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Energy dependence of specific heat extracted from temperature fluctuation of Au + Au collisions at
√

sNN =
7.7 to 200 GeV was investigated by using a multiphase transport (AMPT) model. The results were compared with
those from other models and some differences at low

√
sNN were found. To explain the above differences and

describe the properties of the hot dense matter at low
√

sNN , a new quantity C∗
v was derived for describing specific

heat in heavy-ion collisions. It was found that, by using C∗
v together with its high-order moments (skewness and

kurtosis), thermal properties of the hot dense matter can be described and different thermal properties with
or without parton process can be clearly distinguished. The proposed observable provides a way to learn the
property of QCD matter in heavy-ion collisions.

DOI: 10.1103/PhysRevC.106.014910

I. INTRODUCTION

During the past few decades, amount efforts have been
made on studies of the hot dense quark matter created in rela-
tivistic heavy-ion collisions. Plenty of evidence supported the
existence of quark-gluon plasma (QGP) in relativistic heavy-
ion collisions and aroused interest in exploring the properties
of hot dense matter created under the extreme conditions of
temperature and density [1–10]. Specific heat was carried
out as one of the signals of phase transition on partonic and
nucleonic levels and helps to inspect thermal properties of
nuclear matter. In the partonic level, the lattice QCD predicted
the phase transition as a crossover at zero baryon-chemical
potential (μB = 0) but a first-order phase transition could
occur at finite baryon density [11–17]. In the nucleonic level,
a liquid gas phase transition can occur at subsaturation density
and moderate temperature [18–29].

According to phase transition theory, the long-range corre-
lation diverges rapidly when a thermodynamic system evolves
close to critical point. Here it is relevant to the degree of
freedom of the quarks and gluons, rather than mesons and
baryons for the matter created in the collisions. As a response
to the system perturbation, the specific heat could diverge
when the system evolves close to the critical point. In sta-
tistical physics, the heat capacity can be associated with the
fluctuation of temperature. Many works tried to extract heat
capacity from the event-by-event distribution of ensemble
temperature [11–16,23,25,30–35]. At near the critical point,
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the specific heat CV can be expressed as a power law function
of temperature deviated from critical temperature (Tc), i.e.,
CV ∝ |T − Tc|−α with α as a critical exponent. Furthermore,
although energy dependence of the specific heat CV has been
studied in some theoretical works [33,34,36], event-by-event
fluctuation of the specific heat itself should be investigated
for its statistical properties as a potential probe of the QCD
critical point.

To this end, a multiphase transport (AMPT) model [37–39]
was adopted to simulate Au + Au collisions at various en-
ergies of

√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and

200 GeV. Energy dependence of CV was obtained and com-
pared with results extracted through the same temperature
fluctuation method by other models, namely the hadron matter
(HM) [33], hadron matter via quark gluon matter [33], quark
gluon matter (QGM) [33], and hadron resonance gas (HRG)
models as well as the data deduced by the STAR Collabo-
ration [34,36]. However, it was found that the specific heat
obtained from the AMPT model shows obvious depression
at low

√
sNN , similar to some other models [33,34,36]. This

insensitivity phenomenon of temperature fluctuation in the
AMPT model drove our present study to propose another
derivation of heat capacity from the basic definition with some
assumptions. The derivation in this study gives an effective
specific heat, denoted as C∗

v , which is expressed by the charac-
teristic event’s kinetic quantities, and plots the event-by-event
distribution to obtain the skewness and kurtosis to describe the
statistical properties of C∗

v . The mean value of new derived
C∗

v together with its skewness and kurtosis give insight into
the evolution of thermodynamical properties of the emitted
particles and describe energy dependence of specific heat,
which could be performed in experiments.
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The paper is organized as follows: In Sec. II, a brief in-
troduction of a multiphase transport model was given, the
results on the energy dependence of specific heat from the
event-by-event temperature fluctuation in Au + Au collisions
simulated by the AMPT were presented, and the previous
results from other models as well as the STAR data were
compared. Using the above comparison, the difference and the
uncertainty of specific heat at low

√
sNN in our AMPT calcula-

tion were analyzed. In Sec. III, a brief qualitative explanation
for the differences was presented, and a formula expressed
by kinetic quantities called C

∗
v from the definition of specific

heat was proposed. Section IV gave the results for mean value,
skewness, and kurtosis of event-by-event distributions for C∗

v ,
from which the meaning of those moments was explained by
emitted particles’ thermodynamic properties. Finally a brief
summary was given in Sec. V.

