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While experimental observations, such as the mass hierarchy effect, are attributed and analyzed within
radiative models, their interpretation crucially depends on collisional energy loss contribution, which is often
neglected in such analyses. To our knowledge, there are neither an established (direct) simple relation between
collisional energy loss and heavy quark mass nor an observable that quantifies this effect. On the other hand, the
upcoming high-luminosity measurements at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN
Large Hadron Collider (LHC) will generate heavy flavor data with unprecedented precision, providing an
opportunity to utilize high-p⊥ heavy flavor data to analyze the interaction mechanisms in the quark-gluon plasma.
To this end, we employ a recently developed DREENA framework based on our dynamical energy loss formalism
to study the mass hierarchy in heavy flavor suppression. We present (i) an analytical derivation of a direct relation
between collisional suppression/energy loss and heavy quark mass; (ii) a novel observable sensitive only to the
collisional energy loss mechanism to be tested by future high-precision experiments, and (iii) analytical and
numerical extraction of the mass hierarchy in collisional energy losses through this observable.
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I. INTRODUCTION

For over two decades, ultrarelativistic heavy-ion collisions
at the BNL Relativistic Heavy Ion Collider (RHIC) and the
CERN Large Hadron Collider (LHC) have been aiming to
create and understand the features of the new form of mat-
ter, the quark-gluon plasma [1–4] (QGP). The rare high-p⊥
partons, while traversing the medium, interact with the QGP
bulk and lose energy, which results in jet quenching [5]. The
jet quenching is recognized as one of the most important
probes of the QGP medium, with a crucial role in the QGP
discovery [6]. Today, joint theoretical and experimental effort
is necessary for providing unbiased insight into the nature of
parton-medium interactions and, consequently, the QGP fea-
tures. Within this, an important goal is the search for adequate
effect and an observable for characterizing the appropriate
energy loss mechanisms.

Due to the prevailing opinion that a gluon’s bremsstrahlung
is the dominant mechanism of high-p⊥ parton energy loss
[7–14], many experimental observations [15] are attributed to
and analyzed within radiative models. On the other hand, in
the intermediate-p⊥ regime (p⊥ � 10 GeV) it is considered
that, due to the dead-cone effect [16], elastic interactions
prevail for heavy flavor [17–22]. Moreover, in [23–28], it was
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shown that for the charm and bottom quarks the collisional
energy loss is comparable to, or even larger than, radiative
energy loss.

A major research goal has been to understand the mass
hierarchy in parton energy loss. In the case of inelastic scat-
tering, it is known as the dead-cone effect [16], which reflects
in gluon radiation suppression of the heavy (i.e., bottom)
quarks compared to the light quarks at small angles. While
the dead-cone effect is extensively studied, both analytically
and numerically, within different radiative energy loss models
[9,29–32] (see also Refs. [33,34], for more generalized study
of this effect), the mass hierarchy in collisional energy loss
has not been addressed. Within this, specific challenges are
(i) the search for an observable which can disentangle colli-
sional from radiative energy loss and (ii) analytical derivation
of a direct relation between collisional suppression/energy
loss and heavy quark mass. With this goal in mind, we here
propose, through analytical and numerical analysis within our
DREENA-C framework [35], a novel observable sensitive to the
mass hierarchy in collisional energy loss of high-p⊥ particles.
Further, we demonstrate that our estimate for mass hierarchy
in collisional energy loss is qualitatively and quantitatively in
good agreement with the existing (scarce) experimental data.
While current error bars at the RHIC and the LHC are large,
we expect that the upcoming high-precision measurements
will be able to directly extract mass dependence in collisional
energy loss from the data.

II. COMPUTATIONAL FRAMEWORK

For generating predictions, we employ our fully opti-
mized DREENA-C [35] (Dynamical Radiative and Elastic
ENergy loss Approach, where C stands for constant/average
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temperature profile) framework. We opt for DREENA-C instead
of hydrodynamically-wise more upgraded versions DREENA-
B [36] (Bjorken [37] medium expansion) and -A (Adaptive,
i.e., arbitrary temperature profile) [38], to avoid unnecessary
complications stemming from subtleties of medium evolution
and consequently allow analytical derivations. This can be
done without significant loss of accuracy, as we previously
demonstrated that energy-loss-sensitive observable RAA (con-
sidered in this study) is practically unaffected by the medium
evolution model (for details, see Sec. III).

