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Two-photon-exchange effect in ep → enπ+ at small −t with the hadronic model
and dispersion relation approach
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In this paper, the two-photon-exchange (TPE) effect in ep → enπ+ at small −t is discussed. In the previous
work, the TPE contribution with one π intermediate state is estimated numerically within a hadronic model under
the pion-dominance approximation. Here we extend the discussion to include one ρ intermediate state. The TPE
contribution can be described by one scalar function in the limit me → 0, the dispersion relation (DR) satisfied by
this scalar function is analyzed. The analytic expressions for the imaginary parts of the TPE contributions from
one π or one ρ intermediate state are given within the hadronic model. Combining these analytic expressions
and the DR, the corresponding real parts of the TPE contributions can be estimated easily at any available
region. This can help the further experimental analysis to include the TPE contributions in a convenient way.
The numeric results show that the TPE correction with one ρ intermediate state is much smaller than that with
one π intermediate state in the current energy region. These results suggest that the TPE contribution with an
elastic state is the main TPE contribution in ep → enπ+ at small −t .

DOI: 10.1103/PhysRevC.106.015203

I. INTRODUCTION

The two-photon-exchange (TPE) effect plays an important
role to extract the the electromagnetic (EM) form factors
(FFs) of the proton from the unpolarized ep scattering and
has been widely studied by many theoretical methods, such
as the hadronic model [1], the generalized parton distribu-
tions method [2], perturbative QCD calculation [3], dispersion
relation (DR) approach [4,5], soft collinear effective the-
ory method [6], chiral perturbative theory (ChpT) [7], and
phenomenological parametrization [8]. Recently many exper-
imental measurements were developed to test these theoretical
estimations and to deepen our understanding on the TPE con-
tribution [9–12].

Comparing with the proton case, the discussions on how to
extract the EM FF of π precisely are relatively few. Experi-
mentally, the EM form factor of π is usually extracted via the
process ep → enπ+ [13–17]. Theoretically, such extraction
of the pion’s FF is much more complex than that of the
proton’s FFs via the elastic ep scattering. The corresponding
theoretical analysis on the experimental data sets should be
performed more carefully. Up to now, the discussions on the
TPE effect in ep → enπ+ are limited [18,19]. In the previous
work [19], the TPE contributions with an elastic intermediate

*zhouhq@seu.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

state are discussed, and in this paper we extend the discussion
to include one ρ meson intermediate state. Furthermore, the
DR for the TPE contributions and the analytic expressions for
the imaginary parts are both given.

We organize the paper as follows. In Sec. II we describe
the basic frame of our discussion under the pion-dominance
approximation, in Sec. III we show some analytic properties
of the TPE contributions and the DR relation they satisfied.
In Sec. IV we present some numerical results for the TPE
corrections and give our conclusion.

II. BASIC FRAME FOR THE TPE CONTRIBUTIONS
IN ep → enπ+

Under the one-photon exchange (OPE) approximation, the
process ep → enπ+ can be described by Fig. 1 where we
label the momenta of initial electron, initial proton, final
electron, final pion, and final neutron as p1–5. For simplicity
we define the following five independent Lorentz invariant
variables s ≡ (p1 + p2)2, Q2 ≡ −q2 ≡ −(p1 − p3)2, W ≡√

(p4 + p5)2, t ≡ (p2 − p5)2, and ν = (p1 + p3)(2p4 + p3 −
p1).

When we discuss the TPE effect, the contribution from
the corresponding TPE diagram shown in Fig. 2 should be
considered.

Physically, the dynamics of the subprocesses γ ∗ p → nπ+
and γ ∗γ ∗ p → nπ+ are very complex. On the small energy
scale, one can expect that the ChpT works well for these
two subprocesses. For example, in the leading order of ChpT
the Feynman diagrams for γ ∗ p → nπ+ can be described by
Fig. 3 where the notations 0 and 1 refer to the power of the
momenta in the corresponding vertices. Since the power of the
momentum in the pion’s propagator is −2 and the power of
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FIG. 1. ep → enπ+ with one-photon exchange.

momentum in the proton’s propagator is −1, the contributions
from Figs. 3(a) and 3(b) are on the same order.

When the energy scales −t, Q2, and W increase, one can
expect that ChpT is not valid anymore and the contributions
beyond ChpT, such as the diagrams with ρ meson exchange
and with N∗ intermediate states shown as Fig. 4 should be
considered.