II. AMPT RESULTS AND COMPARISON

A. Introduction to AMPT

A multiphase transport (AMPT) model [37–39] is com-
posed of four stages to simulate relativistic heavy-ion
collisions. It has successfully described various phenomena
at RHIC and LHC energies and has become a well-known
event generator. The AMPT has two versions: string melting
(SM) and default. In the SM version, Heavy Ion Jet Interaction
Generator (HIJING) [40,41] is used to simulate the initial
conditions, Zhang’s parton cascade (ZPC) [42] is used to
describe interactions for partons which are from all of hadrons
in the HIJING but spectators, after which a simple quark coa-
lescence model describes hadronization process, and finally
a relativistic transport (ART) model [43] simulates hadron
rescattering process. The default version of AMPT only con-
ducts the minijet partons in partonic scatterings via ZPC and
uses the Lund string fragmentation to perform hadronization.

AMPT model [37,39] can describe the pT spectrum and en-
ergy dependence of identified particles such as pion, kaon, φ,
proton, and � produced in heavy-ion collisions [38,44,45], as
well as the collective flows and temperature during evolution
etc [34,46–48]. Chiral and magnetic related anomalous phe-
nomena can also be described by the AMPT model [49–54].
More details of the model description and selection of the set
for parameters can be found in Refs. [37–39]. The present
study used both versions to simulate Au + Au collisions at√

sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV in
the impact parameter range of 0–4.7 fm, which corresponds to
centrality 0–10%.

B. CV from temperature fluctuation

First, an event-by-event fluctuation method was used to
study the specific heat. As noted in Refs. [33,34], since the
lower multiplicity of particles caused relatively large errors
in fitting the pT spectrum, we then merged some events into
one new event, denoted as a “linked event.” The combined
event number is determined by ensuring the multiplicity in
one linked event more than 1000, and thus we increased
mean multiplicity in one event by more than 1000, as other
researchers did in Ref. [34]. As shown in Fig. 8 of Ref. [34],

by comparing the results in linked events and random mixed
events in which each particle from different events (plot-
ted by blue and red line), we can see linking events from
different original event sets only modify fluctuation results
slightly.

The effective temperature, Teff, of a π+ system at final state
is obtained via fitting pT spectrum by using the exponential
distribution [38,55,56]:

1

pT

dN

d pT
= Ae

−pT
Teff . (1)

π+ system is chosen for the calculations with kinetic window,
pT < 2 GeV/c and −1 < y < 1. Teff stands for the slope of
the pT spectrum and consists of two parts, i.e., the kinetic
temperature Tkin and contribution from radial flow 〈βT 〉 [34],

Teff = Tkin + f (〈βT 〉), (2)

where the kinetic freeze-out temperature, Tkin, characterizes
thermal motion of emitted particles, and f (〈βT 〉) reflects
transverse radial flow contribution. As we are discussing the
π+ system, the relation in Eq. (2) can be approximately writ-
ten as [34]

Teff ≈ Tkin + m0〈βT 〉2, (3)

where m0 is the mass of π+.
For a system in equilibrium, its heat capacity (C) is related

to the fluctuation of event-by-event temperature distribu-
tion [11,14,15,35],

P(T ) ∝ e
− C

2
(�T )2

〈T 〉2 , (4)

where 〈T 〉 is the mean temperature value and �T = T − 〈T 〉
is the deviation of temperature from its mean value. The
expression can be further derived as [34]

1

C
=

〈
T 2

kin

〉 − 〈Tkin〉2

〈Tkin〉2
≈

〈
T 2

eff

〉 − 〈Teff〉2

〈Tkin〉2
. (5)

When multiplicity N is taken into account, we can get specific
heat per particle (CV ) as the following:

CV = C

N
. (6)

In this section, we choose Tkin to extract CV since the
variances of Tkin and Teff are close enough to each other,
as mentioned in Ref. [34]. Figure 1 shows the pT spectra
in linked events fitted by Eq. (1), from which the effective
temperature was obtained as shown in Fig. 2(a). Meanwhile,
in the present work we calculated transverse flow velocity βT

by βT = βpT
·ρ

|ρ| , where βpT
is the transverse velocity and ρ

is the transverse coordinates of particles at kinetic freeze-out
state. In Refs. [34,57], a blast-wave model was used to obtain
a fit parameter also denoted by βT . The two definitions give
the same dimension of βT and are both on a supersurface
where particles reach kinetic freeze-out status. So the two βT

are conceptually consistent. As mentioned in Ref. [34], fluc-
tuation of βT could be dominant for small, asymmetric, and
noncentral collisions. However, our work focuses on the Au +
Au system, and the fluctuation from βT is almost negligible.
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FIG. 1. The pT spectrum for the merged events with −1 < y < 1
at

√
sNN = 7.7–200 GeV in 0–10% central Au + Au collisions by

using the string melting AMPT. The line represents the Boltzmann
fit to the pT spectra below 1 GeV/c.

