentum dependence of
the RT of the SP potential in the adopted HF scheme.
The CDM3Yn forms of the NN interaction with DIV
density dependence of its isovector contribution have been
used to study the isobaric-analog excitation and symmetry
energy [79], fusion reactions [84], neutron transition strengths
of excited states in neutron-rich light isotopes from inelastic
proton scattering [85], static and thermal properties of
NM [86], monopole strength of the Hoyle state in inelastic
α scattering [87], in addition to the asymmetric NM and its
saturation properties. On the other hand, the RT was found
to affect significantly the nucleus-nucleus optical potential at
small internuclear distances [58], the astrophysical S factor
of 12C + 12C fusion [88], and the optical model description
of elastic nucleon [89] and heavy-ion scattering at low
energies [90]. In the present work, we will investigate the
two DIV [F1(ρ) = 1.1F0(ρ)] and IIV (α1 �= α0, β1 �= β0,
γ1 �= γ0, and C1 �= C0) density dependence parametrizations
of the M3Y-Paris NN interaction, for the considered EOSs.
This is to investigate the consistent rearrangement effect of
the nuclear mean-field potential on the NS properties.

The direct parts of the isoscalar and isovector potential-
energy density respectively read

εD
IS (ρb) = ρb

2
F0(ρb)JD

00, (4a)

and

εD
IV (ρb, I ) = ρb

2
F1(ρb)I2JD

01, (4b)

where JD
00(01) = ∫

vD
00(01)(r)dr, the direct parts of NN

interaction are given as vD
00(r) = 11061.625e(−4r)/(4r) −

2537.5e(−2.5r)/(2.5r) and vD
01(r) = 313.625e(−4r)/(4r) +

223.5e(−2.5r)/(2.5r). The factor 1/2 in Eqs. (4a) and (4b)
avoids the double counting of nucleons when integrating over
the total volume. The exchange (Ex) parts of the isoscalar
and isovector potential-energy density can be respectively
obtained as

εEx
IS (T, ρb, I ) = F0(ρb)

8ρbπ5

∫
ρ(k, T )HIS (ρ, k, I, T )dk, (5a)

and

εEx
IV (T, ρb, I ) = F1(ρb)

8ρbπ5

∫

ρ(k, T )HIV (ρ, k, I, T )dk. (5b)

Here, we have ρ(k, T ) = ρn(k, T ) + ρp(k, T ), 
ρ(k, T ) =
ρn(k, T ) − ρp(k, T ),

HIS (ρb, k, I, T ) =
∫

ρ(k′, T )dk′

×
∫ ∞

0
j0(kr) j0(k′r)vEx

00 (r)r2dr,

and

HIV (ρb, k, I, T ) =
∫


ρ(k′, T )dk′

×
∫ ∞

0
j0(kr) j0(k′r)vEx

01 (r)r2dr.

The isoscalar (IS) and isovector (IV) exchange
contributions of the M3Y-Paris NN potential re-
spectively read vEx

00 (r) = −1524.25e(−4r)/(4r) −
518.75e(−2.5r)/(2.5r) − 7.8474e(−0.7072r)/(0.7072r) and
vEx

01 (r) = −4118.0e(−4r)/(4r) + 1054.75e(−2.5r)/(2.5r) +
2.6157e(−0.7072r)/(0.7072r). j0 denotes the first-order
spherical Bessel function.

For hot spin-saturated nuclear matter (NM) at T > 0 MeV,
the proton (neutron) momentum distribution can be described
by the Fermi-Dirac distribution function [29,74,91],

ρτ=p,n(ρb, k, I, T ) = 1

1 + exp
(

ετ (ρb,k,I,T )−μτ

T

) . (6)

In this equation μτ defines the nucleon chemical potential,
while ετ represents the single-particle energy [29,74],

ετ (ρb, k, I, T ) = h̄2k2

2mτ

+ Uτ (ρb, k, I, T ). (7)

The single-particle potential (Uτ ) includes the isoscalar and
isovector parts of both Hartree-Fock (HF) and rearrangement
(RT) contributions,

Uτ (ρb, k, I, T ) = U HF
IS (ρb, k, I, T ) ± U HF

IV (ρb, k, I, T )

+U RT
IS (ρb, I, T ) + U RT

IV (ρb, I, T ), (8)

where

U HF
IS(IV )(ρb, k, I, T ) = U D

IS(IV )(ρb, I ) + U Ex
IS(IV )(ρb, k, I, T ).