When −t is kept small, W is a little far away from the
masses of the narrow resonances, and only Q2 increases, the
contribution from one pion-exchange diagrams where only a
pion interacts with nucleon is still dominant among all these
contributions although ChpT is not valid. The reasons are due
to two facts: (1) the mass of pion is close to zero which
results in a strong enhancement from the pion propagator,
(2) the couplings of γ ∗ pp, γ ∗ pN∗ decrease much fast than
the coupling γ ∗ππ when Q2 increases. These properties mean

e(p1) e(p3)

p(p2)

π+(p4)

n(p5)

k1 k2

FIG. 2. ep → enπ+ with two-photon exchange.

the pion dominance is a good approximation when t → 0 and
W is a little far away from the narrow resonances. This also
greatly simplifies the dynamics of the process γ ∗γ ∗ p → nπ+
in this region. In this paper, we limit our discussion on the
TPE contributions under this approximation. In the practical
calculation, one can combine the contributions beyond the
pion dominance under the OPE approximation and the TPE
contributions together since their contributions are indepen-
dent.

Under the pion-dominance approximation, the correspond-
ing TPE contributions can be described as Figs. 5(a)–5(c)
where the contributions from Figs. 6(a)–6(c) are neglected
since they are much smaller.

In the previous work [19], the TPE contributions from an
elastic state π shown in Fig. 7 are discussed in the region
Q2 ⊆ [1, 2.45] GeV2. At higher Q2, the similar contributions
with one ρ meson intermediate state shown as Fig. 8 maybe
gives some considerable contributions.

Taking the Feynman gauge, one has

M(a)
1γ = −iūe(p3)(−ieγ μ)ue(p1) ūn(p5)�5up(p2)�ν (p4, pt )Sπ (pt )Dμν (p1 − p3),

M(a)
2γ ,ρ = −iμ̄2ε

∫
d4k1

(2π )d
[ūe(p3)(−ieγ η )SF (p1 − k1)(−ieγ μ)ue(p1) ūn(p5)�5up(p2)]�ωλ[(p1 − k1 − p3, pt + k1)

× SV
λσ (pt + k1)�νσ (k1,−pt − k1)]Sπ (pt )Dηω(p1 − k1 − p3)Dμν (k1),

M(b)
2γ ,ρ = −iμ̄2ε

∫
d4k1

(2π )d
[ūe(p3)(−ieγ μ)SF (p1 − k1)(−ieγ η )ue(p1) ūn(p5)�5up(p2)]�ωλ[(k1, p4 − k1)

× SV
λσ (p4 − k1)�νσ (p1 − k1 − p3, k1 − p4)]Sπ (pt )Dμν (p1 − k1 − p3)Dηω(k1), (1)

with μ̄ as the introduced energy scale, d = 4 − 2ε as the
dimension, pt = p3 + p4 − p1, and

SF (k) = i(k/ + me)

k2 − m2
e + iε

,

Sπ (k) = i

k2 − m2
π + iε

,

SV
λσ (k) = −i

(
gλσ − kλkσ

k2

)
k2 − m2

ρ + iε
,

Dμν (k) = −i

k2 + iε
gμν, (2)

and

�μ(p f , pi ) = ie
{
[1 + f (k2)k2](p f + pi )

μ

− f (k2)
(
p2

f − p2
i

)
kμ

}
, (3)

�μν (kγ , kV ) = iegρπγ /mρFγπρ

(
k2
γ

)
εμνλωkλ

γ kω
V ,

where e = −|e|, k ≡ p f − pi, kγ ,V are the incoming momenta
of the photon and ρ meson, f (k2) describes the EM form
factor of pion which is defined as [20]

〈p f |Jμ(0)|pi〉 ≡ Fγππ (k2)(pi + p f )μ,

Fγππ (k2) ≡ 1 + k2 f (k2), (4)
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FIG. 3. Diagrams for γ ∗ p → nπ+ in the leading order of ChpT with (a) the pion exchange diagram and (b) the elastic s-channel diagram.

with Jμ = ∑
eiψ iγμψi, ψi as the quark fields, i as the flavor

indexes of the quarks, and ei as the corresponding electric
charges of quarks(−1 for the electron). Fγπρ (k2

γ ) is the tran-

sition FF of γ ∗π → ρ [21]. The similar expressions M(a,b,c)
2γ ,π

corresponding to Figs. 7(a)–7(c) can be found in Ref. [19].
In the practical calculation, one can find that the relative TPE
corrections are not dependent on the form of �5 (pseudoscalar
form or pseudovector form) since it appears both in the tree
diagram and in the TPE diagrams. So we do not present its
form here.