As we mentioned before, we used the Boltzmann distri-
bution to extract effective temperature from pT spectra as
shown in Fig. 1. However, it is noticed that as pT increases,
the Boltzmann distribution becomes a poor fit for the spectra.
To ensure our fitting results are comparable and verifiable to
results in Refs. [33,34], however, we limit the fitting range of
pT below 1 GeV/c with the Boltzmann distribution, which
was represented by the lines in Fig. 1. Of course, some checks
have been done. For example, one way is to extend the pT fit
range to 3 GeV/c and another way is to check the nonthermal
tail of high pT from 1 to 3 GeV/c with the same Boltzmann
distribution. From the above fit procedures, we can roughly
get the lower (pT < 1 GeV/c) and upper (1 GeV/c < pT < 3
GeV/c) limits of the event-by-event temperature distribution.
Further, we can get the lower and upper bounds for heat capac-
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FIG. 2. The event-by-event distributions of effective temperature
(a) and kinetic temperature (b) at

√
sNN = 7.7–200 GeV in 0–10%

central Au + Au collisions using the string melting AMPT model;
the lines are fitted by Gaussian distribution.
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FIG. 3. The energy dependence of specific heat Cv = C
N is calcu-

lated via the temperature fluctuation method: The AMPT model with
removing radial flow effect (this work), the results using the STAR
0–5% centrality Au-Au data (Basu et al. 2016 [34]), the HRG model
(Basu et al. 2016 [34]), the AMPT model with flow included (Basu
et al. 2016 [34]), the HM model (Sa et al. 2007 [33]), the HM via
the QGM model (Sa et al. 2007 [33]), and the QGM model (Sa et al.
2007 [33]).

ity. It was found that the different pT range does not change
the energy dependence of CV but do induce an uncertainty of
about 30% of the CV values.

On the other hand, there exist a few alternative models
to fit pT spectra, e.g., with the Tsallis-blast-wave model to
describe pT spectra in a wide pT range up to 3 GeV/c shown
in Refs. [58,59]. The Tsallis distribution introduced a new
parameter q to represent how the system deviates from the
equilibrium state. It can be seen in Ref. [58] that in our range
for pT < 1 GeV/c, q − 1 is very close to zero. The fact that
q − 1 tends to 0 means the Tsallis distribution degrades into
the Boltzmann distribution, indicating that our fits using the
Boltzmann distribution is reasonable. Further, in Ref. [36],
the Tsallis distribution was used to investigate thermal pa-
rameters in small system (p + p at

√
sNN = 7 TeV) and fitted

well in the PYTHIA framework. Of course, adopting a new
Tsallis-blast-wave fit to deduce the heat capacity is naturally
an interesting topic, which deserves further investigation in
future.

After removing the transverse radial flow contribution from
Eq. (3), the distribution of event-by-event Tkin is presented in
Fig. 2(b) at the centrality of 0–10% and

√
sNN = 7.7–200 GeV.

It is clearly seen that Tkin is much lower than Teff because
the transverse radial flow is taken off. Via fitting the Tkin

distribution by Eq. (5), the heat capacity per particle CV can
be extracted.

Figure 3 shows different model results together with the
STAR data by temperature fluctuation method. The extracted
CV from the STAR data decreases with the increasing of√

sNN [34], and it shows a significant rising trend when
√

sNN

goes down to 40 GeV and below, which indicates that the
system might enter a critical region. The HRG model [34]
shows similar energy dependence of CV to the STAR Au + Au
results. Other results from the HM [33], the QGM [33], the
AMPT [34], and this work employing AMPT and removing
the radial flow effect give an almost constant value of CV in a
wide range of

√
sNN . These results demonstrated a significant
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model dependence at low
√

sNN but are consistent with each
other at high

√
sNN [33,34,36].

To understand the difference between the AMPT simula-
tion results and the enhancement structure from the STAR
data or the HRG model [34] at low

√
sNN , a few issues may

be related as indicated in Refs. [33,34]:
(1) The finite particle multiplicity, choice of kinetic win-

dow of pT and fit parameters in Eq. (1) provide uncertainties
of Cv , which was mentioned in Refs. [33,34] as well. To check
our fitting results on pT spectrum and ensure our fitting results
are comparable to those in Ref. [34], we chose the same pT

window as in Ref. [34].
(2) In many theoretical derivations, the system evolves in

perfect thermodynamic conditions, which means that the sys-
tem volume is fixed and multiplicity should be high enough.
However, these conditions can hardly be satisfied in real
heavy-ion collision experiments, as noted in Ref. [33].