(9)
The positive (negative) sign in Eq. (8) applies to the neutron
(proton). The nucleon chemical potential μτ [Eq. (6)] can be
iteratively determined in connection with the single-particle
potential Uτ [Eqs. (7) and (8)], under the normalization of
nucleon momentum distribution to the corresponding nucleon
density,

g

(2π )3

∫
dkρp(n)(ρb, k, I, T ) = ρp(n) = (1 ± I )ρb/2. (10)

Here, the positive (negative) sign refers to the neutron (proton)
density and the spin degeneracy factor is g = 2. For cold
NM (T = 0 MeV), the momentum distribution of the proton
(neutron) number density distribution becomes ρτ = 1 for the
momenta k < kFτ and vanishes for the momenta larger than
the Fermi momentum kFτ = (3π2ρτ )1/3. For the CDM3Yn
NN interaction, the temperature independent isoscalar and

015801-3



SEIF, HASHEM, AND RAMSIS PHYSICAL REVIEW C 106, 015801 (2022)

isovector direct parts of the single-particle potential can be
respectively written as

U D
IS (ρb) = ρF0(ρb)JD

00, (11a)

and

U D
IV (ρb, I ) = ρF1(ρb)IJD

01. (11b)

The associated HF exchange terms read

U Ex
IS(IV )(ρb, k, I, T ) = F0(1)(ρb)

π2
HIS(IV )(ρb, k, I, T ). (12)

The isoscalar and isovector rearrangement terms in Eq. (8)
can be respectively related to the corresponding direct and
exchange terms as

U (RT )
IS (ρb, I, T )

= ∂F0(ρb)

∂ρb

[
ρ2

b

2
JD

00 + 1

8π5

∫
ρ(k, T )HISdk

]
, (13a)

and

U (RT )
IV (ρb, I, T )

= ∂F1(ρb)

∂ρb

[
I2ρ2

b

2
JD

01 + 1

8π5

∫

ρ(k, T )HIV dk

]
. (13b)

The evolution of the entropy of hot asymmetric nuclear
matter (ANM) controls its thermodynamic equilibrium. One
can calculate the entropy per nucleon for hot ANM at finite
temperature T and nucleon density ρb as [29,74,92],

SA(T, ρb, I )

= g

8π3ρb

∑
τ=p,n

∫
{ρτ (ρb, k, I, T ) ln [ρτ (ρb, k, I, T )]

+ [1 − ρτ (ρb, k, I, T )] ln [1 − ρτ (ρb, k, I, T )]}dk.

(14)

In terms of the internal energy per nucleon (EA) and the en-
tropy per nucleon (SA), the Helmholtz free energy per nucleon,
FA(T, ρb, I ), of the hot ANM reads

FA(T, ρb, I ) = F (T, ρb, I )

A
= EA(T, ρb, I ) − T SA(T, ρb, I ).

(15)
The number densities of electrons and muons are determined
from the charge neutrality condition ρp = ρe + ρμ and upon
dividing by the number density ρ we get xp = xe + xμ, where
xp, xe, and xμ respectively represent the proton, electron
and muon fractions. For cold NM, muons start to appear
at ρ � ρ0 with a little contribution to the chemical equilib-
rium because they require high electronic chemical potential
greater than or equal to the rest mass energy of muons, μe �
mμc2 = 105.66 MeV [20]. In β-stable (npeμ) matter of a
NS, the chemical equilibrium of the direct URCA reactions
(n → p + e− + ν̃e and p + e− → n + νe) thermodynamically
yields [93]

μe = μμ = μn − μp = 2
∂FA(T, ρb, I )

∂I
= −∂FA(T, ρb, xp)

∂xp
.