Generally, the amplitudes with one-pion exchange can be
written as the following simple form:

M1γ ≡ M(a)
1γ = c(1γ )

1 M1 + c(1γ )
2 M2,

M2γ ,π ≡ M(a+b+c)
2γ ,π = c(a+b+c)

1,π M1 + c(a+b+c)
2,π M2, (5)

M2γ ,ρ ≡ M(a+b)
2γ ,ρ = c(a+b)

1,ρ M1 + c(a+b)
2,ρ M2,

with

M1 ≡ iū(p3, me)(2p/4 + p/3 − p/1)u(p1, me)

× ū(p5, mn)�5u(p2, mp), (6)

M2 ≡ iū(p3, me)u(p1, me) ū(p5, mn)�5u(p2, mp).

The coefficients c(1γ )
1,2 can be easily obtained which are ex-

pressed as

c(1γ )
1 = 4παeFπ (q2)

Q2
(
t − m2

π

) ,

c(1γ )
2 = 0, (7)

with αe ≡ e2/4π .

III. SOME ANALYTIC PROPERTIES OF THE TPE
CONTRIBUTIONS IN ep → enπ+

A. General properties due to the symmetry

When taking the limit me → 0, the QED interaction will
not flip the helicity of the electron. Then one has the following
exact property:

c(a+b)
2,π , c(a+b)

2,ρ → 0. (8)

Furthermore, due to the crossing symmetry of the diagram
Fig. 7(c), one has

c(c)
1,π = 0.

In literature, the approximation me = 0 is often used before
the loop integration since me is much smaller than the other
scales in the experimental region. In the elastic ep scattering
and elastic eπ scattering cases, one can find that such an
approach works well since the full TPE contributions are not
dependent on me at the leading order of me. In ep → enπ+,
we find that such an approach is good for c(a+b)

1,ρ but not good

for c(a+b)
1,π . This is very different from the ep or eπ cases and

beyond the naive estimation. The detailed analytic calculation
shows that there is a term, such as ln me in c(a+b)

1,π when taking
me → 0 after the loop calculation. Such a term means that
the result by applying Taylor series expansion before the loop
integration is different from the result by applying Taylor se-
ries expansion after the loop integration. This is natural since
the loop integration and the Taylor series expansion are not
commutated in some cases. Our numerical results also show
such a property and such a logarithm enhancement should be
dealt carefully.

To keep this term, in the following calculation we at first
take me as nonzero to perform loop integration and then
expand the results on me. The packages FEYNCALC [22],

p

π+

n

(a) (b)

p

π+

n

γ∗ γ∗

ρ+

FIG. 4. Examples of diagrams for γ ∗ p → nπ+ beyond ChpT with (a) ρ meson exchange and (b) N∗ contribution.
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FIG. 5. Diagrams for ep → enπ+ with two-photon exchange under the pion-dominance approximation: (a) is the box diagram, (b) is the
crossed-box diagram, and (c) is the contact diagram.

PACKAGE-X V3.00 [23], and LOOPTOOLS [24] are used in the
practical calculations.

Under the pion-dominance approximation, although the
cross sections are dependent on five variables, but the TPE
contributions c(a,b)

1,π ;1,ρ are only dependent on three variables
t, Q2, and ν. Due to the crossing symmetry, one has the
following general relation when Q2 and t are fixed in the
physical region:

c(a)
1,π ;1,ρ (ν+, Q2, t ) = −c(b)

1,π ;1,ρ (−ν+, Q2, t ), (9)

where ν+ = ν + i0+.

B. TPE contributions in the pointlike particle case

To show the analytic properties of the TPE contribution in
a clear form, at first we take the pointlike interaction as an
example. In this case, one has

F I
γππ (k2) = F I

γπρ (k2) = 1, (10)

where we have used index I to refer to the pointlike inter-
action. The same index is used for other quantities in the
following expressions.

After the loop integration, we find the following analytic
properties:

(1) There are no kinematic poles in cI,(a,b)
1,π ;1,ρ .

(2) When t and Q2 are fixed as physical values, the branch cuts of cI,(a,b)
1,π ;1,ρ on ν are shown as Fig. 9.