Two reasons mentioned above are both independent of
models. Besides, the model dependence should also be
commented, i.e., different model frames provide respective
additional uncertainty, which could be caused by different
mechanisms used in models, even as the results are calculated
in the same kinetic window of transverse momentum and
rapidity.

In the following, we try to discuss the insensitivity of
temperature fluctuation in the present AMPT framework.

III. DERIVATION OF A NEW FORMULA OF HEAT
CAPACITY: C∗

v

To avoid the model dependence of extracted specific heat,
the definition of heat capacity according to Ref. [60] can be
written as

C =
(

∂Eth

∂T

)
V

, (7)

where Eth is the energy of thermal motion in a researched
system and T is the temperature with a fixed volume of the
system. Actually, the definition of the heat capacity by Eqs. (7)
and (5) are equivalent. In Ref. [60], there is nothing different
but the one in Eq. (7) is defined from the differential of
enthalpy in Eq. (14.6) of Chapter 15 and the one in Ref. [5] is
derived from fluctuation in Eq. (111.6) of Chapter 12.

The definition in Eq. (7) includes following assumptions:
(1) The energy of π+ system at final state E has positive

correlation to
√

sNN , which means for each collision at final
state, total energy of π+ system evolves along a certain curve
with

√
sNN [61].

(2) Estimated phase volume can be approximately calcu-
lated as charged particle multiplicity N , which means that we
can calculate specific heat per particle Cv = C

N and the merged
events are ensured to have enough multiplicity (here more
than 1000) [33,34].

(3) The π+ system evolves to the kinetic freeze-out stage
after the hadronic interaction. That means the energy con-
tributed by system’s internal interaction (mainly the hadronic
interaction) can be ignored when we calculated the heat
capacity.

FIG. 4. The βpT , βT , and βth distribution for π+ system at√
sNN = 7.7 and 200 GeV in 0–10% central Au + Au collisions by

using the string melting AMPT model.

(4) The total energy of system is mainly dominated by
transverse momentum with π+ at midrapidity, which can be
concluded from the transverse velocity distribution for π+ as
shown in Fig. 4, most π+ are distributed in the region over
βpT > 0.8c. So π+’s energy can be written as a function of
pT . Considering the radial flow, the total energy can be written
as E = Eth + ER where Eth is internal energy from thermal
motion and ER is energy from collective radial flow [34]. In
a thermodynamical viewpoint, the heat capacity should only
be correlated to Eth. We can take a quick glance for the radial
collective motion and thermal motion of the system via giving
distributions of radial flow βT and thermal velocity βth =
βpT

·ρT

|ρT | where ρT and ρ constitute a right-handed orthogonal
system. As shown in Fig. 4, the pions are moving thermally in
a expanding fireball with a collective radial velocity. To avoid
complex differential term of ER, we first use total energy E to
derive a formula of an effective heat capacity. The following
calculation will show us that though the derived effective
heat capacity includes a contribution from ER, the radial flow
still cannot dominate the energy dependence and fluctuation
properties of heat capacity. This fact ensures our calculation
and discussion on new derived heat capacity reasonable.

The total energy of a π+ system can be written as [37,46]

E =
N∑

i=1

Ei =
N∑

i=1

(
p2

Ti + p2
zi + m2

0

) 1
2 . (8)

By calculating the variance and correlation coefficient of Tkin

and radial flow, we can prove that in the following derivation
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FIG. 5. The variance of each term in temperature from the string
melting AMPT model, and the correlation coefficient between Tkin

and β2
T in different versions.

of Cv , the Eth can be replaced by total energy E in Eq. (8)
reasonably.

Here we discuss the contribution in energy from radial
flow. It should be noted that we did not remove f (〈βT 〉) from
E directly because our βT is not exactly same as the one
in the blast-wave model in energy composition (though in
temperature calculation our βT approximately equals βT from
the blast-wave model [55,57]). Thus, we cannot simply write
the energy contributed by radial flow as form of nonrelativistic
kinetic energy [57,62,63].

In Eq. (3), the variance of Teff can be written as

σ 2
Teff

≈ σ 2
Tkin

+ m2
0σ

2
〈βT 〉2 + 2m0Cov(Tkin, 〈βT 〉2). (9)

Figure 5 shows the variance of Teff and each term in the right
side of Eq. (9). We see that the variance from Tkin dominates
the one for Teff while the one from 〈βT 〉2 is less with one
order of magnitude, and thus the variance of 〈βT 〉 could be
negligible for properties of temperature. In order to clarify that
the radial flow term is independent from temperature term in
our derivation and calculation, we investigate the linear cor-
relation coefficient η = Cov(Tkin, 〈βT 〉2)/(σTkinσ〈βT 〉2 ), which
is also presented in Fig. 5; here η � 0.2 means that they are
linear independent. In addition, the derivative of Teff over Tkin

is approximately a constant, and then we can use Teff instead
of Tkin for differential term from radial flow.