(16)

The chemical potential of the relativistic electrons at T = 0
MeV can be determined in terms of the total density of
baryons and leptons (ρ) as [43,49]

μe =
√

k2
Fec2 + m2

ec4 ≈ kFec = h̄c(3π2ρxe). (17)

Upon Eqs. (16) and (17) and applying the charge neutrality
condition (xp = xe for ρ < ρ0 and xp = xe + xμ for ρ � ρ0),
the p, e, and μ fractions can be obtained at T = 0 MeV by
solving the equation [43,49],

3π2(h̄c)3ρxp − μ3
e − [

μ2
e − (mμc2)

2]3/2
θ (μe − mμc2) = 0.

(18)
The Heaviside step function θ (μe − mμc2) is equal to zero for
μe < mμc2 and it becomes 1 otherwise. At finite temperature
T > 0 MeV, the e and μ number densities can be determined
as [14,94]

ρe(μ) = ρxe(μ) = 1

π2

∫ ∞

0

dkk2

1 + exp

(√
h̄2c2k2+m2

e(μ)c
4−μe(μ)

T

) ,

(19)
which is similar to Eq. (10). Equations (16) and (19) are then
solved together along with xp = xe + xμ in a self-consistent
manner to obtain the p, e, and μ fractions at finite temperature
T > 0 MeV.

In terms of the e and μ fractions, the Direct Urca (DU)
threshold value for the proton fraction, above which the DU
becomes possible, can be given as [22]

xDU = 1

1 + (
1 + r1/3

e
)3 , (20)

where re = 1/[1 + (xμ/xe)] is the leptonic electron fraction.
This yields xDU = 1/9 for ρ < ρ0 and xDU > 1/9 for ρ �
ρ0 [23,95,96]. This is according to the momentum conser-
vation, where with increasing density the Fermi momenta of
proton and electrons increase faster than that of neutrons. The
total pressure of the npeμ matter is the sum of the pressures
of baryons [39,43], electrons, and muons [20,43,68] and can
be then obtained at T = 0 MeV as

P(ρ, xp, xe, xμ) = ρ2 ∂EA(ρ, xp)

∂ρ
+ h̄c

12π2

(
3π2ρxe

)4/3

+ Pμ(ρ, xμ). (21)

The total pressure of the npeμ matter at finite temperature
T > 0 MeV is obtained as the sum of the baryons [29], and
leptons [94] pressure contributions as

P(T, ρ, xp, xe, xμ) = ρ2 ∂FA(T, ρ, xp)

∂ρ
+

∑
=e,μ

P(T, ρ, x),

P(T, ρ, x) = (h̄c)2

3π2

∫ ∞

0

dkk4
(
h̄2c2k2 + m2

c4
)−1/2

1 + exp

(√
h̄2c2k2+m2


c4−μ

T

) .

(22)

The baryonic pressure is usually very large compared with
that of leptons. The thermal pressure Pth can be defined as the
difference between the pressure at a certain temperature T and
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the pressure at T = 0. The intrinsic stability condition of a sin-
gle phase for locally neutral matter under β equilibrium can be
thermodynamically determined by the positivity of the matter
compressibility (Kμ), at constant chemical potential [43,97],

Kμ = K (T, ρ, I )

9
−

(
ρ

∂2EA(T,ρ,I )
∂ρ∂I

)2

∂2EA(T,ρ,I )
∂I2

> 0, (23)

where

K (T, ρ, I ) = 9

(
2ρ

∂EA(T, ρ, I )

∂ρ
+ ρ2 ∂2EA(T, ρ, I )

∂ρ2

)

defines the incompressibility coefficient of ANM [39,43]. The
last term in Eq. (23) arises from the leptonic pressure. The
transition density, proton fraction, and pressure at the bound-
ary between the liquid core and solid crust of NS can be then
obtained by solving Eq. (23).