(3) The asymptotic behaviors of cI,(a)
1,π ;1,ρ are expressed as follows:

Re
[
cI,(a)

1,π (ν+, Q2, t
] ν→∞−→ 2α2

e

Q2
(
m2

π − t
)[

ln2 ν −
(

1

ε̃IR
+ ln

4m2
e

(
m2

π − t
)2

μ̄2
IR

Q4

)
ln ν + O(ν0)

]
,

Im
[
cI,(a)

1,π (ν+, Q2, t
] ν→∞−→ 2πα2

e

Q2
(
m2

π − t
)[

−2 ln ν +
(

1

ε̃IR
+ ln

4m2
e

(
m2

π − t
)2

μ̄2
IR

Q4

)
+ O(ν−1)

]
, (11)

and

Re
[
cI,(a)

1,ρ (ν+, Q2, t
] ν→∞−→ α2

e g2
γπρ

8m2
ρ

(
m2

π − t
) [2 ln2 ν − (4 ln Q2 + 3 + 4 ln 2) ln ν + O(ν0)],

Im
[
cI,(a)

1,ρ (ν+, Q2, t
] ν→∞−→ πα2

e g2
γπρ

8m2
ρ

(
m2

π − t
) [−4 ln ν + (4 ln Q2 + 3 + 4 ln 2) + O(ν−1)], (12)

e(p1)

p(p2) n(p5)

π+(p4)

e(p3)

(a) (b) (c)

e(p1) e(p3)

p(p2) n(p5)

π+(p4)

e(p1)

p(p2) n(p5)

π+(p4)

e(p3)

FIG. 6. Diagrams for ep → enπ+ with two-photon exchange beyond the pion-dominance approximation.
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FIG. 7. Diagrams for ep → enπ+ with two-photon exchange and one π meson intermediate state: (a) is the box diagram, (b) is the crossed
diagram, and (c) is the contact diagram.

where μ̄IR is the IR scale, and

1

ε̃IR
= 1

εIR
− γE + ln 4π.

The asymptotical behaviors of cI,(b)
1,π ;1,ρ in the limit ν → −∞ can be obtained easily via Eq. (9).

Based on the properties of the asymptotic behaviors and the position of the branch cut, one can get the once-subtracted DR,

Re
[
cI,(a)

1,π ;1,ρ (ν, Q2, t )
] − Re

[
cI,(a)

1,π ;1,ρ (ν1, Q2, t )
] = ν − ν1

π
Re

[∫ ∞

ν
(π,ρ)
th

Im
[
cI,(a)

1,π ;1,ρ (ν+, Q2, t )
]

(ν − ν − iε)(ν − ν1 − iε)
dν

]
,

where ν
(π )
th = m2

π + 4memπ − Q2 − t , ν
(ρ)
th = 2m2

ρ − m2
π + 4memρ − Q2 − t . Similarly one has

Re
[
cI,(b)

1,π ;1,ρ (ν, Q2, t )
] − Re

[
cI,(b)

1,π ;1,ρ (ν2, Q2, t )
] = ν − ν2

π
Re

[∫ −ν
(π,ρ)
th

−∞

Im
[
cI,(b)

1,π ;1,ρ (ν+, Q2, t )
]

(ν − ν + iε)(ν − ν2 + iε)
dν

]
.

Taking ν2 as −ν1 and using the property Eq. (9), one has

Re
[
cI,(b)

1,π ;1,ρ (ν, Q2, t )
] + Re

[
cI,(a)

1,π ;1,ρ (ν1, Q2, t )
]

= ν + ν1

π
Re

[∫ −ν
(π,ρ)
th

−∞

Im
[
cI,(b)

1,π ;1,ρ (ν+, Q2, t )
]

(ν − ν + iε)(ν + ν1 + iε)
dν

]

= −ν + ν1

π
Re

[∫ −ν
(π,ρ)
th

−∞

Im
[
cI,(a)

1,π ;1,ρ (−ν+, Q2, t )
]

(ν − ν + iε)(ν + ν1 + iε)
dν

]

= −ν + ν1

π
Re

[∫ ∞

ν
(π,ρ)
th

Im
[
cI,(a)

1,π ;1,ρ (ν−, Q2, t )
]

(ν + ν + iε)(ν − ν1 + iε)
dν

]

= ν + ν1

π
Re

[∫ ∞

ν
(π,ρ)
th

Im
[
cI,(a)

1,π ;1,ρ (ν+, Q2, t )
]

(ν + ν + iε)(ν − ν1 + iε)
dν

]
.