According to our assumptions, a π+ system evolves along
a continuous path on

√
SNN . Each system with its evolution

path corresponds to its own kinetic parameters like E , T ,
and 〈pT 〉; when

√
sNN changes, the total energy E of the π+

system changes to E + �E on the continuous path. Similarly,
when the pT spectrum changes, the resulting pT of each π+
in one system changes to pT + �pT . Here we see the advan-
tage of the merged events, which ensured similar multiplicity
when E changes. That means for each π+ on the continuous
evolution path we can find a closest new π+ in phase space
with pT + �pT . In this sense, E and pT for each π+ can be
seen as a continuous function of system temperature.

Under the above four assumptions, especially considering
the fact that the energy only depends on pT in midrapidity, by

using Eqs. (7) and (8) we get

∂E

∂T

∣∣∣∣
E (T )

=
N∑
i

∂

∂T

(
p2

Ti + p2
zi + m2

0

) 1
2

=
N∑
i

∂Ei

∂ pTi

∂ pTi

∂T
=

N∑
i

1

2

2pTi

Ei

∂ pTi

∂T

=
N∑
i

(
βpTi

∂ pTi

∂T

)
|E (T ). (10)

The sum can be converted to the integral pattern with help
of the Riemann sum. Let f (xi ) = F (xi )/�xi, for equidistant
division, and the Riemann integral can be written as

∫ b

a
f (x)g(x)dx ≈

(b−a)/�x∑
i

F (xi )

�x
g(xi )�x. (11)

It should be noted here that Nx = (b−a)
�x stands for the num-

ber of division in Riemann integral which is different from
multiplicity Nmulti, but we can approximately let Nx = Nmulti,
so that the definition of Cv expressed by sum can be related
to integral over temperature. As mentioned in Refs. [33]
and [34], merged events ensured high enough multiplicity and
then small error for fitting.

Using Eq. (11), Eq. (10) can be expressed as follows:

Nmulti∑
i

βpTi

∂ pTi

∂T

∣∣∣∣
T

=
(b−a)/�x∑

i

βpTi

�T

∂ pTi

∂T
�T

≈
∫ b

a

βpTi

dT

∂ pTi

∂T
dT =

(
βpTi

dT

∂ pTi

∂T

)∣∣∣∣
T =T0

(b − a)

≈ ˜βpT

∂ p̃Ti

∂T

∣∣∣∣
T =T0

(b − a)

�T
= Nmulti

(
˜βpT

∂ p̃Ti

∂T

)∣∣∣∣
T =T0

.

(12)

Here T0 means the temperature in characteristic event ′ξ ′,
corresponding to the ′ξ ′ noted in the mean value theorem
of integrals: Let f : [a, b] → R be a continuous function, g :
[a, b] → R be integrable and constant sign, then there exists
ξ ∈ (a, b) so that

∫ b
a f (x)g(x)dx = f (ξ )

∫ b
a g(x)dx.

According to mean value theorem of integrals, we can
prove the existence of ˜βpT and p̃Ti; these two parameters
reveal the evolution property and energy dependence of sys-
tem. Hence, the derivation gave the specific heat expressed by
kinetic quantities:

CT0
v = C

Nmulti
≈ ˜βpT (T0)

∂ p̃T

∂T

∣∣∣∣
T0

. (13)

In Eqs. (13) and (10), the heat capacity for ensemble can
be expressed as a combination of kinetic measurements in a
characteristic event whose T = T0.

The above equation gave a formula for calculating specific
heat approximately by transverse velocity, transverse momen-
tum, and temperature in a unique event ′ξ ′, i.e., by a derivative
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of transverse momentum to temperature in a unique event ′ξ ′.
It should be noted here that CT0

v apparently includes radial flow
term by βT , but βT decreases at low

√
sNN [55] and f (〈βT 〉) is

smaller than Tkin, the dominant contribution is actually from
thermal motion. That is why in Eq. (7) we can use E instead
of Eth.

However, the first mean value theorem for integrals can
only provide the existence of ′T ′

0 , it cannot find the accurate
value to calculate the CT0

v . Therefore, the present study needs
to further use the mean value of kinetic quantities instead of a
unique one to give accessible results that can be measured and
computed from data:

C∗
v = βpT

∂ pT

∂T

∣∣∣∣
T =Teff

. (14)

We should emphasize that the definition in Eq. (14) is a
compromise for the real calculation of CT0

v . Since ξ in the
mean value theorem for integrals is unsolvable, we use the
mean value of βpT and Teff instead of values in single event to
make sure CT0

v can be approximately calculated in practice.
According to the definition in Eq. (7), we should use Tkin

as T in calculation of pT in Eq. (14). However, this formula
involving radial flow cannot give identical results of ∂ pT

∂Tkin
.