III. RESULTS AND DISCUSSION

In the following, we investigate the temperature depen-
dence of the considered properties and quantities within
the core of a neutron star and at the borderline between
the liquid core and its solid crust. Two equations of state
of hot asymmetric nuclear matter (ANM) based on M3Y-
Paris NN effective interaction will be considered in their
CDM3Y density dependent form, namely CDM3Y3-218 and
CDM3Y6-252. These two parametrizations of the density
dependent forms of the M3Y-Paris NN interaction are char-
acterized with SNM saturation incompressibility value of
K0 = 218 MeV and 252 MeV, respectively. Two parametriza-
tions of the density dependence of the isovector part of
the NN force will be considered, the one derived in terms
of the density dependence of the isoscalar part (DIV)
and the one independently derived (IIV), as described in
Sec. II.

Displayed in Fig. 1 is the density dependence of the proton
fraction (xp) in cold (T = 0 MeV) β-stable npe [Fig. 1(a)]
and npeμ [Fig. 1(b)] NS matter. Equations (17) and (18)
have been used to calculate the proton fraction, respectively.
The proton fraction significantly affects the neutrino emission,
and consequently the thermal evolution of neutron stars. For
the npe matter, the calculations based on the IIV density
dependence of the isovector NN interaction show that the
proton fraction increases almost linearly with increasing the
ANM baryon density. The CDM3Y3-218 with IIV density
dependence yields a proton fraction of xp = 0.286 at density
of 10 times the saturation nuclear density (10ρ0). The stiffer
EOS based on the CDM3Y6-252 yields less proton fraction at
the same density, xp (ρ = 1.7 fm−3) = 0.236 and xn = 0.764.
Such large density values are expected at the center of NS.
The difference between the indicated values of xp increases
with increasing the ANM density, reaching 0.05 at the density
of 10ρ0. This means that the proton fraction decreases upon
increasing the stiffness of the EOS and the ANM matter of
NS becomes less neutron rich at its core center. The stiffness
of the EOS does not affect the proton fraction indicated at
the low density below 2ρ0. According to the CDM3Y3-218
(IIV) and CDM3Y6-252 (IIV) equations of state and in view

FIG. 1. Density dependence of the proton fraction (xp) in β

stable cold (a) npe and (b) npeμ matters, based on the M3Y-Paris
NN interaction using two EOSs CDM3Y3 (K0 = 218 MeV) and
CDM3Y6 (K0 = 252 MeV), with the density dependence of the
isovector part of the NN force that derived in terms of the corre-
sponding isoscalar density dependence (DIV) [70] and that derived
independently (IIV) [56].

of the indicated threshold value of xp = 1/9 that is imposed
on proton fraction for a direct URCA process [23,96], the DU
process would be possible at the densities larger than 3.7ρ0

and 4.3ρ0, respectively. Thus, the softer EOS indicates a wider
range for DU process inside NS. The proton fraction based on
the DIV density dependence of the isovector NN interaction
is substantially different from that calculated based on the
IIV parametrization of the isovector density dependence. For
the cold npe matter in Fig. 1(a), the β-stable proton fraction
increases upon increasing the low density reaching its max-
imum value of about (xp ≈ 0.05) within a density of about
1.5ρ0. Thereafter, it starts to decrease with increasing the
larger density. The softer EOS still indicating larger proton
fraction for the same density. According to the maximum
values obtained for the proton fraction in the β-stable cold npe
matter based on the CDM3Y (DIV) calculations, a prospective
direct URCA process in NS would not be allowed. If this is the
case, it gives rise to the slow cooling process of NS through a
modified URCA process [8] and neutrino-pair emission [98],
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FIG. 2. Density dependence of the proton fraction in β stable npe matter based on the density-dependent (a) CDM3Y3-Paris-218 (IIV)
and (b) CDM3Y6-Paris-252 (IIV) NN interaction at temperatures T = 0, 10, 20, 30, 40, and 50 MeV represented. Panels (c) and (d) show the
corresponding electron chemical potentials for the two EOSs, respectively. Panels (e) and (f) show the same as panels (a) and (b), respectively,
but for npeμ matter.

as alternative cooling processes. Generally, taking account of
the consistent rearrangement effect of the NN potential using
the modified CDM3Y (IIV) forms yields more realistic proton
fraction of NS matter.