The framework consists of (i) initial quark momentum
distribution [39] and (ii) energy loss probability rooted in the
dynamical energy loss formalism [24,40,41], which comprises
multigluon and path-length fluctuations. Multigluon fluctua-
tions are introduced according to Refs. [41,42] for radiative
and [17,23] for collisional energy loss. The path-length fluc-
tuations [23] are calculated following the procedure provided
in [35,43]. The average temperature for each centrality bin is
evaluated following the procedure outlined in Refs. [35,44]. It
is worth noting that our predictions are valid for p⊥ � 7 GeV.

The medium modified distribution of high-p⊥ heavy flavor
particles is obtained by utilizing the generic pQCD convolu-
tion formula [23,41]:

E f d3σ f

d p3
f

= Eid3σi(Q)

d p3
i

⊗ P(Ei → E f ), (1)

where subscripts i and f stand for initial and final quantities,
while Eid3σi

d p3
i

denotes the initial heavy quark distribution com-
puted according to [39]. P(Ei → E f ) represents energy loss
probability, based on the dynamical energy loss formalism
(see below). In contrast to Refs. [23,41], Eq. (1) does not
include the fragmentation function (D(Q → HQ)) for both
charm and beauty (into D and B mesons), as D/B suppression
presents clear (genuine) charm/bottom probe’s suppression
[45–47]. Also, when providing predictions for b quark observ-
ables, we compare with indirect, nonprompt J/ψ total RAA,
due to its broader availability. This is legit, since due to the
interplay of collisional and radiative energy losses, B meson
suppression is almost independent of p⊥ [32] (in the relevant
region), so the fragmentation/decay functions will not play a
notable role for different types of b quark observables.

DREENA-C [35] is based on our dynamical energy loss
formalism [24,40,41], which includes several realistic fea-
tures: (i) The QCD medium is of finite size and finite
temperature. (ii) The medium consists of dynamical (i.e.,
moving) as opposed to static partons, which allows the lon-
gitudinal momentum exchange with the medium constituents;
this is contrary to the medium models with widely applied
vacuumlike propagators and/or static approximation [8–13].
(iii) Calculations are based on a generalized hard-thermal-
loop approach [48], where infrared divergences are naturally
regulated [24,40]. (iv) Both collisional [24] and radiative [40]
energy loss are consistently included in the same theoretical
framework (see also [49]), with the same/consistent approx-
imations and the same constants corresponding to standard
literature values (e.g., T -dependent Debye mass, number of
flavors, etc.). These two contributions do not overlap or inter-
fere, as different kinematic regions contribute to these energy

losses [50]. (v) Finite parton mass [29] is incorporated, broad-
ening the formalism applicability from light toward heavy
flavor. (vi) There are generalizations toward running coupling
[41], finite magnetic mass [51], and beyond-soft-gluon ap-
proximation [52]. In Ref. [25] we demonstrated that all these
features are necessary for reliable suppression predictions.

High-p⊥ RAA predictions, generated with DREENA-C for
a large amount of experimental data at the RHIC and the
LHC, show a good agreement [35,41,44] with the existing
data; they explain puzzling observations (such as the heavy-
flavor puzzle [46,53]) and provide nonintuitive predictions
for the upcoming experiments [32,54,55] (some of which
were subsequently confirmed by data [56]). Consequently,
our framework/formalism can adequately describe high-p⊥
parton-medium interactions, and it presents a suitable frame-
work for study conveyed in this paper. Furthermore, we use
no fitting parameters in generating predictions, i.e., all the
parameters correspond to standard literature values, stated
in [35]. To name the most relevant ones for this study the
charm (bottom) mass is Mc = 1.2 GeV (Mb = 4.75 GeV).
Different nonperturbative calculations [57,58] indicate chro-
momagnetic to chromoelectric mass ratio in the range 0.4 <
μB

μE
< 0.6 for RHIC and LHC. We here opt for μB

μE
= 0.4, while

we checked that introducing a larger value has a negligible
impact on our predictions.