Combing these two results, finally one gets the unsubtracted
dispersion relation,

Re
[
cI,(a+b)

1,π ;1,ρ (ν, Q2, t )
]

= 2ν

π
Re

[∫ ∞

ν
(π,ρ)
th

Im
[
cI,(a)

1,π ;1,ρ (ν+, Q2, t )
]

ν2 − ν2 − iε
dν

]
. (13)

e(p1)

p(p2)

π+(p4)

n(p5)

η

ν

μ

ω

k1

(a) (b)

π+(pt)
σ λ

e(p3)
η μ

π+(pt)

e(p1)
e(p3)

p(p2) n(p5)

π+(p4)

ν
σ λ

ω

k1

FIG. 8. Diagrams for ep → enπ+ with two-photon exchange and one ρ meson intermediate state: (a) is the box diagram, and (b) is the
crossed-box diagram.
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νth νph Re[ν]

Im[ν]

(a) (b)

−νth νph Re[ν]

Im[ν]

FIG. 9. The branch cuts of c(a,b)
1,π ;1,ρ (ν, Q2, t ) on the complex plane of ν at fixed physical Q2 and t . (a) is for cI,(a)

1,π ;1,ρ (ν, Q2, t ) and (b) is for

c(b)
1,π ;1,ρ (ν, Q2, t ) where ν

(π )
th = m2

π + 4memπ − Q2 − t , ν
(ρ )
th = 2m2

ρ − m2
π + 4memρ − Q2 − t , and νph is the minimum physical ν.

The manifest expressions for Im[cI,(a)
1,π ;1,ρ (ν+, Q2, t )] are

written as

Im
[
cI,(a)

1,π (ν+, Q2, t )
]∣∣

me→0

= 2πα2
e

Q2
(
m2

π − t
)θ (x1 − 4memπ )

×
[

1

ε̃IR
+ ln

4m2
e

(
m2

π − t
)2

μ̄2
IR

x2
1Q4

+ 2x2

x2Q2 + y1
ln

2x2Q2

x1x3

]
, (14)

and

Im
[
cI,(a)

1,ρ (ν+, Q2, t )
]∣∣

me→0

= πα2
e g2

γπρ

m2
ρ

(
m2

π − t
)θ (x4 − 4memπ )

×
[

x4
[
3x1x2x3 − 2m2

ρ (2x1x2 + 2x2x3 − x1x3)
]

8x1x2
2x3

− x2
(
ν − 2m2

ρ

) + 2m2
π t + 2m4

ρ

2(x2Q2 + y1)
ln

2x2Q2

x1x3

]
, (15)

with

x1 = Q2 + t + ν − m2
π ,

x2 = Q2 + t + ν + m2
π ,

x3 = Q2 − t + ν + m2
π , (16)

x4 = x2 − 2m2
ρ,

y1 = m4
π + m2

π (Q2 − 2t ) + (t − ν)(Q2 + t + ν).

By the expressions of these imaginary parts and the DR, one
can easily reproduce the real parts of cI,(a+b)

1,π ;1,ρ (ν, Q2, t ) via the
numerical integration.

We want to emphasize a general property that
Im[c(a)

1,π (ν+, Q2, t )] has IR divergence and is dependent
on the IR scale μ̄IR. This is natural since the DR Eq. (13)
means that Re[c(a+b)

1,π (ν, Q2, t )] is totally determined by

Im[c(a)
1,π (ν+, Q2, t )] and the former has IR divergence. The IR

divergence in Re[c(a+b)
1,π (ν, Q2, t )] is canceled with that from

the real radiative correction only at the cross-section level.
This property hints that Im[c(a)

1,π (ν+, Q2, t )] itself is not a
physical observable. This is very different from the case in the
forward angle limit where the imaginary part is corresponding
to the physical total inclusive cross section via optical
theorem. Some detailed discussion on the IR divergence of
Re[c(a+b)

1,π (ν, Q2, t )] can be found in Ref. [19].

C. TPE contributions with EM FFs

Physically, the EM FFs Fγππ and Fγπρ are not constants
and the momentum dependence of the EM FFs should be
considered when Q2 increases. In the practical calculation, for
simplicity the following monopole form FF is used [20,25].