Regarding cold β-stable npeμ matter, Fig. 1(b) shows that
calculations based on the same EOSs that used in Fig. 1(a)
yield a typical behavior of proton fraction as a function of

density, but with slightly larger values of xp than it if muons
are absent [Fig. 1(a)]. For cold NM, muons appear at ρ � ρ0

if μe � 105.66 MeV. The presence of muons increases the
indicated values of proton fraction at the density of 10ρ0 to xp

(ρ = 1.7 fm−3) > 0.5 and =0.456, based on the CDM3Y3-
218 (IIV) and CDM3Y6-252 (IIV) EOSs, respectively. The
difference between the indicated values of xp(npeμ) and
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xp(npe) is then about 0.22 at the density of 10ρ0. Based on the
obtained electron and muon fractions and using Eq. (20), the
DU threshold is determined to be xDU (ρ = 2.84ρ0) = 0.137
and xDU (ρ = 3.02ρ0) = 0.1374 for the CDM3Y3-218 (IIV)
and CDM3Y6-252 (IIV) EOSs, respectively. Thus, the ap-
pearance of muons makes the NS tends to be less neutron-rich
at its core center and decreases the density at which the DU
process can takes place inside NS. The presence of muons also
slightly increases the indicated maximum value of xp(npeμ)
relative to xp(npe) and its corresponding density. The density
dependence of the isovector part of the CDM3Y forms of the
M3Y NN force which is parametrized independently of that of
the isoscalar term is the one successfully indicating the large
possibility of direct URCA cooling process in NS.

It is more appropriate now to consider hot nuclear matter.
The proton fraction in hot (T = 10 − 50 MeV) npe matter
of NS is compared within a wide density range up to 10ρ0

with that of cold matter in Figs. 2(a) and 2(b), based on the
CDM3Y3-218 (IIV) and CDM3Y6-252 (IIV) EOSs, respec-
tively. Figures 2(a) and 2(b) show that the proton fraction
as extracted based on the two considered EOSs exhibits al-
most the same density and temperature behaviors for npe
matter. Generally, the proton fraction increases with increas-
ing T . The increasing rate of xp with T increases at the
higher-temperature region, but it decreases with increasing the
density. Below T = 10 MeV, Figs. 2(a) and 2(b) show that the
proton fraction increases with increasing the density over the
whole density range. Starting from T = 10 MeV, a different
behavior is obtained within the low-density region around
the cold saturation density where xp decreases with density
reaching a minimum value around ρ0, then it starts to increase
steadily with density. Upon increasing the temperature of the
ANM, minimum value indicated for proton fraction increases
and shifts to a larger corresponding density. The obtained min-
ima based on the two mentioned EOSs in Figs. 2(a) and 2(b)
are ranging from xp = 0.032 (at 0.18ρ0) at T = 10 MeV to
0.094 (1.47ρ0) at 50 MeV, with almost no change due to the
change of the stiffness of the EOS. According to the threshold
of DU process for npe, the calculations based on the two
EOSs show that the density at which DU would be possible
decreases from ρ = (4.0 ± 0.3)ρ0 at temperatures of T = 0
MeV to (2.9 ± 0.1)ρ0 at T = 50 MeV. Thus, increasing the
temperature indicates a wider range for DU process inside NS,
from its core center towards the inner surface.