Fortunately, as demonstrated in Fig. 5, it can be calculated by
the AMPT result that derivatives for Tkin and Teff have strongly
linear dependence, we can directly use Teff instead of Tkin in
∂ pT

∂T . Now we can conveniently calculate ∂ pT

∂T |T =Teff
based on

pT spectrum [55,64–66],

pT =
∫ pmax

pmin
p2

T F (pT )d pT∫ pmax

pmin
pT F (pT )d pT

= 2Teff

+ p2
mine−pmin/Teff − p2

maxe−pmax/Teff

(pmin + Teff )e−pmin/Teff − (pmax + Teff )e−pmax/Teff
.

(15)

Considering that the mean value and unique value are ob-
viously different, which directly connected to our explanation
on the statistical parameters, we will discuss the topic in the
next section.

IV. RESULTS OF C∗
v AND ITS HIGH-ORDER MOMENTS

Using the derived formula (14) and (15), C∗
v can be cal-

culated with data of π+ system in Au + Au collisions at
different

√
sNN simulated by the AMPT. The event-by-event

distribution of C∗
v presents the Gaussian-like distribution as

shown in Fig. 6, from which the mean values (〈C∗
v 〉) at each√

sNN can be obtained.
Figure 6(b) shows 〈C∗

v 〉 from the AMPT calculations,
which displays a slightly decreasing trend with the increasing
of

√
sNN . Compared to the results in Ref. [33], the energy

dependence of 〈C∗
v 〉 is similar to the results of QGM, HM,

and HM via QGM in Fig. 3, even though the values of CV and
〈C∗

v 〉 are slightly different. In Ref. [33], the specific heat from
QGM is much different from results in pQCD thermodynamic
method and approximate pure gauge theory, which should
be studied further to confirm the discrepancy contributed by
classical and quantum statistics; the latter two theoretical cal-

FIG. 6. (a) The event-by-event C∗
v distribution for π+ system

in 0–10% central Au+Au collisions at
√

sNN = 7.7, 11.5, 14.5,
19.6, 27, 39, 62.4, and 200 GeV, respectively, by using the string
melting AMPT. The lines are fitted by Gaussian distribution. (b) The
extracted 〈C∗

v 〉 from the string melting AMPT model calculation is
shown by the red line, compared to the Cv from Tkin fluctuation,
which is represented by the black line, corresponding to the black
star marker in Fig. 3. Note that the Cv value from Tkin fluctuation is
scaled twice.

culations both gave larger CV (10–15) at low
√

sNN than other
models shown in Fig. 3. They suggested using the pT distri-
bution of π+ in RHIC single events to extract CV according to
the same statistical method as in Ref. [33]. For our calculation
of C∗

v , we suggest extracting transverse velocity and effective
temperature from the pT spectrum. As far as the uncertainty
for the present experimental data, if one extracts parameters
for C∗

v which we discussed above, we suggest improving ex-
perimental precision to ensure smaller uncertainty for fitting
parameters. If possible, the direct particle identification, trans-
verse velocity measurement, and pT spectra for merged events
of charged π system in experiments are also recommended, so
that we can check our methods and fit experimental results as
accurately as possible.

To clearly illustrate the sensitivity of C∗
v to βpT and Teff, we

plot C∗
v as functions of βpT and Teff by using Eqs. (14) and (15)

in Fig. 7. An inflection point exists at around Teff = 100
MeV, which depends on the fitting limits of pT spectrum. The
combination of linear dependence of βpT and nonmonotonic
dependence of Teff results in C∗

v being sensitive to the range
of the fitting parameters. Along an identified curve of C∗

v in
Fig. 7, a shifting fitting result may cause a different trend of
energy dependence of C∗

v , which has to be studied further,
especially near the QCD critical point.

In Fig. 6(b), the mean values of C∗
v are smaller than

those extracted from the HRG model, HM model, and QGM
model [33]. In the first mean value theorem for integrals, the
mean value deviates the ideal CT0

v . That means only if one can
accurately find the evolution curve of a characteristic event
corresponding to temperature T0 can the real CT0

v agree with
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FIG. 7. Theoretical C∗
v distribution as a two-dimensional func-

tion of βpT and Teff.

results extracted by temperature fluctuation from the STAR’s
data, especially at low

√
sNN [34]. It is interesting to see

that 〈C∗
v 〉 continues to have a rising trend with decreasing√

sNN , which suggests that in the event-by-event distribution
of C∗

v we can still find special properties similar to a sharp
decreasing trend with increase of colliding energy [47].