III. RESULTS AND DISCUSSION

In this section, we start with comparing patterns in en-
ergy loss of charm and bottom quarks within the DREENA-C

framework [35]. From the left plot of Fig. 1, we reproduce the
dead-cone effect, i.e., mass hierarchy in radiative energy loss.
Namely, we see that the bottom quark, due to larger mass,
loses significantly less energy compared to the charm quark
[31–34]. This is especially pronounced at lower p⊥ ≈ 10 GeV,
where Mb is comparable to the transverse momentum (i.e.,
energy, since we focus on midrapidity). This difference in
�Erad

E between bottom and charm decreases with increasing
transverse momentum, which can be attributed to the fact that
for both flavors the mass becomes negligible compared to their
p⊥. Thus, already at p⊥ ≈ 50 GeV, these two curves approach
each other in accordance with [54]. Though we primarily
show centrality bin 30–40%, the results are the same regard-
less of the selected centrality range and therefore omitted.

For collisional energy loss, shown in the right plot of Fig. 1,
we observe a qualitatively similar tendency. That is, we obtain
clear mass hierarchy in �Ecoll

E (see also, e.g., [24,59–62]), with
heavier quark encountering notably smaller collisional energy
loss at p⊥ ≈ 10. Compared to the fractional radiative energy
loss, this effect is less pronounced (and disappears faster with
increasing p⊥), but it is an important observation.

To quantify this effect on the experimental observables, we
recall that RAA is well suited for our study, as it is suscep-
tible to energy loss [25] while being practically insensitive
to the details of medium evolution (contrary to, e.g., elliptic
flow) [35,36,63–65]. Therefore, it is reasonable to assume
that an adequate observable should be a function of RAA. In
particular, we will further analyze 1 − RAA, as this observable
carries more direct information on the parton energy loss than
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FIG. 1. The mass hierarchy in fractional energy losses. Heavy quark fractional energy loss as a function of p⊥, when only radiative (the
left plot) and only collisional (the right plot) energy loss mechanism is assumed. The selected centrality bin is 30–40%. Black (gray) curves
correspond to bottom (charm) quark.

commonly used RAA [63]. To this end, in Fig. 2, we compare
1 − RAA bottom to charm ratios, when total (radiative and
collisional) energy losses are accounted for. In the same plot,
we also separately consider the 1 − RAA ratio, resulting from
only collisional and only radiative energy loss scenarios. The
predictions for all considered centrality ranges are displayed.

Figure 2 contains a large number of curves, which makes it
overcrowded and may obscure some important observations.
Therefore, an inset corresponding only to 30–40% centrality
is added for transparency. Note that the choice of centrality
does not influence the conclusion, as we checked that we

FIG. 2. Comparison of 1 − RAA bottom to charm ratios for total,
collisional, and radiative suppressions, generated with the DREENA-C

[35] framework. For clarity, 30–40% centrality is presented in the
inset. Full, dashed, and dot-dashed curves denotes total, collisional,
and radiative cases, respectively, as indicated in the legend. The
blue, red, green, and orange curves correspond to 10–20%, 20–30%,
30–40%, and 40–50% centrality bins, respectively.

observe the same for other centralities. The inset provides a
somewhat unexpected insight. That is, we observe that the
1 − Rcoll

AA bottom to charm ratio is practically overlapping with
the 1 − Rtot

AA ratio. Furthermore, the total (and likewise the
collisional) ratio is notably larger than the 1 − Rrad

AA bottom
to charm ratio. As expected, the suppression curve corre-
sponding to the total energy loss is in between the collisional
and radiative energy loss scenarios. It is, however, surprising
that the total energy loss curve closely follows the collisional
energy loss curve, i.e., that the radiative contribution is negli-
gible. Consequently, this figure demonstrates that the 1 − RAA

ratio for heavy flavor is dominantly driven by the collisional
contribution. Note also that the bottom to charm ratio is
smaller than 1 at lower p⊥, and increases with increasing p⊥
(toward 1). This implies that Rb,coll

AA > Rc,coll
AA , which might re-

flect mass ordering in collisional energy loss for heavy flavors
that we further explore.

