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Embedding a critical point in a hadron to quark-gluon crossover equation of state
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Lattice QCD simulations have shown unequivocally that the transition from hadrons to quarks and gluons is
a crossover when the baryon chemical potential is zero or small. Many model calculations predict the existence
of a critical point at a value of the chemical potential where current lattice simulations are unreliable. We show
how to embed a critical point in a smooth background equation of state so as to yield the critical exponents
and critical amplitude ratios expected of a transition in the same universality class as the liquid-gas phase
transition and the three-dimensional Ising model. There are only two independent critical exponents; the relations
α + 2β + γ = 2 and β(δ − 1) = γ arise automatically, as does a relation between the two critical amplitudes.
The resulting equation of state has parameters that may be inferred by hydrodynamic modeling of heavy-ion
collisions in the Beam Energy Scan II at the BNL Relativistic Heavy Ion Collider or in experiments at other
accelerators.
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The QCD equation of state has been a subject of intense
interest ever since the discovery of asymptotic freedom. At
high temperature T and baryon chemical potential μ it is a
weakly interacting gas of quarks and gluons, while at low
T and μ it is a strongly interacting gas of hadrons. Lattice
QCD simulations have shown conclusively that the transition
from one phase to the other at T ≈ 155 MeV and μ = 0 is
smooth on account of the fact that the up and down quark
masses, and consequently the pion mass, are not zero [1,2].
However, diverse model calculations predict the existence of
a line of first-order phase transition, beginning at T = 0 and
μ0 and terminating in a critical point at Tc < 155 MeV and
μc < μ0 [3,4]. Such a purported critical point is presently
beyond the reach of reliable lattice calculations. Existing ap-
proaches include a Taylor series expansion in powers of μ/T
at μ = 0 and analytic extrapolations from imaginary to real
chemical potentials; recent results are reported in Refs. [5,6],
respectively. Experiments during the Beam Energy Scan II
at the BNL Relativistic Heavy Ion Collider (RHIC) may or
may not support the existence of critical behavior [7]. The
goal of this paper is to propose a general construction for
the equation of state which is consistent with (i) lattice QCD
for all T and small μ, (ii) perturbative QCD for large T
and/or large μ, and (iii) a critical point with critical exponents
and amplitude ratios from the same universality class as the
liquid-gas phase transition and the three-dimensional (3D)
Ising model. Parameters in this construction can be adjusted
to best fit the experimental data.

The construction introduced here is different than the con-
strutions proposed in Refs. [8,9], which are based on the work

of Refs. [10,11]. These two constructions are both designed to
provide a flexible description of matter near the critical point
and the associated line of first-order phase transition while
also being consistent with lattice QCD at μ = 0. In this sense,
they can perhaps be viewed as alternatives which provide
some idea as to the range of uncertainty in how to build such
a description. However, our construction has several strong
points.

(i) Our construction has only two fundamental critical
exponents, and the well-known relations α + 2β +
γ = 2 and β(δ − 1) = γ arise automatically.

(ii) Our construction requires knowledge of only one ra-
tio of critical amplitudes, while the other ratio is
predicted and consistent with known experimental ob-
servations. In contrast, the approach in Refs. [10,11]
has those ratios independent of each other.

(iii) Our construction is directly in terms of the chemical
potential and density. The approach of Refs. [8,9] is in
terms of the magnetic field and magnetization in the
Ising model. The mapping from these quantities to the
QCD phase diagram introduces a significant amount
of uncertainty and extra parameters with unknown
values that our approach avoids.

(iv) In our approach the merging is smooth to all orders,
aside from the critical point and its associated line
of first-order phase transition. In contrast, Refs. [8,9]
matched only to a given order of μ/T in the lat-
tice equation-of-state Taylor expansion by equating
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coefficients of the same order. That can introduce
unwanted and/or unphysical phase structures.

Without loss of generality the equation of state can be
expressed as

P(T, μ) = PBG(T, μ)R(T, μ), (1)

where PBG(T, μ) is a judiciously chosen background equa-
tion of state with no critical behavior; all critical behavior
resides in the dimensionless function R. Motivated by solu-
tions to the cubic equation, which produce S-shaped curves
characteristic of the van der Waals equation of state or the
nuclear liquid-gas phase transition [12,13], we consider the
auxilliary functions

Q±(T, μ) = ({[�2(T )]2 + r2(T, μ)}1/2 ± r(T, μ))k, (2)

where

r(T, μ) = μm − μm
x (T )

μm + μm
x (T )

, (3)

with m being a positive even integer. The function μx(T )
represents the chemical potential where the two phases are
in coexistence when T � Tc, but it must also be a smooth
function for all T � Tc to avoid undesired discontinuities.
Note that −1 � r < 1 and that it vanishes along the coex-
istence curve. The function �2(T ) is expected to have the
functional form |T/Tc − 1|p near Tc. The parameters k and p
will determine the four critical exponents.