For hot β-stable npeμ matter, Figs. 2(c) and 2(d) show the
density dependence of the electron chemical potential based
on EOSs used in Figs. 2(a) and 2(b). Figures 2(c) and 2(d)
show that μe increases upon increasing the temperature of
NM. In view of the β-equilibrium for hot NM hot npeμ
matter, muons is then expected to appear at lower density
where μe gets larger than the muon mass at less density than
that of T = 0 MeV. The saturation density also decreases
upon increasing the temperature and even disappears at tem-
peratures larger than 13 MeV [74]. Figures 2(c) and 2(d)
indicate that muons possibly appear at densities of 0.9ρ0,
0.8ρ0, 0.6ρ0, 0.5ρ0, 0.3ρ0, and 0.2ρ0 at temperatures of 0,
10, 20, 30, 40, and 50 MeV, respectively. Figures 2(e) and 2(f)
represent the temperature dependence of the proton fraction
for hot β-stable npeμ matter, based on the same EOSs used in

FIG. 3. Same as Figs. 2(c) and 2(d) but for the muon fraction (xμ).

Figs. 2(a) and 2(b), respectively, and within the same density
and temperature displayed in them. The corresponding muon
fraction (xμ) is displayed in Figs. 3(a) and 3(b), respectively.
The appearance of muons shifts the minimum obtained values
of xp for the temperatures larger than 10 MeV to be within the
same low density values at which muons start to appear, and
the proton fraction starts to increase steadily with increasing
density above these values. Muons also increase the values
of xp at the high density of 10ρ0 to about 150% relative to
the muon-free matter, for all displayed temperatures. The ob-
tained DU threshold in presence of muons slightly decreases
from xDU (ρ = (2.9 ± 0.1)ρ0) = 0.14 at T = 0 MeV to 0.12
(0.5ρ0) at 50 MeV. Thus, the decrease in the threshold density
value of DU due to the inclusion of muons increases with
increasing the temperature. Increasing the temperature still
decreasing the density at which the threshold xDU value is
verified, indicating a wider range for DU process inside NSs.
Thus, muons start to appear within the outer core of NSs at
densities lower than ρ0 when the electron Fermi energy sur-
passes the rest mass energy of muons, as shown in Figs. 2(c)
and 2(d). Figure 3 shows that the amount of muons at a given
density of npeμ matter of NSs increases with increasing its
temperature. Based on the two considered EOSs, the muon
fraction at ρ0 increases from xμ ≈ 0.002 at T = 0 to 0.038
at 50 MeV. xμ increases linearly upon increasing the nuclear
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FIG. 4. (a)–(d) Same as Figs. 2(a), 2(b), 2(e), and 2(f), respectively, but for the free energy of baryons [Eq. (15)] over the density range
ρ � 1 fm−3. (e) Same as Fig. 4(c) but for the entropy per nucleon.

matter density. For the different temperatures, xμ reaches
about 0.5xp within the high-density region.

Displayed in Figs. 4 and 5 are the density and temper-
ature dependencies of the mapping of the thermodynamical
Helmholtz free energy of baryons [Eq. (15)] and of the ther-
mal pressure of NS matter, including baryons and leptons on
the proton fraction graphs in the different panels of Fig. 2, over
the temperature and density ranges up to 50 MeV and 1 fm−3,
respectively. Figures 4(a)–4(d) show that the attractive free

energy per nucleon (FA) decreases (increases) with increasing
the density (temperature) of the NS matter. This is expected
where the substantial increase of the entropy SA with T leads
to a larger increase of the subtracted T SA term in Eq. (15)
than the increase in leading term of binding energy EA. Con-
sequently, the attractive free energy decreases with T . The
free energy becomes repulsive after a few multiplies of the
saturation density. The density at which the free energy starts
to be repulsive increases from about 0.5ρ0 at T = 10 MeV to
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FIG. 5. Same as Fig. 2 but for the thermal pressure, Pth = P(T ) − P(0), inside NSs, over the density range ρ � 1 fm−3.

about 3ρ0 at T = 50 MeV. The repulsive FA at high density
increases with increasing the stiffness of the NS matter, and
decreases upon the inclusion of muons, as can be seen in the
different panels of Fig. 4. The density and temperature depen-
dencies of the entropy per nucleon (SA) of the hot npeμ matter
within the considered temperature range is shown in Fig. 4(e),
based on the CDM3Y3-218 (IIV) EOS, as an example.