To analytically analyze what is reflected by the ratio in
Fig. 2, we start from the definition of high-p⊥ particle sup-
pression, assuming only collisional interactions within the
QGP. To obtain the final particle spectrum (dσ f /d p2

⊥) at
midrapidity, the standard procedure [66] is a convolution of
the initial parton momentum distribution (dσ i(p⊥ + ε)/d p2

⊥)
with the energy loss probability (D(ε)) in the final stage [27].
The assumption that energy loss of a high-p⊥ heavy flavor is
small (i.e., ε � p⊥) allows Taylor expansion:

dσ f

d p2
⊥

=
∫

dε D(ε)
dσ i(p⊥ + ε)

d p2
⊥

=
∫

dε D(ε)
dσ i(p⊥)

d p2
⊥

+
∫

dε D(ε)
ε

1!

d

d p⊥

(
dσ i(p⊥)

d p2
⊥

)

+ · · ·

� dσ i

d p2
⊥

+ �Ecoll
d

d p⊥

(
dσ i

d p2
⊥

)
. (2)
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FIG. 3. Mass parametrization of transverse momentum distributions for charm and bottom. Charm and bottom initial distributions are
presented on the left and the right plots, respectively, as a function of p⊥. On each plot, full black curve corresponds to the distribu-
tion, computed at next to leading order according to [39], while gray dashed curve represents our mass-dependent fitted distribution,
based on Eq. (3).

Here, we use that the probability
∫

dε D(ε) = 1, as well as
the fact that the total collisional energy loss of a parton in the
medium is given by �Ecoll = ∫

dε D(ε)ε.
Furthermore, we assume that initial p⊥ distribution of a

heavy parton can be parameterized as [17]

dσ i

d p2
⊥

= C

(p2
⊥ + M2)k

, (3)

where constants C and k should be the same for the charm
and bottom quarks. Indeed, for the initial distributions used
[39], we explicitly verified this equality in Fig. 3, where our
numerical analysis yields consistent values for both heavy
partons (ln(C) � 25.5, k � 3.5).

After taking the derivative of Eq. (3) with respect to p⊥,
Eq. (2) straightforwardly reduces to

dσ f

d p2
⊥

� dσ i

d p2
⊥

(
1 − 2k

p⊥
E

�Ecoll

E

)
, (4)

where E =
√

p2
⊥ + M2. Since the parton’s suppression [10] is

defined as [17] RAA = dσ f /d p2
⊥

dσ i/d p2
⊥

, we finally obtain

1 − RAA � 2k
p⊥
E

�Ecoll

E
. (5)

To extract the analytic dependence of 1 − RAA on the mass
of the heavy quark, we need to analyze the mass depen-
dence of collisional energy loss analytically. Since our energy
loss expression [24] is highly nontrivial and not analytically
tractable, we opt for a more straightforward Thoma-Gyulassy
[67] result, which is moreover in a (reasonably) good agree-
ment with our result [24] (in the p⊥ range of concern). After
algebraic manipulation, we obtain that the proportionality be-
tween fractional collisional energy loss and the parton’s mass
is represented by (see Eq. (A3) in the Appendix)

�Ecoll

E
∼ 1

p⊥

(
1 − M2

p2
⊥

ln
2p⊥
M

)
. (6)

Along the same lines, from Eq. (5), we obtain that the mass
dependence of 1 − RAA is represented by (see Eq. (A7) in the
Appendix)

1 − RAA ∼ 2k

p⊥

[
1 − M2

p2
⊥

(
ln 2 + 1

2

)
+

(
M

p⊥

) M
p⊥ +1

− M

p⊥

]
.