As a comparison, the behavior of C∗
v with parton process or

only with hadron process are different. Though the rising trend
of average C∗

v is depressed, the events with parton process
provides higher C∗

v similar to the cases of pQCD and other
models [33,34]. That means that more events with higher C∗

v

emerge at low
√

sNN in the SM-AMPT case. Further, we can
investigate the fluctuation behavior of C∗

v by event-by-event
distribution as we did in temperature distribution. Indeed, we
can see nontrivial fluctuation behavior of C∗

v when taking
parton interaction into account.

Based on the event-by-event distribution of C∗
v , skewness

and kurtosis of C∗
v can be obtained in the AMPT model

with the string melting and default versions, respectively. The
skewness and kurtosis are defined as μ3

σ 3 and μ4

σ 4 − 3, respec-

tively. Here μn = 〈(X − 〈X 〉)n〉 and σ =
√

�(Xi−〈X 〉)2

N where
the X represents C∗

v . The skewness reflects the deviation of C∗
v

distribution from the Gaussian distribution, and the kurtosis
describes how close the events distribute to expectancy (a
standard Gaussian distribution has zero kurtosis). At RHIC,
skewness and kurtosis analysis have been successfully applied
to net-proton fluctuation to explore possible QCD critical
point [8,67–70]. Here we use this kind of high-order moments
to specific heat analysis. Figures 8(a) and 8(b), respectively,
showed the skewness and kurtosis as a function of

√
sNN ,

which exhibits obvious differences at lower
√

sNN . In the
string melting version, the skewness and kurtosis all showed a
sharply enhanced structure with the decrease of

√
sNN below

20 GeV. Meanwhile, in the default version, the skewness and
kurtosis are both close to zero and present an independence of√

sNN . Again, the parton interaction demonstrates its impor-
tant role for C∗

v fluctuation.
Before discussing the statistical properties obtained from

C∗
v , we need to take care of the statistical fluctuation. As

Ref. [34] shows, the contribution of statistical fluctuation
in Teff distribution can be written as (�Teff )2 = (�T dyn

eff )2 +
(�T sta

eff )2. In Ref. [34], the statistical fluctuation was extracted
by randomly mixing data from experiments, and then the
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FIG. 8. The energy dependence of kurtosis (a) and skewness
(b) of C∗

v for the π+ system from the string melting AMPT (red
circle) is compared to results from the default AMPT version (blue
square) as well as random mixed statistical fluctuations (red open
circle and blue open square).

width of the randomly mixed temperature distribution was
removed. Here we randomly mixed each particle from a single
event while keeping the multiplicity in each mixed event is
close to the one in our merged events at about 1000, and then
we extracted skewness and kurtosis from the mixed events to
compare with the results from two versions of AMPT.

In Figs. 8(a) and 8(b), we can clearly find the results from
the randomly mixed events and the default version AMPT
are close to each other, which means the energy dependence
of skewness and kurtosis in the default version without par-
tonic process are mainly contributed by statistical fluctuation.
Meanwhile, at lower

√
sNN the string melting version showed

clearly an enhancement structure far from both the default ver-
sion and random mixed one. This comparison demonstrates
that the unique behavior of third and fourth order moments
from the string melting version at lower

√
sNN are mainly

from the dynamical fluctuation, which reflected that the spe-
cial properties of thermodynamic quantities indeed survived
throughout partonic and hadronization processes—even par-
tially. Besides, we can also compare the default result and the
random mixed one, and see only a slight difference. The slight
difference shows us that the self-correlation of merged events
can slightly suppress kurtosis and skewness at low

√
sNN .

The difference between two versions, namely with or with-
out a partonic interaction process, shows different thermal
properties. When

√
sNN decreases, skewness of C∗

v from the
string melting version increases rapidly to a high positive
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value. That means, compared to the default version, more
events with higher C∗

v distributed on the right side of mean
value as illustrated in Fig. 6(a). As mentioned in this section,
the real CT0

v obtained from ′ξ ′ was depressed by averaging
over the events, but the positive skewness indicated that parton
phase in the string melting version contributes higher value
of CT0

v than that in the default AMPT version. The higher
value indicates that in the string melting version of AMPT,
the heat capacity of the π+ system behaves more similarly
to predictions in other models or theories [33,34] than the
default version. Here the positive skewness is explained as
a signal for formation of π+ system closer to the real CT0

v

state, instead of explained as overall enhancement of CT0
v in

the π+ system. Because if it is the latter case, one should
find the event-by-event distribution of C∗

v will move totally
into a higher range and still follow the standard Gaussian
distribution.