F II
γππ (q2) = F II

γπρ (q2) = −�2

q2 − �2
. (17)

After the loop integration with this FF as inputs, we find
the properties on the kinematic poles and the branch cuts of
cII,(a,b)

1,π ;1,ρ are the same with those of cI,(a,b)
1,π ;1,ρ . The asymptotic
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behaviors of cII,(a)
1,π ;1,ρ are expressed as follows:

Re
[
cII,(a)

1,π (ν+, Q2, t )
]

ν→∞−→ 2α2
e

Q2
(
m2

π − t
)[

�2

�2 + Q2
ln2 ν + aII

1,π ln ν + O(ν0)

]
,

Im
[
cII,(a)

1,π (ν+, Q2, t )
]

ν→∞−→ 2πα2
e

Q2
(
m2

π − t
)[ −2�2

�2 + Q2
ln ν − aII

1,π + O(ν−1)

]
,

(18)

and

Re
[
cII,(a)

1,ρ (ν+, Q2, t )
] ν→∞−→ aII

1,ρ ln ν + O(ν0),

Im
[
cII,(a)

1,ρ (ν+, Q2, t )
] ν→∞−→ −2πaII

1,ρ + O(ν−1), (19)

where aII
1,π ;1,ρ are functions only dependent on

mπ , mρ, t, Q2, and �.
Comparing the asymptotic behaviors Eqs. (19)

and (20) and Eqs. (12) and (13), one can find
an interesting property: the asymptotic behavior of
cII,(a)

1,π (ν+, Q2, t ) is similar with cI,(a)
1,π (ν+, Q2, t ), but

the asymptotic behavior of cII,(a)
1,ρ (ν+, Q2, t ) is a little

different from cI,(a)
1,ρ (ν+, Q2, t ). The asymptotic behavior

of Im[cI,(a)
1,π (ν+, Q2, t )]/Im[cI,(a)

1,ρ (ν+, Q2, t )] is ∼1 whereas

Im[cII,(a)
1,π (ν+, Q2, t )]/Im[cII,(a)

1,ρ (ν+, Q2, t )] is ∼ln ν. This
property directly means that when ν increases, the
contributions with one ρ intermediate state are suppressed by
a factor of ln ν in the monopole FF case, whereas there is no
such factor in the pointlike case.

The above properties also show that the TPE contribution
cII,(a+b)

1,π ;1,ρ (ν, Q2, t ) still satisfies the DR Eq. (13) when me → 0.
Practically, if one knows the analytic expressions of the imag-
inary parts, then one can easily get the real parts via Eq. (13)
by the numerical integration. Since the analytic expressions of
the imaginary parts can be used directly and conveniently via
Eq. (13) by other groups to analyze the further experimental
data or for comparison, we list the expressions for the imagi-
nary parts in the following in the limit me → 0.

The TPE contribution cII,(a)
1,π (ν, Q2, t ) includes IR diver-

gence at first we separate it into two parts as

cII,(a)
1,π (ν, Q2, t ) ≡ cII,(a)

1,π ;IR(ν, Q2, t ) + cII,(a)
1,π ;fin(ν, Q2, t ), (20)

where cII,(a)
1,π ;IR(ν, Q2, t ) only includes the term proportional to

1
ε̃IR

and cII,(a)
1,π ;fin(ν, Q2, t ) is the remaining part. We want to

mention that the separation scheme is not unique. Here we
just choose a scheme with a simple analytic form.

After the separation, the imaginary parts of the TPE con-
tributions from one π , one ρ intermediate state are expressed

as follows:

Im
[
cII,(a)

1,π ;IR(ν, Q2, t )
]∣∣

me→0

= 2πα2
e

Q2
(
m2

π − t
)θ (x1 − 4memπ )

�2

�2 + Q2

1

ε̃IR
,

Im
[
cII,(a)

1,π ;fin(ν, Q2, t )
]∣∣

me→0

= 2πα2
e

Q2
(
m2

π − t
)θ (x1 − 4memπ )

5∑
i=1

gπ,i ln zπ,i,

Im
[
cII,(a)

1,ρ (ν, Q2, t )
]∣∣

me→0

= 2πα2
e g2

γπρ

m2
ρ (m2

π − t )(y1 + Q2x2)
θ (x4 − 4memπ )

5∑
i=1

gρ,i ln zρ,i,

(21)

where

gπ,1 = �2

�2 + Q2
,

gπ,2 = �2x3

Q2x1 + �2x3
,

gπ,3 = Q2(�2x2 − y1)

(�2 + Q2)(Q2x2 + y1)
, (22)

gπ,4 = Q2(x1y1 − �2x2x3)

(Q2x2 + y1)(Q2x1 + �2x3)
,

gπ,5 = Q2[2�2x2(Q2 + ν) − x1y1]

(Q2x2 + y1)y2
,

zπ,1 = 2μ̄2
IRx2

x2
1

,

zπ,2 = 2m2
e

(
m2

π − t
)2

Q4x2
,

zπ,3 = �2(2�2x2 + x1x3)