(7)

Surprisingly, further numerical consideration revels that the
dominant mass term acquires the form

1 − RAA ∼ 2k

p⊥

(
1 − M

p⊥

)
. (8)

We further form bottom to charm 1 − RAA ratio, so that a
common factor 2k

p⊥
is canceled, leading to

1 − Rb
AA

1 − Rc
AA

�
1 − Mb

p⊥

1 − Mc
p⊥

. (9)

Thus, we obtain that the 1 − RAA ratio for heavy flavor is sur-
prisingly simple, depends only on the mass and momentum of
heavy quarks, and is independent of the considered centrality.

To test the centrality independence, we go back to Fig. 2.
We see that total and collisional 1 − RAA bottom to charm
ratios are nearly indistinguishable regardless of the centrality
bin; i.e., as predicted, they do not depend on the collision
centrality.

Finally, in Fig. 4, DREENA-C [35] predictions of total 1 −
RAA bottom to charm ratios are compared with our analytical
estimate, presented on the right-hand side of Eq. (9). From this
figure, we observe a good agreement between our predictions
and 1−Mb/p⊥

1−Mc/p⊥
for all considered centralities. This implies the

validity of the analysis presented here. A small disagreement
could be attributed to the fact that our estimate originates only
from the collisional energy loss/suppression expression and
is in agreement with Fig. 2.

Furthermore, Fig. 4 also provides experimental CMS
Collaboration data [68,69] for the 1 − RAA ratio between
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FIG. 4. Quantifying the mass hierarchy in collisional energy loss.
1 − RAA bottom to charm ratios for total suppression at 10–20% (blue
curve), 20–30% (red curve), 30–40% (green curve), and 40–50%
(orange curve) as a function of p⊥. The predictions are generated
within our full-fledged DREENA-C [35] suppression numerical pro-
cedure and compared with the 1 − RAA ratio of nonprompt J/ψ at
30–100% (CMS [68]) and average D0, D+, D∗+ at 30–50% (ALICE
[69]) 5.02 TeV Pb+Pb collisions (purple triangles). The black curve
corresponds to the extracted mass dependence (see Eq. (9)).

nonprompt J/ψ on one side, and average D mesons on
the other side. Due to the lack of experimental data in the
same centrality bins for b and c probes at 5.02 TeV Pb+Pb
collisions, and for consistency throughout the paper, we
choose overlapping bins: 30–100% for nonprompt J/ψ , while
30–50% for average D mesons. From this figure, we observe
qualitatively and quantitatively good agreement between (i)
the data and our predictions, supporting the validity of the
DREENA-C framework used in this study, and (ii) the data
and our analytical mass estimate, confirming the adequacy
of the proposed observable given by Eq. (9), and justifying
the applied approximations (see the Appendix). As the error
bars are quite large, our study also implies a need for higher
precision data for a more satisfactory test of the proposed
observable. Furthermore, suppression measurements for both
B (or nonprompt J/ψ) and D mesons in the same centrality
bins are needed for extracting the mass hierarchy in collisional
energy loss from the data.

IV. CONCLUSIONS AND OUTLOOK

One of the inherent characteristics of parton’s energy loss
is the apparent flavor dependence. Inspired by the dead-cone
effect [16] in radiative energy loss and experimentally ob-
served [15] mass ordering in nonprompt J/ψ (B) and D meson
suppressions, we addressed the mass hierarchy in heavy flavor
suppression. We found that the 1 − RAA ratio for heavy fla-
vor reflects the mass hierarchy in the collisional energy loss,
which is a nontrivial and important result.

While the dead-cone effect is extensively studied within
different radiative energy loss models [9,29–32], the mass
hierarchy in collisional energy loss was not previously ad-
dressed. To our knowledge, no direct relationship between
collisional energy loss and heavy quark mass is established.
To this end, the analytical results provided here yielded a sim-
ple relation between collisional suppression/energy loss and
heavy quark mass. Also, through joint numerical and analyti-
cal analysis within our DREENA framework [35], we proposed
a novel observable for straightforwardly extracting the mass
hierarchy in collisional energy loss through heavy flavor
data, to be more rigorously tested by future high-precision
experiments. It is based on one of the most common jet
quenching observables, the high-p⊥ RAA, and is independent
of the collision centrality, collision system (size), and collision
energy, and therefore has general applicability for both RHIC
and LHC.