When T > Tc we take

R(T, μ) = 1 − a(T )(
√

�4 + 1 + 1)k

− a(T )
(√

�4 + 1 − 1
)k

+ a(T )(Q+ + Q−),

(4)

where a(T ) is a smooth function. This has the property that
P → PBG as μ → 0 and as μ → ∞ for any fixed value of T .
It is an even function of μ. The density is

n(T, μ) = nBG(T, μ)R(T, μ) + PBG(T, μ)
∂R(T, μ)

∂μ
. (5)

The critical exponent δ is determined by P − Pc ∼ sgn(n −
nc)|n − nc|δ as n → nc along the critical isotherm �2 = 0.
Assuming 1 < k < 2, the leading behavior is

n − nc = mkka(Tc)

μc
PBG(Tc, μc)sgn(μ − μc)

∣∣∣∣μ − μc

μc

∣∣∣∣
k−1

,

P − Pc = [1 − 2ka(Tc)]nBG(Tc, μc)(μ − μc). (6)

Thus, the critical exponent δ = 1/(k − 1) or k = 1 + 1/δ.
The baryon number susceptibility is χB = ∂2P/∂μ2 ≡

χμμ. It diverges like χB = χ+(T/Tc − 1)−γ as T → T +
c , with

|μ/μc − 1| � T/Tc − 1. With �2(T ) = d+(T/Tc − 1)p near
Tc, we find that the susceptibility diverges as

χB → m2k2a(Tc)

2μ2
c

d k−2
+ PBG(Tc, μc)

(
T

Tc
− 1

)−(2−k)p

. (7)

Thus, the critical exponent γ = (2 − k)p or p = γ δ/(δ − 1).

The heat capacity at fixed volume is

cV = T
∂s

∂T
(T, n) = T

(
χT T − χ2

T μ

χμμ

)
. (8)

The critical behavior is cV → c+(T/Tc − 1)−α . It can be
shown, albeit numerically, that approaching the critical point
along r = 0 gives the same result as approaching it at fixed nc.
The amplitude is

c+ = 2p(2kp − k − p)dk
+

a(Tc)

Tc
PBG(Tc, μc), (9)

with α = 2 − kp = 2 − γ (δ + 1)/(δ − 1).
When T < Tc we take the pressure in the quark phase when

μ � μx to be

PQ(T, μ) = PBG(T, μ)RQ(T, μ), (10)

with

RQ = 1 + a(T )Q+(T, μ) − a(T )(
√

�4 + 1 + 1)k, (11)

and in the hadron phase when μ � μx to be

PH (T, μ) = PBG(T, μ)RH (T, μ), (12)

with

RH = 1 + a(T )Q−(T, μ) − a(T )(
√

�4 + 1 + 1)k . (13)

We refer to these as quark and hadron phases because, even
though the background equation of state is a crossover, one
phase is predominantly composed of quarks and gluons while
the other phase is predominantly composed of hadrons. Note
that the pressure along the critical isotherm is

P(Tc, μ) = PBG(Tc, μ)

[
1 + 2ka(Tc)

(∣∣∣∣μ
m − μm

c

μm + μm
c

∣∣∣∣
k

− 1

)]

(14)
no matter whether Tc is approached from below or above.
Hence the critical exponent δ is well defined.

The density difference along the coexistence curve is

�n(T ) = mka(T )

μx(T )
PBG[T, μx(T )]

[
�2(T )

]k−1
. (15)

The critical exponent β is defined via �n ∼ (1 − T/Tc)β .
With �2(T ) = d−(1 − T/Tc)p near Tc, we find that β =
p(k − 1) = γ /(δ − 1).

The susceptibility along the coexistence curve is

χB(T ) = PBG(T, μx )

[
m2k2a

4μ2
x

(
�2

)k−2 ∓ mka

2μ2
x

(�2)k−1

]

+χB,BG(T, μx )[1 + a(�2)k − a(
√

�4 + 1 + 1)k]

± mka

μx
nBG(T, μx )(�2)k−1. (16)

Recalling that γ = (2 − k)p, we write the critical part as
χB(T ) = χ−(1 − T/Tc)−γ . When Tc is approached from
above at nc, the critical part is χB(T ) = χ+(T/Tc − 1)−γ .
From the above equations the ratio of critical amplitudes is

χ+
χ−

= 2

(
d−
d+

)2−k

. (17)
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Mathematically the 2 arises because above Tc the sum Q+ +
Q− enters, whereas below Tc only Q+ or Q− does. For the
universality class which includes the liquid-gas phase transi-
tion and the 3D Ising model, the exact result is χ+/χ− ≈ 5,
whereas in the mean-field approximation χ+/χ− = 2. For the
latter then d+ = d−.