2x2(�2 + Q2)2
, (23)

zπ,4 = x2
1 (Q2x1 + �2x3)2

2�2Q4x2
(
x2

1 + 2�2x2
) ,

zπ,5 = h1 + x1y2

h1 − x1y2
,

gρ,1 = −1

4
�2m2

ρ,

gρ,2 = 1

8

(
y3 − m2

πx5
)
,

gρ,3 = −1

8

(
y3 − m2

πx5 + 2�2m2
ρ

)
, (24)

gρ,4 = 1

4
�2

(
m2

ρ − �2
)
,

gρ,5 = 1

8y4

[
Q2x4

(
y3 − m2

πx5
) + �2(h2 + m2

πy5
)

+ 2�4y6 − 4�6(Q2 + ν)
]
,
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and

zρ,1 = 64x2
2

(
m2

ρ − m2
π

)2(
m2

ρ − t
)2

x2
1x2

3x2
4

,

zρ,2 = Q4x2
4

16
(
m2

ρ − m2
π

)2(
m2

ρ − t
)2 ,

zρ,3 = x2
4 (Q2x4 + �2x1)2(Q2x4 + �2x3)2

16�4
(
m2

ρ − m2
π

)2(
m2

ρ − t
)2{

x1x3x2
4 + 4�2x2[x4(Q2 + ν) + �2x2]

} , (25)

zρ,4 = 4�4x2
2

x1x3x2
4 + 4�2x2[x4(Q2 + ν) + �2x2]

,

zρ,5 = x4(Q2x4 + y4) + 2�2x4(Q2 + ν) + 4�4x2

x4(Q2x4 − y4) + 2�2x4(Q2 + ν) + 4�44x2
,

with

x5 = ν + t − 2m2
ρ,

y2 =
√

4�4
[
m4

π + 2m2
π (Q2 − t ) + 2Q4 + 2Q2(t + ν) + t2

] + 4�2Q2(Q2 + ν)x1 + Q4x2
1,

y3 = −2m4
ρ + (

2m2
ρ − ν

)
(Q2 + t + ν),

y4 =
√

4�4
[
m4

π + 2m2
π (Q2 − t ) + 2Q4 + 2Q2(t + ν) + t2

] + 4�2Q2(Q2 + ν)x4 + Q4x2
4,

y5 = 4m2
ρ (2Q2 + ν) − 2(Q2 + ν)(2t + ν),

y6 = 2m4
π + m2

π (3Q2 − 4t ) + 2m2
ρ (3Q2 + 2ν) + (Q2 + 2t − 2ν)(Q2 + t + ν),

h1 = 4�4x2 + 2�2(Q2 + ν)x1 + Q2x2
1,

h2 = −4m4
ρ (3Q2 + ν) + 4m2

ρ (2Q2 + ν)(Q2 + t + ν) − 2ν(Q2 + ν)(Q2 + t + ν). (26)

Practically, by submitting Eq. (20) into Eq. (13) and per-
forming the numerical integration, one can easily get the full
TPE contributions at any kinematic region using a few lines
of codes in Mathematica. These numerical results can be
directly used in the analyses of the experimental data sets or
for comparison.

We also want to point out that the contributions cII,(a+b)
2,π ;2,ρ are

nonzero and do not satisfy the DR Eq. (13) when me is taken
as nonzero, whereas that is another topic.

To get the final finite and IR scale-independent correc-
tion, one should subtract cII,(a+b)

1,π by the soft contribution
which is used in the experimental data analysis. The practical
calculation shows that the finite part cII,(a+b)

1,π ;fin with μ̄IR = 1
GeV is very close to the corresponding finite result which
subtracts the classical IR result by Mo and Tasi [26] from
the full result. The choice of μ̄IR = 1 GeV is equivalent
to choose λ = 1 GeV in the mass regularization where
λ is the infinitesimal mass of the photon. Due to these

properties and the fact that Mo and Tsai’s [26] IR is usually
used, we take μ̄IR = 1 GeV directly in the finite part in the
following.