As an outlook, the analysis provides specific guidelines
on where future experimental efforts regarding this aim
should be focused. For instance, the mass hierarchy is more
pronounced at lower p⊥. This momentum region is experi-
mentally accessible for both RHIC and LHC in the upcoming
high-luminosity experiments, so data from both experiments
can be used to test this observable. Furthermore, it is undoubt-
edly useful to provide B meson suppression data. Finally, the
suppression measurement of both B (or nonprompt J/ψ , non-
prompt D) and D mesons in the same centrality bins would be
beneficial for readily extracting mass hierarchy in collisional
energy loss from the data.
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APPENDIX: APPROXIMATION OF COLLISIONAL
ENERGY LOSS AND 1 − RAA

In this Appendix, we first simplify the analytically tractable
collisional energy loss from [67], by assuming M/p⊥ � 1.
We start from

�Ecoll

E
∼ 1

Ev2

(
v + v2 − 1

2
ln

1 + v

1 − v

)
, (A1)

where v = p⊥/

√
p2

⊥ + M2 denotes magnitude of the velocity

of initial parton (
v). We Taylor expand Eq. (A1) for M/p⊥ �
1. Starting from v � 1 − M2

2p2
⊥

( 1

(1+x)
1
2

� 1 − x
2 ), first we obtain

�Ecoll

E
∼ 1

p⊥

1√
1 + M2

p2
⊥

(
1 + M2

p2
⊥

)

×
[

1 − M2

2p2
⊥

− M2

2p2
⊥
(
1 + M2

p2
⊥

) ln

(
4p2

⊥
M2

− 1

)]
.

(A2)

To further simplify the above expression, we frequently use
the same Taylor expansion (1 + x)−n � 1 − nx, as well as
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4p2
⊥/M2 � 1, while keeping the leading terms in M/p⊥ ex-

pansion. Thus, Eq. (A2) reduces to

�Ecoll

E
∼ 1

p⊥

(
1 − M2

p2
⊥

ln
2p⊥
M

)
. (A3)

Here we encounter nontrivial term x2 ln x, where x = M
p⊥

, for
which we are seeking the approximation for small x. We
start from the similar expression x ln x, and apply the trick of
raising the expression into the exponent

ex ln x = xx, (A4)

where we use the logarithm rules. Note, however, that
limx→0 x ln x = limx→0

ln x
1/x = limx→0

1/x
−1/x2 = 0, where we

applied L’Hôpital’s rule [70]. Since the exponent in Eq. (A4)
is close to zero, we may Taylor expand the left-hand side of
this equation, which leads to x ln (x) � xx − 1. Likewise,

x2 ln (x) � xx+1 − x. (A5)

By substituting Eq. (A5) in Eq. (A3) we obtain

�Ecoll

E
∼ 1

p⊥

[
1 − M2

p2
⊥

ln 2 +
(

M

p⊥

) M
p⊥ +1

− M

p⊥

]
. (A6)

Next we substitute Eq. (A6) in Eq. (5) resulting in

1 − RAA ∼ 2k
1√

p2
⊥ + M2

×
[
1 − M2

p2
⊥

ln 2 +
( M

p⊥

) M
p⊥ +1

− M

p⊥

]

= 2k

p⊥

[
1 − M2

p2
⊥

(
ln 2 + 1

2

)
+

( M

p⊥

) M
p⊥ +1

− M

p⊥

]
,

(A7)

where in the second line of this equation, we again utilized
1

(1+x2 )
1
2

� 1 − x2

2 .

This expression can be further simplified, since we explic-
itly checked that the second and third terms in Eq. (A7), on
one side, are of an opposite sign, and that their sum is much
smaller compared to the remaining terms on the other side.
Finally, we obtain a simple proportionality:

1 − RAA ∼ 2k

p⊥

(
1 − M

p⊥

)
. (A8)
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