The thermal pressure, Pth = P(T ) − P(0), of the NS matter
in Fig. 5 is calculated using the pressure given by Eqs. (21)
and (22). The pressure of baryons is predominant compared
with that of leptons because of their great masses and high
fractions relative to leptons. As seen in Fig. (5), the thermal
pressure increases monotonically with density and temper-
ature. This ensures stability condition dP

dρ
� 0 of the NS

matter [69,99]. Three competing effects influence the behav-
ior of thermal pressure with density and temperature [31],
namely the individual thermal pressures of neutrons and pro-
tons which increase with density, the isospin asymmetry that
decreases with temperature and then decreases the total pres-
sure, and finally increasing the thermal pressure of leptons
upon increasing the lepton fraction. Figure 5 shows that the
thermal pressure starts with a weak density dependence in
the low-density region up to about 3ρ0 (4ρ0) in the absence
(presence) of muons, then it grows stronger at the higher
densities. The density dependence of pressure is generally

stronger than its temperature dependence. Increasing the stiff-
ness of the EOS slightly decreases Pth in the density range
up to about 4ρ0, and increases it otherwise. The inclusion of
muons decreases the thermal pressure to lower values as seen
in Figs. 5(c) and 5(d).

Figure 6(a) presents the temperature dependence of the liq-
uid core-solid crust transition density in NS as extracted from
the calculations of the incompressibility condition [Eq. (23)]
based on the M3Y Paris NN interaction within the tempera-
ture range T = 0–50 MeV, using the CDM3Y3-218 (DIV),
CDM3Y6-252 (DIV), CDM3Y3-218 (IIV), and CDM3Y6-
252 (IIV) EOSs. The corresponding transition proton fraction
and pressure [Eqs. (18) and (19)] are respectively displayed
in Figs. 6(b) and 6(c). As seen above, the four considered
EOSs successfully describe the proton fraction for the den-
sities up to 1.5ρ0. Also, no muons are appearing within the
obtained transition density region. As seen in Fig. 6(a), the
core-crust transition density is estimated for cold NM at T =
0 MeV within the range of (0.54 ± 0.02)ρ0. The transition
density from the core to the crust increases upon increasing
the temperature, reaching a value of about (0.85 ± 0.04)ρ0

at T = 50 MeV. The corresponding transition proton frac-
tion (pressure) increases steadily with temperature from xpt =
0.03 (Pt = 0.36 ± 0.12 MeV fm−3) at T = 0 MeV to about
0.14 (7.36 ± 0.52 MeV fm−3) at T = 50 MeV. However, the
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FIG. 6. Temperature dependence of the core-crust (a) transi-
tion density ρt (fm−3) [Eq. (23)], (b) transition proton fraction xpt

[Eqs. (17) and (18)], and (c) transition pressure Pt (MeV fm−3)
[Eqs. (21) and (22)] in NSs based on the CDM3Y3-218 (DIV),
CDM3Y6-252 (DIV), CDM3Y3-218 (IIV), and CDM3Y6-252 (IIV)
EOSs.

constraints obtained here on the core-crust transition density
and pressure at T = 0 MeV are consistent with those ob-
tained in few similar studies [27,100] but they are slightly
higher than those obtained in other studies [20,101]. For
example, using a modified Gogny (MDI) and 51 Skyrme
interactions, within both dynamical and thermodynamical