IV. THE NUMERICAL RESULTS FOR cII,(a+b)
1,π;1,ρ /c(1γ )

1

Usually, the experimental quantities Q2, W, ε, θπ , and
φπ are chosen as variables to express the differential cross
section where ε is the virtual photon polarization, θπ and φπ

are the angles between the three-momentum of π and the ep-
scattering plane. Their detailed definitions can be found in the
Appendix of Ref. [19]. In the point-dominance approximation
as discussed above the coefficients of the invariant amplitudes
are only dependent on ν, t , and Q2 when taking Q2, W, ν, t ,
and s as five independent variables. This property means it
is much simpler to show the TPE contributions by choosing
the latter quantities as independent variables. In the following,
at first we present the numeric results with the latter choice,
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FIG. 10. Numeric results for cII,(a+b)
1,π ;fin /c(1γ )

1 vs −t and cII,(a+b)
1,ρ /c(1γ )

1 vs −t at fixed Q2, ν. The top panel is for the real part, and the bottom
panel is for the imaginary part.

and then present the numeric results with the experimental
variables as inputs.

In Fig. 10, the numeric results for cII,(a+b)
1,π ;fin /c(1γ )

1 and

cII,(a+b)
1,ρ /c(1γ )

1 are presented at Q2 = 1, 2, 4, 6 GeV2 with ν =
6 GeV2. Here we have taken the IR scale as μ̄IR = 1 GeV,
the parameter in the FFs as � = 0.77 GeV, and the cou-
pling constant as gγπρ = 0.103 which is determined by the
decay width of ρ+ → γπ+. The numeric results clearly show
that the TPE contributions with one ρ meson intermediate
state are much smaller than those with one π intermediate
state in the chosen regions. This interesting property is very
different from the property in the elastic ep-scattering case
where the contributions from the inelastic intermediate states
are at the same order with those from an elastic intermediate
state. The numeric results also show that the absolute mag-
nitudes of the TPE corrections increase when Q2 increases.
When ν = 6 GeV2, the magnitudes of Re[cII,(a+b)

1,π ;fin /c(1γ )
1 ] and

Re[cII,(a+b)
1,ρ /c(1γ )

1 ] are about 15% and 0.15% at Q2 = 6 GeV2

and about 4% and 0.005% at Q2 = 4 GeV2, respectively.
Another very interesting property is that the TPE correc-
tions are not sensitive on the variable t when ν and Q2

are fixed.
In Fig. 11, we take the kinematics in the Fπ ex-

periment of the JLab Collaboration [15] with Q2 =
1, 1.6 GeV2 at W = 1.95 GeV as examples to show the
numerical results for Re[cII,(a+b)

1,π ;fin /c(1γ )
1 ] and Re[cII,(a+b)

1,ρ /c(1γ )
1 ].

The numerical results for Re[cII,(a+b)
1,π ;fin /c(1γ )

1 ] are the same as

those in Ref. [19] where they are labeled as Re[c(2γ )
1,π ;fin/c(1γ )

1 ].
The (blue) dashed curves and the (olive) dashed-dot curves
refer to the results at φπ = π/6 and φπ = π/3 with ε = 0.65
or 0.63, and the (black) solid curves and the (red) dotted
curves are associated with ε = 0.33 or 0.27. The results
clearly show that the absolute magnitude of TPE corrections
Re[cII,(a+b)

1,ρ /c(1γ )
1 ] are smaller than 10−4 at Q2 = 1 GeV2

and smaller than 10−3 at Q2 = 1.6 GeV2. These corrections
are much smaller than the results with one π meson in-
termediate state [19]. In the practical estimation, one can
use Eqs. (13) and (22) to get Re[cII,(a+b)

1,π ;1,ρ ] easily and then
check this property in other regions. This property suggests
that the TPE corrections with one ρ meson intermediate
state can be relatively negligible in the current experimental
regions.

To summarize in this paper the TPE contributions in ep →
enπ+ with one π and one ρ intermediate state are estimated
under the pion-dominance approximation within the hadronic
model. The calculation shows that these TPE contributions
satisfy an un-subtracted DR when me → 0. The analytic ex-
pressions for the imaginary parts of the TPE contributions
within the hadronic model are given. Combine these analytic
expressions and the DR, one can get the real parts of the
TPE contributions at any available kinematic region easily.
We think these expression can help the further experimental
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FIG. 11. Numeric results for Re[c(a+b)
1,π ;fin/c(1γ )

1 ] vs. −t and Re[c(a+b)
1,ρ /c(1γ )

1 ] vs −t at fixed Q2, W, ε, and φπ .

analysis to include the TPE contributions conveniently. On
the numerical part, we find the contributions from one ρ

intermediate state are much smaller than those from one π

intermediate state. This suggests that the estimation only with
one π intermediate state can be applied to higher Q2 and
higher ν safely.
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