The last quantity to examine when T < Tc is the heat
capacity. The critical behavior is cV (T ) = c−(1 − T/Tc)−α

when the critical point is approached along the coexistence
curve. We find that

c− = p(2kp − k − p)dk
−

a(Tc)

Tc
PBG(Tc, μc). (18)

The critical exponent α is the same above and below Tc as it
should be. The ratio of critical amplitudes is

c+
c−

= 2

(
d+
d−

)k

. (19)

This model has two independent exponents, k and p, in
terms of which the critical exponents α, β, γ , and δ are
expressed. They obey the known relations α + 2β + γ = 2
and γ = β(δ − 1). The true critical exponents for the uni-
versality class that includes the liquid-gas phase transition
and the 3D Ising model are α ≈ 0.1101, β ≈ 0.3264, γ ≈
1.2371, and δ ≈ 4.7898 [14,15], which results in p ≈ 1.564
and k ≈ 1.209. In the mean-field approximation α = 0, β =
1/2, γ = 1, and δ = 3, which results in p = 3/2 and k = 4/3.
In mean-field approximation there is a discontinuity in cV

but no divergence. Using the true critical exponents and as-
suming d+/d− = 1/3 yields the ratios of critical amplitudes
c+/c− = 0.530 and χ+/χ− = 4.769. Given that the amplitude
ratios have an uncertainty of a few percent these numbers are
entirely consistent with published results [10,11,16,17].

For the background equation of state we choose the one
described in Ref. [18]. It uses a switching function to tran-
sition smoothly from a hadron resonance gas, with excluded
volume interactions, to a perturbative quark-gluon plasma.
The switching function is

S(T, μ) = exp
[−(

T 2/T 2
s + μ2/μ2

s

)−2]
. (20)

It ranges between 0 and 1 as μ and T increase. It is an even
function of μ and infinitely differentiable so as not to intro-
duce an artificial phase transition of any order. The parameters
Ts and μs are adjusted to give a good representation of lattice
results for the pressure, interaction measure/trace anomaly,
speed of sound, and baryon susceptibility at μ = 0 [19–21],
which results in Ts = 195 MeV and μs = 1300 MeV. Approx-
imate chiral symmetry, due to the small but nonzero quark
masses, is automatically included in the lattice calculations
and therefore also in the background equation of state.

Only behavior in the immediate vicinity of a critical point
is universal. For heavy-ion collisions it is not even clear
whether one can probe it closely enough to reveal the true
critical exponents or whether mean-field values are more
appropriate. Choosing the functions appearing in R(T, μ) is
informed guesswork. Here we choose the function μx(T ) to
follow a curve of constant density. Other choices are possible,
but this one produces an inverted U-shape in the T versus n
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FIG. 1. The choice of critical curve as described in the text. The
critical temperature is taken to be 100 MeV and the critical chemical
potential to be 750 MeV.

plane. It is determined implicitly via the relation

R[T, μx(T )]nBG[T, μx (T )] = nc. (21)

This function is displayed in Fig. 1. The critical point lies
along this curve. For illustration we choose Tc = 100 MeV
and μc = 750 MeV.

In general, our approach treats Tc, μc, and nc as inde-
pendent parameters. The requirement of an inverted U-shape
curve results in only two of them being independent, as they
are related by the formula

R(Tc, μc)nBG(Tc, μc) = nc. (22)

As can be seen from Eq. (15), the strength of the transition
is directly proportional to the exponent m. We choose m = 4
for illustration. The remaining functions are parametrized as

a(T ) = a0 exp(−T/Ta),

�2(T ) = d+(T/Tc − 1)p exp(−T/Td ) when T � Tc,

�2(T ) = d−(1 − T/Tc)p exp(−T/Td ) when T � Tc. (23)

FIG. 2. The dimensionless function R with parameters given in
the text. The critical point is indicated by the solid dot.
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FIG. 3. Isotherms of pressure versus density. The numbers label
the temperature with Tc = 100 MeV.

The parameters Ta and Td determine how fast R → 1 as T
increases beyond Tc. We use the true critical exponents and
amplitude ratios with parameters d− = 50, a0 = 0.15, Ta =
80 MeV, and Td = 200 MeV. Figure 2 is a contour plot of the
function R(T, μ). Note that R → 1 as μ → 0 and for large T
and/or μ.

Isotherms of pressure versus density are shown in Fig. 3.
Even at Tc there is almost a plateau on account of the large crit-
ical exponent δ ≈ 4.79 relative to the mean-field value of 3.

Figure 4 shows the phase transition in the temperature
versus density plane. It has the shape of an inverted U. Other
shapes are possible using different functions μx(T ).

In conclusion, we have proposed a novel way to embed
critical behavior in background equations of state that ex-
hibit a smooth crossover from hadrons to quarks and gluons.
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FIG. 4. Temperature versus density separating the two phases.

The goal is to use these equations of state in hydrodynamic
simulations of heavy-ion collisions in order to infer whether
there is critical behavior. The approach has flexibility in se-
lecting the location of the critical point, the coexistence curve,
and the reach of these into the background equation of state.
This flexibility is an advantage, as it allows parameters to
be adjusted to best fit experimental data. Examples were
provided; further details and exploration, such as using a back-
ground equation of state that includes more realistic attractive
and repulsive nuclear interactions at low temperature, will be
published elsewhere.
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