methods, slightly lower limits of ρt = (0.52 ± 0.02)ρ0 and
Pt = 0.13 ± 0.12 MeV fm−3 are imposed from constraints
on the symmetry energy by the isospin diffusion data in HI
collisions [20]. Also, the calculations performed in terms of
the isospin asymmetry expansion of the EOS including the
terms up to Esym4 within a nonlinear relativistic mean-field
model based on the calibrated FSUGold and IU-FSU in-
teractions gave lower ρt = (0.38 ± 0.08)ρ0 but similar Pt =
0.39 ± 0.15 MeV fm−3 [101]. Furthermore, estimated con-
straints of slightly lower ρt = (0.52 ± 0.01)ρ0 and slightly
larger Pt = 0.53 ± 0.23 MeV fm−3 have been obtained in
the framework of relativistic nuclear energy density func-
tional, with adjusted functional to the binding energies of
finite nuclei and their isovector properties [100]. Using EOSs
of 220 MeV � K0 � 270 MeV in terms of CDM3Y den-
sity dependent Paris and Reid NN interactions, consistent
ranges of ρt = (0.55 ± 0.02)ρ0, Pt = 0.54 ± 0.05 MeV fm−3,
and xpt = 0.03, were estimated for cold NM [43]. Moreover,
using four exact expressions of the energy density based
on finite-range simple effective interaction (SEI), ranges of
ρt = (0.47 ± 0.02)ρ0, Pt = 0.43 ± 0.10 MeV fm−3 were ob-
tained [102]. As the core-crust transition quantities are very
uncertain and highly model dependent [103], the results ob-
tained in the present work for their temperature dependence
will shed light on the structure of hot NS.

IV. SUMMARY AND CONCLUSIONS

We investigated thermodynamically the core-crust transi-
tion at the inner edge of neutron stars and its temperature
dependence. We analytically expressed the intrinsic stability
condition of the core-crust transition, and consequently the
transition density and pressure as well as the proton frac-
tion of the npe (npeμ) matter under β equilibrium, based
on exact EOS in the framework of a nonrelativistic Hartree-
Fock scheme. We considered two EOSs characterized with
SNM saturation incompressibility range of K0 = 218 MeV
and 252 MeV, based on two parametrizations of the density
dependence of the isovector part of the M3Y force for each
EOS. While one of the adopted IV density dependence was
derived in terms of the IS density dependence (DIV), the
other one was derived independently of it (IIV). The inclusion
of the consistent rearrangement effect of the mean-field NN
potential using the modified CDM3Y (IIV) forms of the NN
interactions is found to be essential to obtain accurate proton
fraction of NS matter. We found that increasing the stiffness
of the EOS decreases the proton fraction of the NS matter, and
makes it less neutron-rich at the core center. The softer EOS
indicates a wider range for DU process inside NS from its core
center. Also, increasing the temperature decreases the density
corresponding to the threshold xDU value, indicating a wider
range for DU process inside NS. The appearance of muons
decreases the isospin asymmetry of the NS matter at its core
center and decreases the threshold density of DU, increas-
ing slightly the values of proton fraction at the high density
of 10ρ0 slightly relative to the muon-free matter. While xμ

is linearly increases with nuclear matter density, it slightly
increases with temperature. Over the different temperatures
up to 50 MeV, the β-stable muon fraction of npeμ matter is
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inferred to have a value of about 0.5xμ at high matter density.
The density dependence of the thermal pressure is generally
stronger than its temperature dependence. It becomes stronger
at the higher densities. Appearing of muons decreases the
thermal pressure of the npeμ matter, relative to the npe matter.
Based on the four considered EOSs in terms of the CDM3Y-
Paris interaction, the core-crust transition density, pressure,
and proton fraction are estimated for cold NM within the

ranges of (0.54 ± 0.02)ρ0, 0.36 ± 0.12 MeV fm−3, and 0.03,
respectively. These estimated values are increased with tem-
perature reaching (0.85 ± 0.04)ρ0, 7.36 ± 0.52 MeV fm−3,
and 0.14, respectively, at T = 50 MeV. In view of the un-
certainty concerning the estimated values of the core-crust
transition quantities and their model dependence, the results
obtained here and its temperature dependence would help in
clearing up the structure of hot NS.
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