For the distribution of kurtosis of C∗
v , it is close to zero

at high
√

sNN and rose rapidly to large positive values below
20 GeV in the string melting version. Meanwhile, we can
see that the kurtosis from the default version keeps close to
zero at both high and low

√
sNN . The low kurtosis in the

default version indicates that if we choose AMPT with hadron
gas phase instead of parton phase, the C∗

v distribution shows
similarity to the standard Gaussian distribution. The sharp
enhancement in the SM version shows that the π+ system
formed after parton phase drives events to a distribution with
much smaller deviation (σ ) than the one formed from hadron
gas. Compared to Eq. (5), it can be found that though σ for C∗

v

and Tkin or Teff are different, they both reflect the significant
change of event-by-event fluctuation of the system. As in
results from other models or data, the enhancement structure
of Cv at lower

√
sNN demonstrates that the fluctuation of

temperature extends to system size of all events in ensemble,
and the enhancement structure of C∗

v ’s kurtosis indicates that
the fluctuation of C∗

v behaves similarly [11,12,16]. The results
also illustrate that the properties of charged particles formed
via parton phase are significantly different from those that
experienced no partonic process. We explain the difference
as a result of the partonic process, the introduction of parton
provides different degrees of freedom in hot dense matter.
However, introducing a parton only is not the same as the
contribution from a critical phase transition, which is why we
cannot extract the divergence of CV in the frame. Fortunately,
the significant rising trend of skewness and kurtosis in string
melting version at lower

√
sNN shows us that the effect of

partonic process can survive hadronization. Further skewness
and kurtosis imply that change for the degrees of freedom
resulting from the parton phase can be measured in the form
of high-order moments of C∗

v . These observables show a more
clear energy dependence than CV from temperature fluctuation
since we can obtain as many C∗

v event-by-event distributions
as we need. For temperature fluctuation, however, we can only
extract one CV . In this context, one can clearly reveal the
effect from parton process by investigating C∗

v and its high-
order moments. The energy dependence of C∗

v together with
its skewness and kurtosis could be taken as a potential and
verifiable signal to investigate the nature around the critical
point of hot dense matter created in heavy-ion collisions.

V. SUMMARY

In this work, we studied the energy dependence of specific
heat in a framework of the AMPT model. Specific heat was
obtained via event-by-event temperature fluctuation for the
π+ system from the AMPT model and compared with those
from the STAR Collaboration’s data [34] and other mod-
els [33]; the difference among various models and data was
analyzed and the reasons were presented. Based on a few as-
sumptions, we derived a new quantity, namely C∗

v , to describe
specific heat from kinetic quantities of a characteristic event.
By using the AMPT model, the

√
sNN dependence of 〈C∗

v 〉
was presented. This work found that the 〈C∗

v 〉 behaves closer
to results from the HRG and STAR Collaboration’s data than
〈Cv〉 from temperature fluctuation in the AMPT frame. At low√

sNN , compared to results from the HRG or STAR’s data, our
results for 〈C∗

v 〉 still seem too small to show a clearer energy
dependence. The too small values of 〈C∗

v 〉 are not the ideal
results but within the expectation.

In terms of definition in Eq. (13), our original goal of the
extraction of heat capacity should be the ξ in the mean value
theorem for integrals, while we can only use the mean values
of βpT and Teff as alternative substitutes, because the real ξ is
unsolvable. As a result of using the mean value, 〈C∗

v 〉 shows a
visible energy dependent trend. In other words, if one can find
the event ξ and use the parameters in this event ξ to calculate
CT0

v , we would see the same energy dependence of system as
the results in experiments.

We further gave the event-by-event distribution of C∗
v and

then obtained skewness and kurtosis of the C∗
v distribution.

To ensure the calculation is reasonable, it was additionally
compared for the variance of different terms and linear cor-
relation coefficients. We compared parameters like skewness
and kurtosis in two different versions of AMPT.

The results demonstrate that the energy dependences of
skewness from the string melting version show clear differ-
ences from the default version, and similar energy dependence
can be seen in kurtosis. The above phenomenon indicates that
a partonic process drives more π+ events to emerge in the
higher specific heat state. From kurtosis, it can be seen that
the behavior of fluctuation and deviation of C∗

v in the string
melting version showed clearer energy dependence, which is
similar to the behavior of fluctuation of temperature described
by Cv from results of Refs. [14,33,34,36].

In the future, we expect more experimental and theoretical
investigation by using heat capacity to search for the QCD
phase transition of the hot dense matter created in heavy-ion
collisions.
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